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Abstract

A new boundary integral operator is introduced for the solution of the sound-

soft acoustic scattering problem, i.e., for the exterior problem for the Helmholtz

equation with Dirichlet boundary conditions. We prove that this integral opera-

tor is coercive in L2.�/ (where � is the surface of the scatterer) for all Lipschitz

star-shaped domains. Moreover, the coercivity is uniform in the wavenumber

k D !=c, where ! is the frequency and c is the speed of sound. The new bound-

ary integral operator, which we call the “star-combined” potential operator, is

a slight modification of the standard combined potential operator, and is shown

to be as easy to implement as the standard one. Additionally, to the authors’

knowledge, it is the only second-kind integral operator for which convergence of

the Galerkin method in L2.�/ is proved without smoothness assumptions on �

except that it is Lipschitz. The coercivity of the star-combined operator implies

frequency-explicit error bounds for the Galerkin method for any approximation

space. In particular, these error estimates apply to several hybrid asymptotic-

numerical methods developed recently that provide robust approximations in the

high-frequency case. The proof of coercivity of the star-combined operator crit-

ically relies on an identity first introduced by Morawetz and Ludwig in 1968,

supplemented further by more recent harmonic analysis techniques for Lipschitz

domains. © 2011 Wiley Periodicals, Inc.

1 Introduction

The aim of this paper is to introduce a new boundary integral operator (the

so-called star-combined operator) for the Helmholtz equation describing acoustic

scattering in two and three dimensions with Dirichlet boundary conditions. This

formulation constitutes new advances in two different directions. On the one hand,
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for a wide class of scattering geometries, it yields a method for numerically eval-

uating the scattered field with rigorous frequency-explicit error estimates. On the

other hand, even for moderate and small frequencies, it is the only second-kind

integral operator known to the authors for which L2-convergence of the Galerkin

method is proved without smoothness assumptions on the boundary except that it

is Lipschitz.

Geometrical optics (GO) and Keller’s geometrical theory of diffraction (GTD)

[37] provide a set of general recipes for constructing the asymptotics of the scat-

tered field for large frequencies. Over recent decades considerable effort has been

devoted both to constructing and to justifying these asymptotics, i.e., proving error

bounds with respect to large wavenumber k. (We do not attempt here to review

this vast subject, referring the interested reader instead to [5, 6, 16, 22, 23, 47] and

further references therein.)

One of the first works justifying GO asymptotics was by Morawetz and Ludwig

in 1968 [52]. This paper introduced a new identity that establishes continuous

dependence (in a suitable norm) of the solution to a scattering problem upon the

boundary data and is thus capable of justifying the GO approximation for smooth

convex scatterers with Dirichlet boundary conditions. Along with the more widely

known simultaneous work of Morawetz [50], this laid the foundation of the method

of so-called Morawetz multipliers, which have since been intensively used and

further developed for both linear and nonlinear PDEs (e.g., [27, 35, 53, 57]).

As a separate development, “hybrid asymptotic-numerical” boundary integral

methods have attracted considerable recent attention [1, 10, 18, 20, 28, 34, 36].

These methods seek to incorporate the oscillatory components from GO and the

GTD explicitly into the numerical method, and thus efficiently compute the highly

oscillatory solutions. The convergence analysis for these hybrid methods requires

two key ingredients. One ingredient uses the results that justify the GO and GTD

approximations to ensure that the specific oscillatory approximation space (con-

structed by considering the asymptotics) has small “best approximation error.” This

first ingredient, sufficient from the asymptotic point of view, is not sufficient in this

numerical analysis context, and an additional, second ingredient is essential. This

other key ingredient is a “quasi-optimality” property, guaranteeing that the error

in the computed numerical solution is close to the best approximation error, where

“closeness” should be quantified explicitly with respect to k. This quasi-optimality

may be obtained by proving that the boundary integral operator is coercive, with

explicitly known k-dependence of the corresponding coercivity constant. (Note

that coercivity is a stronger property than boundedness of the inverse of the opera-

tor.)

The first main contribution of this paper is that the newly proposed “star-com-

bined” boundary integral operator is coercive, uniformly in k, for all star-shaped

domains, leading to the first frequency-explicit error bounds for hybrid methods

in domains other than the circle and sphere. We prove this coercivity (and indeed

construct this new operator) by a novel application of the Morawetz and Ludwig
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identity. Thus, the classical arguments of Morawetz and Ludwig, initially used to

justify GO (and thus best approximation properties of the new hybrid numerical

methods), are now also used to provide a novel formulation of the boundary value

problem and a proof of its numerical stability.

The Morawetz and Ludwig identity is related to an identity introduced by Rel-

lich [58] and generalized by Payne and Weinberger [56]. A Rellich-type identity

was a key tool in Verchota’s proof in 1984 that the standard boundary integral oper-

ators for the Laplace equation are invertible on Lipschitz domains [60]. This paper

appears to be the first one to realize the additional potential of the Morawetz and

Ludwig identity in this context and to make the extensions required to these argu-

ments (albeit with slight modifications to the integral operator) to prove the much

stronger property of coercivity for a class of Lipschitz domains. Thus, we expect

this to be of additional interest in its own right, i.e., independently of the original

motivation in high-frequency scattering.

1.1 Formulation of the Problem

Consider the problem of scattering of a time-harmonic (e�i!t time dependence)

acoustic wave by a bounded, sound-soft obstacle occupying a compact set �i �

R
d (d D 2 or 3) with Lipschitz boundary � such that the set �e WD R

d n �i is

connected. The medium of propagation, occupying �e, is assumed to be homoge-

neous, isotropic, and at rest. Under the assumption that uI is an entire solution of

the Helmholtz (or reduced wave) equation with wavenumber k D !=c > 0 (where

c > 0 denotes the speed of sound), we seek the resulting time-harmonic acoustic

pressure field u that satisfies the Helmholtz equation

(1.1) Lu WD �uC k2u D 0 in �e;

the sound-soft (Dirichlet) boundary condition

(1.2) u D 0 on � WD @�e ;

and the Sommerfeld radiation condition

(1.3)
@uS

@r
� ikuS D o.r�.d�1/=2/

as r WD jxj ! 1, uniformly in yx WD x=r , where uS WD u � uI is the scattered

part of the field (see, e.g., [25]). This problem has exactly one solution under the

constraint that u and ru are locally square-integrable.

This boundary value problem can be reformulated as an integral equation on the

surface of the scatterer, � , using Green’s integral representation for the solution u,

that is,

(1.4) u.x/ D uI .x/ �

Z
�

ˆk.x; y/
@u

@n
.y/ds.y/; x 2 �e;

where @=@n is the derivative in the normal direction, with the unit normal n directed

into�e, and ˆk.x; y/ is the fundamental solution of the Helmholtz equation given
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by

ˆk.x; y/ D

8̂̂
<
ˆ̂:

i

4
H

.1/
0 .kjx � yj/; d D 2;

eikjx�yj

4�jx � yj
; d D 3:

Taking the Dirichlet and Neumann traces of (1.4) on � , one obtains two integral

equations for the unknown Neumann boundary value @u=@n:

Sk

@u

@n
D uI ;(1.5)

�
1

2
I CD0

k

�
@u

@n
D
@uI

@n
;(1.6)

where the integral operators Sk and D0
k

, the single-layer potential and its normal

derivative, are defined for  2 L2.�/ by

Sk .x/ D

Z
�

ˆk.x; y/ .y/ds.y/; x 2 �;(1.7)

D0
k .x/ D

Z
�

@ˆk.x; y/

@n.x/
 .y/ds.y/; x 2 �:(1.8)

Both integral equations (1.5) and (1.6) fail to be uniquely solvable for certain

values of k (those such that k2 is a Dirichlet or Neumann eigenvalue of the Lapla-

cian in �i , respectively), and the standard way to resolve this difficulty is to take a

linear combination of the two equations. This yields the integral equation

(1.9) Ak;�

@u

@n
D f;

where

(1.10) Ak;� WD
1

2
I CD0

k � i�Sk

is the standard combined potential operator, with � 2 Rnf0g the so-called coupling

parameter, and

f .x/ D
@uI

@n
.x/� i�uI .x/; x 2 �:

Standard trace results imply that the unknown Neumann boundary value @u=@n

is in H�1=2.�/, and a regularity result due to Nečas [54] (stated as Theorem 3.2

below) implies that @u=@n is in fact in L2.�/. Thus we can consider the integral

equation (1.9) as an operator equation in L2.�/, which is a natural space for the

practical solution of second-kind integral equations since it is self-dual. It is well-

known that, for � ¤ 0, Ak;� is a bounded and invertible operator on L2.�/ (see

[20] for details, particularly regarding how classical results can be adapted to the

general Lipschitz case).
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Commonly recommended choices for the coupling parameter � are to take �

proportional to k for k large, and � constant (when d D 3) or proportional to

.log k/�1 (when d D 2) for k small. These choices have been justified by theo-

retical studies for the case of � a circle or sphere [2, 3, 40, 41], and also on the

basis of computational experience [11]. Recently these choices have been shown

to be near optimal in terms of minimizing the condition number of Ak;� for more

general domains by the analysis and numerical experiments of [8, 19].

A well-known method for solving the integral equation (1.9) is the Galerkin

method, namely, given an approximation space (of dimension N ) SN � L2.�/,

find vN 2 SN such that

.Ak;�vN ; �N /L2.�/ D .f; �N /L2.�/ 8�N 2 SN :

Denoting the unknown Neumann boundary value @u=@n on � by v, one would

then like to prove an error estimate of the form

(1.11) kv � vN kL2.�/ � C inf
�N 2SN

kv � �N kL2.�/;

and if such an estimate holds, the Galerkin scheme is said to be “quasi-optimal.”

In the high-frequency context, one would also like to know how the constant C

depends on k.

When the boundary � is C 1 the integral operators D0
k

and Sk are compact

on L2.�/ so that Ak;� is a compact perturbation of the identity (see, e.g., [33]).

Classical arguments based on this property can be used to show that the numeri-

cal solution vN obtained by the Galerkin method with an approximation space of

piecewise polynomials satisfies the error estimate (1.11) once the dimension N of

the approximation space is sufficiently high, i.e., N � N0 for some N0 2 N (see

e.g., [4]). However, these arguments have the following severe limitations:

(a) Since the perturbation depends on k in a complicated nonlinear way, the

classical compact perturbation argument gives no information about how

the constants C and N0 depend on k, rendering the bound (1.11) that is

obtained useless in the high-frequency case.

(b) They do not apply in the case when � is nonsmooth, in particular, Lip-

schitz.

Recently, using a sophisticated k-explicit version of the classical arguments,

Melenk has overcome limitation (a) in the case when � is C1 and an hp-Galerkin

boundary element method is used on a quasi-uniform mesh. Indeed, he has shown

that given " > 0, (1.11) holds withC D 1C" provided that firstlyN � kd�1N0."/,

where N0."/ depends only on ", and secondly that the polynomial degree is care-

fully chosen to depend logarithmically on k [42]. This result was obtained using a

novel splitting of the operator Ak;� [45] motivated by a related numerical analysis

for a domain-based (finite element) formulation [46].
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1.2 Main Result

This paper introduces a new boundary integral operator closely related to Ak;�.

Note that with u given by (1.4), the integral equation (1.9) involving Ak;� arises

from

(1.12) .n � ru/j� � i�uj�

expressed in terms of boundary integral operators. In fact, with u given by (1.4),

recalling the boundary condition (1.2), we find that uj� yields the integral equation

(1.5) and ruj� yields the integral equation�
n

�
1

2
I CD0

k

�
C r�Sk

�
@u

@n
D ruI ;

where the vector-valued boundary integral operator r�Sk is defined on L2.�/ by

(1.13) r�Sk .x/ D

Z
�

r�; xˆk.x; y/ .y/ds.y/

for almost every x 2 � , and where

r�; xˆk.x; y/ D rxˆk.x; y/ � n.x/
@ˆk

@n.x/
.x; y/

is the surface gradient on � of the fundamental solution. The integral in (1.13)

must be understood in the principal value sense.

The boundary integral operator that we focus on in this paper is obtained by

replacing the normal vector in (1.12) with the position vector x with respect to a

suitable origin, i.e.,

.x � ru/j� � i�uj� ;

and this choice is motivated by the Morawetz and Ludwig identity, as clarified

below. The main result of this paper is that this resulting new boundary integral

operator is coercive, uniformly in k, for star-shaped Lipschitz domains with a par-

ticular choice of �. Because of this property on star-shaped domains, we call this

integral operator, denoted by Ak and defined by (1.15) below, the “star-combined”

potential operator. The main result is the following:

THEOREM 1.1 (Coercivity of the Star-Combined Operator). Suppose that �i is a

bounded star-shaped Lipschitz domain, and x is the position vector relative to an

origin from which �i is star-shaped. Then for all � 2 L2.�/

(1.14) <.Ak�; �/L2.�/ � �k�k2
L2.�/

;

where the star-combined operator Ak is given by

(1.15) Ak D .x � n/

�
1

2
I CD0

k

�
C x � r�Sk � i�Sk
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with the function � chosen as

(1.16) � D kr C i
d � 1

2
;

and the k-independent coercivity constant � is given by

(1.17) � D
1

2
ess inf

x2�
.x � n.x// > 0:

This is an interesting result for the following reasons:

Firstly, it is perhaps surprising that this formulation of the Helmholtz equation

is coercive at all, let alone for a large class of nonsmooth domains and uniformly

in k. Indeed, Helmholtz problems are usually thought to be sign indefinite, and

the standard analysis for both the domain-based weak formulation and Galerkin

boundary integral equation methods is to attempt to prove a Gårding inequality,

i.e., to attempt to show that the operator is a compact perturbation of a coercive

operator.

Moreover, in the boundary integral context, for general Lipschitz domains, not

even a Gårding inequality is known for the operator (1.10). The only rigorous

coercivity result known until now is that Ak;k is coercive uniformly in k on the

circle and sphere in the limit k ! 1. Indeed, it was proved in [28] that for the

circle there exists a k0 such that

<.Ak;k�; �/L2.�/ � �k�k2
L2.�/

8k � k0

with � D 1
2

. (For the sphere, it was proved that coercivity holds for any � < 1
2

[28].) These proofs relied on Fourier analysis on the circle/sphere and involved

bounding combinations of Bessel functions uniformly in argument and order. Nu-

merical computations indicate that the coercivity of Ak;k in the high-frequency

limit holds for much more general domains [9]; however, this has yet to be proved.

When � is the unit circle or sphere, the star-combined operator Ak reduces toAk;�,

with the choice of � given by (1.16), since in this case x � n D 1 and x � r�Sk D 0

as r�Sk is a vector-valued operator in the tangent space of � . Thus Theorem 1.1

provides alternative (and, as we shall see, much simpler) proofs of the coercivity

results as k ! 1 of [28], and also shows that coercivity holds uniformly for all k

on the circle and sphere provided we make the choice of coupling constant (1.16).

Returning to numerical methods for the Helmholtz equation (1.1), the unknown

Neumann boundary value @u=@n on � satisfies the following boundary integral

equation involving the star-combined operator,

(1.18) Ak

@u

@n
D x � ruI � i�uI :

Supposing the coercivity (1.14) holds, if (1.18) is solved by the Galerkin method

using any approximation space SN , then, by the Lax-Milgram theorem and Céa’s
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lemma (see, e.g., [4]), the error estimate (1.11) holds with

(1.19) C D
kAkkL2.�/

�
:

Thus, once the k-dependence of kAkkL2.�/ is established (see Theorem 4.2 be-

low), the k-dependence of the constant C in (1.11) is then explicitly known. Note

also that no “threshold” requirement of a minimum value ofN is needed in contrast

to error estimates obtained via a Gårding inequality.

Recently there has been much research interest in designing “hybrid asymptotic-

numerical” boundary integral methods for the solution of the Helmholtz equation

(1.1) when k is very large. The reason for this is that in conventional methods,

using approximation spaces comprised of piecewise polynomials, the dimension

of the approximation space N must grow like kd�1 as k ! 1 to maintain accu-

racy, putting very-high-frequency problems out of reach of standard methods. One

popular approach to overcome this difficulty is to incorporate the oscillation of the

solution into the approximation space, often using asymptotic results from GO and

the GTD to identify the rapidly oscillating part of the solution. Some of the pio-

neering work in this area was carried out in [1, 10, 34]—see, e.g., the review [18]

for a survey.

The goal of these methods is to design approximation spaces SN;k such that the

best approximation error inf�N 2SN;k
kv � �N kL2.�/ is bounded, or grows mildly,

as k ! 1 for fixed N . Since these approximation spaces depend on k, both the

standard and the novel (due to Melenk) perturbation arguments, where the pertur-

bation is k-dependent, apparently cannot be used to prove useful estimates for the

stability and convergence of these hybrid methods. However, if the star-combined

operator Ak is used instead of Ak;�, then Theorem 1.1 gives the first stability

and convergence proofs of the hybrid Galerkin methods of [20, 28] in domains

other than the circle/sphere. A natural question is then, how much more difficult is

the star-combined operator Ak to implement than the standard combined operator

Ak;�? In Section 4.3 we show that in principle Ak is no more difficult to implement

that Ak;� . Indeed, the only substantial difference between the two is the presence

of the Cauchy singular operator r�Sk in Ak . However, this integral operator is

equal to the surface gradient, r� , of the single-layer potential, i.e., r�.Sk/ (which

is the reason for this notation), and in the Galerkin method the surface gradient in

this term can be moved onto the test function by integration by parts. This means

that the relevant integrals only require evaluations of the single-layer potential Sk .

The theory of boundary integral equations in L2.�/ on Lipschitz domains relies

on the harmonic analysis results of (among others) Calderón, Coifman, McIntosh,

Meyer, and Verchota [17, 24, 60] (and is summarized in [38, 48]). However, a proof

has yet to be found that the Galerkin method for the boundary integral equation

(1.9) converges in L2.�/ on a general Lipschitz domain. (A summary of related

results, including the notable work of Elschner [30], is given in [61].) To compen-

sate for this lack of theory there have been several recent investigations proposing
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modified or “stabilized” boundary integral equation formulations of the Helmholtz

and Maxwell equations e.g., [13, 14, 15, 31, 32]. These investigations are all based

on the fact that the single-layer potential Sk satisfies a Gårding inequality when

viewed as a mapping from H�1=2.�/ ! H 1=2.�/. Thus suitable operators can

be constructed that act on 1
2
ICD0

k
in the combined potential operator Ak;� so that

the resulting modified combined potential operator maps H�1=2.�/ ! H 1=2.�/

and satisfies a Gårding inequality on general Lipschitz domains. To the authors’

knowledge, the star-combined operator Ak is unique in being the only second-kind

boundary integral formulation of the Helmholtz equation (1.1) that is coercive in

L2.�/ on a general Lipschitz domain (albeit a star-shaped one).

1.3 Motivation for the Proof of Theorem 1.1

In the rest of the introduction we outline the main ideas in the proof of Theo-

rem 1.1. The proof is completely dependent on an identity introduced by Morawetz

and Ludwig in [52]. Morawetz-type estimates have formed the basis of many in-

vestigations of well-posedness of PDEs following the pioneering work [50], and

the related Rellich-type identities for linear elliptic equations have been used ex-

tensively in numerical analysis of the Helmholtz equation. However, it appears that

the natural role of the identity in [52] has been overlooked in a numerical analysis

context until now.

The proof of Theorem 1.1 is motivated by a simple result about the single-layer

potential Sk , namely that <.�i.Skv; v/L2.�// � 0 for all v 2 L2.�/. This can

be proved using Green’s identity, as we shall now show. (A different proof of this

result appears in [55, sec. 3.4.4], while essentially the same proof as that given here

also appears in [31].)

Let D be any bounded Lipschitz domain with outward normal �. If u is suffi-

ciently regular up to the boundary, namely u 2 C 2.D/, then, by Green’s identity

and the divergence theorem,

(1.20)

Z
D

.xuLu � k2juj2 C jruj2/dx D

Z
@D

xu
@u

@�
ds:

Let �i be as described at the beginning of the paper, and let u be the single layer

potential Sk with density � 2 L2.�/, that is,

u.x/ D Sk�.x/ WD

Z
�

ˆk.x; y/�.y/ds.y/; x 2 R
d n �:

Then Lu D 0 in�i [�e, u is continuous across � , but @u=@n has a jump across � .

Assume �i contains the origin and let R > 0 be such that �i � BR.0/; see

Figure 1.1. Apply the identity (1.20) first with D D �i and then with D D
�e \BR.0/ (for a general Lipschitz domain, this involves some technicalities; see
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BR.0/

R
0

�i

n

�

FIGURE 1.1. The domain �i , with boundary � and outward-pointing

normal n, and the ball of radius R denoted by BR.0/.

Remark 4.7 below). Adding the resulting two equations yields

0 D

Z
.�i [�e/\BR

.k2juj2 � jruj2/dx

C

Z
�

xu

�
@u�

@n
�
@uC

@n

�
ds C

Z
@BR.0/

xu
@u

@r
ds

(1.21)

where @u˙=@n denote the limits of @u=@n on � from within �e and �i , respec-

tively (and recall that n points into �e). The term involving k2juj2 � jruj2 is

real, but in general sign-indefinite, so we take the imaginary part of the expression

(1.21).

After using the jump relation for the normal derivative of Sk on � , this yields

0 D =

Z
�

Sk�� ds C =

Z
@BR

xu
@u

@r
ds:

When R ! 1 the last term can be expressed in terms of the far-field pattern of u,

which we denote by f1.yx/ where yx WD x=r (see (2.12) below), and the result is

(1.22) <.�i.Sk�; �/L2.�// D k

Z

Sd�1

jf1.yx/j
2 ds � 0;

where S
d�1 is the d -dimensional unit sphere. Note that (1.22) implies nonnegativ-

ity of the operator �iSk , but that this operator is not invertible, let alone coercive.
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Indeed, if k2 D 	j and � D @uj=@n, where 	j and uj are an eigenvalue and a

corresponding eigenfunction of the Dirichlet Laplacian in �i , respectively, then

u D Sk� � 0 in �e and hence f1 � 0.

The motivation for the proof of Theorem 1.1 is the following question: given

that the above argument involving Green’s identity yields information about part

of the combined potential operator Ak;� (1.10), namely the part involving Sk , can

we repeat the argument using a different identity to obtain information about more,

or even all, of Ak;�? This leads us to consider other identities involving solutions

of the Helmholtz equation.

One way of obtaining identities for solutions of the Helmholtz equation is to

multiply Lu D 0 by Nu, where the “multiplier” N is some suitable operator, and

integrate by parts. For example, in this framework (1.20) arises from the choice

Nu D u. Rellich-type identities are obtained by choosing Nu to be a derivative

of u. Common choices of derivatives include a derivative in the radial direction

in the case of star-shaped obstacles (so Nu D x � ru) and a derivative along the

vertical coordinate axis in the case of scattering by a rough surface.

Originally introduced by Rellich in [58], these identities have been used exten-

sively in analysis, for example, to prove elliptic regularity results [54] (which we

use below as Theorem 3.2), to prove the invertibility of the boundary integral oper-

ator A0;0 on Lipschitz domains [60], and in the famous work on elliptic problems

on nonsmooth domains by Jerison and Kenig; see, for example, [38]. In a numer-

ical analysis context Rellich identities have recently been used to prove regularity

results for the Helmholtz equation in interior domains with impedance boundary

conditions [44, prop. 8.1.4], [26], and to prove k-explicit bounds in the exterior of

star-shaped domains for both kA�1
k;�

k and the inf-sup constant for the domain based

formulation of the Helmholtz equation [21].

For simplicity, let d D 2 (the three-dimensional case, d D 3, is slightly more

complicated). The multiplier Nu D x � ru leads to the following identity for

solutions of Lu D 0:

(1.23) r � .2<.x � ruru/C .k2juj2 � jruj2/x/ D 2k2juj2

(see Lemma 2.1 below).

The reason this identity can be used to obtain estimates is that the nondivergence

terms are sign-definite. However, when u satisfies the radiation condition (1.3)

and this identity is integrated over �e \ BR.0/, the contribution from the surface

integral is unbounded as R ! 1, meaning that repeating the argument leading to

(1.22) is not possible. This drawback of the Rellich identity was encountered in

[21]. There the authors avoided this difficulty by keeping R fixed, expanding u on

@BR.0/ as a Fourier series, and using properties of Bessel functions to relate the

integral over @BR.0/ to an integral on � [21, lemma 2.1].

In [52] Morawetz and Ludwig introduced the multiplier Nu D rMu where

(1.24) Mu D
x

r
� ru � ikuC

d � 1

2r
u:
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This leads to an identity very similar to (1.23), namely that for solutions of Lu D 0,

(1.25) r � .2<.rMuru/C .k2juj2 �jruj2/x/ D .jruj2 �jur j2/Cjur � ikuj2

where rur D x �ru. As before, the nondivergence terms are all positive. However,

the choice of terms subtracted from x � ru in the multiplier (1.24) means that the

integral on @BR.0/ tends to 0 as R ! 1, making it perfectly suited for repeating

the argument leading to (1.22). In this way we ultimately obtain the inequality

<..x � nD0
k C x � r�Sk � i�S/�; �/L2.�/ � 0;

where � is given by (1.16), which gives the coercivity result of Theorem 1.1.

We also note that using the Morawetz-Ludwig identity (1.25) instead of the Rel-

lich one (1.23) yields the main results of [21] without the use of the result [21,

lemma 2.1] described above. Thus for Helmholtz problems in unbounded domains,

the Morawetz-Ludwig identity has a distinct advantage over the standard Rellich

one.

1.4 Outline of Paper

For completeness, in Section 2 we briefly derive the Rellich and Morawetz-

Ludwig identities, and emphasize the advantages the latter has over the former in

this context. Section 3 states precisely the acoustic scattering problem in Lipschitz

domains and recalls standard results we shall use later. Section 4 introduces the

star-combined operator, with Section 4.2 containing the proof of Theorem 1.1, and

Section 4.3 demonstrating that the star-combined operator is as easy to implement

as the standard combined operator in a Galerkin context. We conclude with some

remarks in Section 5.

2 The Rellich and Morawetz-Ludwig Identities

LEMMA 2.1 (Rellich Identity). Let v 2 C 2.D/ where D � R
d , and Lv D �v C

k2v where k 2 R. Then

2<.x � rvLv/ D r � Œ2<.x � rvrv/C .k2jvj2 � jrvj2/x


C .d � 2/jrvj2 � dk2jvj2:
(2.1)

PROOF. The basic building block of the Rellich identity is

(2.2) .x � rv/�v D r � Œ.x � rv/rv
 � jrvj2 � rv � ..x � r/rv/;

which can be proved by expanding the divergence term on the right-hand side. We

would like each term on the right-hand side of (2.2) to either be sign-definite or be

the divergence of something, and the only term that is not one of these is the final

term. However, the real part of this final term can be expressed as the sum of a

divergence and a quadratic term using

(2.3) r � .jrvj2x/ D d jrvj2 C 2<Œrv � ..x � r/rv/
:
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Thus, by taking two times the real part of (2.2) and using (2.3), we obtain the

following:

(2.4) 2<.x � rv�v/ D r � Œ2<.x � rvrv/
� 2jrvj2 � r � .jrvj2x/C d jrvj2:

Finally, we add k2 times the identity

2<.x � rv v/ D r � .jvj2x/ � d jvj2

to (2.4) to obtain (2.1). �

Identity (2.1) with k D 0 (which appears in [38, lemma 2.1.13]) is a special

case of a general identity for second-order strongly elliptic operators introduced by

Payne and Weinberger [43, lemma 4.22],[56].

To obtain the Morawetz-Ludwig identity from the Rellich one, we seek to add

more terms to the instances of x � rv appearing on the left- and right-hand sides

of (2.1).

LEMMA 2.2 (Morawetz-Ludwig Identity [52, eq. 1.2]). Let v and Lv be defined

as in Lemma 2.1 and define the operator M˛ by

(2.5) M˛v D vr � ikv C
˛

r
v;

where ˛ 2 R and vr D x � rv=r . Then

2<.rM˛vLv/ D r � Œ2<.rM˛vrv/C .k2jvj2 � jrvj2/x


C .2˛ � .d � 1//.k2jvj2 � jrvj2/

� .jrvj2 � jvr j2/ �

ˇ̌̌
ˇM˛v �

˛

r
v

ˇ̌̌
ˇ
2

:

(2.6)

PROOF. By expanding the divergences on the right-hand sides we have both that

(2.7) 2<.ikrxvLv/ D r � Œ2<.ikrxvrv/
 � 2<.ikvr xv/

and that

(2.8) 2<.xvLv/ D r � Œ2<.xvrv/
� 2jrvj2 C 2k2jvj2:

Thus adding (2.1), (2.7), and ˛ times (2.8), we obtain

2<.rM˛vLv/ D r � Œ2<.rM˛vrv/C .k2jvj2 � jrvj2/x


C .d � 2 � 2˛/jrvj2 C .2˛ � d/k2jvj2 C 2<.ikxvrv/;
(2.9)

(this is [52, eq. (A.3)]). As before, we would like each term on the right-hand

side to either be sign-definite or be a divergence; the only term not of this form is

2<.ikxvrv/. By expanding jM˛vj2, 2<.ikxvrv/ can be written as

jvr j2 C k2jvj2 � jM˛vj2 C
˛2

r2
jvj2 C

2˛

r
<.vr xv/;

and thus the nondivergence terms in (2.9) become
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(2.10) .d � 2 � 2˛/jrvj2 C .2˛ � .d � 1//k2jvj2 C jvr j2

� jM˛vj2 C
˛2

r2
jvj2 C

2˛

r
<.vr xv/:

By using

2˛

r
<.vr xv/ D

2˛

r
<.v.xvr C ikxv// D

2˛

r
<

�
v

�
M˛v �

˛

r
xv

��
;

upon straightforward rearrangement (2.10) becomes

.2˛ � .d � 1//.k2jvj2 � jrvj2/ � .jrvj2 � jvr j2/ � jM˛vj2

�
˛2

r2
jvj2 C

2˛

r
<.vM˛v/;

and thus, by factorizing the last three terms of the above expression, (2.9) yields

(2.6). �

The Rellich and Morawetz-Ludwig identities, derived above for an arbitrary

function v 2 C 2.D/, are designed to be used for solving the Helmholtz equation

Lu D 0 (or its inhomogeneous form). Both the next remark and the next lemma

concern properties of these identities in this situation.

Remark 2.3 (Choice of ˛ in M˛ and Connection with the Radiation Condition).

Noting first that jrvj2 �jvr j2 � 0, and second that .k2jvj2 �jrvj2/ is, in general,

sign-indefinite, the choice

(2.11) ˛ D
.d � 1/

2

ensures that all the nondivergence terms on the right-hand side of (2.6) have the

same sign (i.e., all nonpositive). It is perhaps surprising that this choice (2.11) is

connected to the far-field behavior of solutions of the Helmholtz equation. Indeed,

if Lu D 0 and u itself satisfies the radiation condition (1.3) (i.e., (1.3) holds with

uS replaced by u), then

(2.12) u.x/ D
eikr

r.d�1/=2

�
f1.yx/C

f2.yx/

r
C O

�
1

r2

��
as r ! 1;

where f1 and f2 are functions of the angular variable yx D x=r , and the asymp-

totics admits differentiation in r and yx; see, for example, [25, theorem 3.6]. A sim-

ple calculation shows that

M˛u D ur � ikuC
˛

r
u D

eikr

r.dC1/=2

�
˛ �

�
d � 1

2

��
f1.yr/

C O

�
1

r.dC3/=2

�
as r ! 1:

(2.13)
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Thus, for general ˛, M˛u is O.r�.dC1/=2/, but the choice (2.11) makes the coef-

ficient of the O.r�.dC1/=2/ term in (2.13) zero, so

M.d�1/=2u D O

�
1

r.dC3/=2

�
as r ! 1:

LEMMA 2.4 (Key Difference between Rellich and Morawetz-Ludwig Identities).

Let u satisfy Lu D 0 in the domain fjxj � R0g for some R0 > 0, and suppose

that u satisfies the radiation condition (1.3). Then, when the Rellich (2.1) and

Morawetz-Ludwig (2.6) identities, with v replaced by u, are integrated in fR0 �
jxj � Rg by using the divergence theorem, the surface integral on jxj D R is

O.R/ as R ! 1 in the Rellich case and O.R�1/ in the Morawetz-Ludwig case

(independently of the value of ˛ in M˛).

PROOF. Using the fact that the outward normal to the surface jxj D R is x,

which equals Ryx, the relevant surface integral isZ
jxjDR

R.jur j2 C k2juj2 � .jruj2 � jur j2//ds

in the Rellich case, andZ
jxjDR

R

�
jur j2 C k2juj2 C 2<

��
ik C

˛

R

�
xuur

�
� .jruj2 � jur j2/

�
ds D

Z
jxjDR

R

�
jM˛uj2 � ˛2 juj2

R2
� .jruj2 � jur j2/

�
ds

in the Morawetz-Ludwig case. The asymptotics of u above, equation (2.12), imply

that juj2 and jur j2 are both O.R1�d / on jxj D R as R ! 1, and jM˛uj2

is O.R�1�d / (for any ˛). The quantity jruj2 � jur j2 equals jrSuj2 where rS

is the surface gradient on jxj D R, which satisfies rSu D ru � yxur . This

differential operator is equal to 1=Rmultiplied by an operator acting only on yx, i.e.,

the angular variables; thus jrSuj2 is O.R�1�d /. Since
R

jxjDR ds D O.Rd�1/ the

conclusions follow. �

Later we will need the Morawetz-Ludwig identity (2.6) integrated over a Lip-

schitz domain, which is given by the next lemma. Following Remark 2.3, from now

on we shall only consider the Morawetz-Ludwig identity (2.6) with the particular

choice of ˛ given by (2.11).

LEMMA 2.5. Let D � R
d be a bounded Lipschitz domain, let v 2 C 2.D/, and

let � denote the outward pointing unit normal to D. Let

(2.14) Mv WD M.d�1/=2v D vr � ikv C
.d � 1/

2r
v:

Then,
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(2.15)

Z
D

.2<.rMvLv/C jvr � ikvj2 C .jrvj2 � jvr j2//dx D

Z
@D

�
2<

�
rMv

@v

@�

�
C .k2jvj2 � jrvj2/x � �

�
ds:

PROOF. This is a consequence of applying the divergence theorem to the iden-

tity (2.6) with ˛ given by (2.11). The divergence theoremZ
D

r � F dx D

Z
@D

F � � ds

is valid when D is Lipschitz and F 2 C 1.D/ [43, theorem 3.34]. (Note that

by the density of C 1.D/ in H 1.D/ and the continuity of the trace operator, � W

H 1.D/ ! H 1=2.@D/ (2.15) holds for v 2 H 2.D/; however, we will not need

this in what follows.) �

Remark 2.6 (The Second Morawetz and Ludwig Identity). In addition to the iden-

tity (2.6), Morawetz and Ludwig obtained a second identity, namely,

2<.rM˛vLv/ D r �

�
2<.rM˛vrv/C

�
k2jvj2 � jrvj2 C ˛

jvj2

r2

�
x

�

C .2˛ � .d � 1//.k2jvj2 � jrvj2/ � jM˛vj2

�
˛.d � 2 � ˛/

r2
jvj2 � .jrvj2 � jvr j2/:

(2.16)

This is obtained by using

2˛

r
<.vr xv/ D ˛r �

�
jvj2

r2
x

�
�
˛.d � 2/

r2
jvj2

in (2.10), and combined with (2.9) this yields (2.16). In this identity two conditions

need to be met for the nondivergence terms to be the same sign, namely (2.11) and

0 � ˛ � .d � 2/. These two conditions hold if and only if d � 3, but not for

d D 2. Morawetz and Ludwig used the identity (2.16) for d D 3 and (2.6) for

d D 2. The reason for this is that jM˛vj2 appears in the nondivergence terms of

(2.16) instead of jM˛v � ˛v=r j2 in (2.6), and this fact simplifies the proof of the

main result in [52] for d D 3. For our purposes this difference does not matter,

and so will we use (2.6) for both d D 2 and 3.

3 The Acoustic Scattering Problem in Lipschitz Domains

In this section we formulate the boundary value problem in a standard Sobolev

setting. (Formulations in other function spaces are possible; see, e.g., [20, re-

mark 2.2] for an overview.) Recall that we assume that the domain corresponding

to the scatterer, �i , is Lipschitz (and hence so is �e), and we denote the outward
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pointing normal to�i (i.e., into�e) by n. We now summarize some standard facts

about Lipschitz domains; see [43].

Given a Lipschitz domain D � R
d with outward pointing normal �, recall

that there is a well-defined trace operator � W H 1.D/ ! H 1=2.@D/ that satisfies

�v D vj@D when v 2 D.D/ WD fwj xD W w 2 C1.Rd /g. Let H 1.D;�/ WD fv 2

H 1.D/ W �v 2 L2.D/g (where � is the Laplacian in a weak sense). There is

also a well-defined normal derivative operator, which is the unique bounded linear

operator @� W H 1.D;�/ ! H�1=2.@D/ such that

@�v D
@v

@�
WD � � rv

almost everywhere on @D, when v 2 D.D/. Let H 1
loc.D/ denote the space of

measurable v W D ! C for which �v 2 H 1.D/ for every compactly supported

� 2 D.D/. Finally, there exists a unique operator r� , the surface (or tangen-

tial) gradient, such that the mapping r� W H 1.@D/ ! .L2.@D//d is bounded,

� � r�v D 0 for all v 2 H 1.@D/, and if w is C 1 in a neighborhood of @D, then

(3.1) rw.x/ D r�w.x/C �
@w

@�
.x/; x 2 @D:

An explicit formula for r� in terms of a parametrization of the boundary is given

by Definition 4.10 in Section 4.3.

DEFINITION 3.1 (The Plane-Wave Time-Harmonic Acoustic Scattering Problem).

Given k > 0 and uI an entire solution of the Helmholtz equation (1.1) (such as

a plane wave), find u 2 C 2.�e/ \ H 1
loc.�e/ such that u satisfies the Helmholtz

equation (1.1), �u D 0 on � , and uS D u � uI satisfies the radiation condition

(1.3).

The boundary integral equation method reformulates the problem of finding u

in �e to finding the normal derivative of u, @u=@n, on � . Since u 2 H 1
loc.�e/,

@u=@n 2 H�1=2.�/. However, since u D 0 on � , we actually have @u=@n 2
L2.�/ by the following theorem of Nečas.

THEOREM 3.2 ([43, theorem 4.24], [54, chap. 5]). Let D be a bounded Lipschitz

domain with outward pointing normal � and let u 2 H 1.D/ satisfy Lu D 0 (in a

distributional sense). If �u 2 H 1.@D/, then @u=@� 2 L2.@D/.

When �e is Lipschitz and � 2 L2.�/, the boundary integral operators Sk ,

D0
k

, and r�Sk are defined by (1.7), (1.8), and (1.13), respectively, where the first

integral is well-defined in a Lebesgue sense and the last two are understood in the

Cauchy principal value sense; see [48]. All three operators are bounded operators

on L2.�/. In fact, Sk is a bounded operator from L2.�/ toH 1.�/, and the surface

gradient of Sk is r�Sk , i.e., r�.Sk/ D r�Sk [48]. Note that this last fact implies

that n � r�Sk� D 0 for all � 2 L2.�/.
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4 The Star-Combined Boundary Integral Equation

4.1 Derivation of the Star-Combined Operator

In this section we obtain the integral equation involving the star-combined oper-

ator (1.18) from Green’s integral representation for the solution u, and investigate

the properties of the star-combined operator as an operator on L2.�/. We actu-

ally consider a more general integral operator than the star-combined, replacing x

in (1.15) by a suitable vector field Z.

LEMMA 4.1. Suppose u solves the scattering problem of Definition 3.1 and sup-

pose Z 2 .L1.�//d ; � 2 L1.�/. Then @u=@n satisfies the integral equation

(4.1) Ak;�;Z

@u

@n
D f

where the integral operator Ak;�;Z is defined by

(4.2) Ak;�;Z D .Z � n/

�
1

2
I CD0

k

�
CZ � r�Sk � i�Sk ;

and the known function f is defined in terms of uI by

f D Z � ruI � i�uI :

PROOF. Green’s integral representation (1.4) holds, for example, by combining

theorems 9.6 and 7.15 of [43]. Apply the Dirichlet and Neumann traces on �e, � ,

and @n, respectively, use the standard jump relations for the single-layer potential

Sk , and rearrange the resulting equations to yield the integral equations (1.5) and

(1.6). Take the surface gradient of (1.5) (valid since Sk W L2.�/ ! H 1.�/ and

@u=@n 2 L2.�/ by Theorem 3.2) to obtain

r�Sk

@u

@n
D r�u

I :

Equation (4.2) follows by taking the scalar product of this last equation with Z,

adding .Z � n/ times (1.6), and subtracting i� times (1.5). �

THEOREM 4.2. If � is Lipschitz, thenAk;�;Z is a bounded operator onL2.�/ and,

for every k0 > 0,

(4.3) kAk;�;Zk . k.d�1/=2

�
1C

k�k1

k

�

for all k � k0, where k�k denotes theL2.�/ norm, and the notationD . E means

D � cE where c is independent of k and �.

PROOF. The mapping property of Ak;�;Z follows from mapping properties of

Sk , D0, and r�Sk . The bounds

(4.4) kSkk . k.d�3/=2; kD0
kk . k.d�1/=2;
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are proved using the Riesz-Thorin interpolation theorem in [19]. Mimicking the

proof of the bound for kD0
k
k, it is straightforward to obtain

(4.5) kr�Skk . k.d�1/=2:

The bound (4.3) then follows via the triangle inequality. �

The standard combined potential operator Ak;� is equal to the operator Ak;�;Z

(4.2) with Z D n. The star-combined operator Ak (1.15) is equal to Ak;�;Z with

Z D x, and the particular choice of � given by (1.16), and thus the integral equation

(4.1) reduces to (1.18) in this case.

4.2 Coercivity of the Star-Combined Operator

In this section we prove the main theorem, Theorem 1.1, which we restate here

in slightly more detail.

Assumption 4.3 (� Lipschitz and Star-Shaped). Let S
d�1 WD fx 2 R

d W jxj D 1g.

For some f 2 C 0;1.Sd�1;R/ with f� WD minyx2Sd�1 f .yx/ > 0, we have

� D ff .yx/yx W yx 2 S
d�1g:

Recall that f 2 C 0;1.Sd�1;R/ means that there exists L > 0 such that

jf .yx/ � f .yy/j � Ljyx � yyj

for all yx; yy 2 S
d�1, and that, by Rademacher’s theorem, f is differentiable a.e.

with rSd�1f 2 L1 where rSd�1 is the surface gradient on S
d�1. The unit

outward normal and the surface measure on � are given by

n.x/ D n�.x/ WD
f .yx/yx � rSd�1f .yx/p
.f .yx//2 C jrSd�1f .yx/j2

and

ds� .x/ D .f .yx//d�2
q
.f .yx//2 C jrSd�1f .yx/j2 ds.yx/

where ds.yx/ is the surface measure on S
d�1.

THEOREM 4.4 (Coercivity for Star-Shaped Lipschitz Domains). Suppose that � WD
@�i satisfies Assumption 4.3. Then, for all � 2 L2.�/,

<.Ak�; �/L2.�/ � �k�k2
L2.�/

where the star-combined operator Ak is given by (1.15) and the coercivity con-

stant � is given by

(4.6) � D
1

2
ess inf

x2�
.x � n.x// > 0:
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A lower bound on � in terms of the function f defining � is given by

� �
f 2

�

2
q
L2 C f 2

C

where fC WD maxyx2S f .yx/, and both f� and L are defined in terms of f in

Assumption 4.3.

Coercivity of Ak implies that Ak is invertible, and thus the solution of the in-

tegral equation (1.18) is unique. Theorem 4.4 will follow immediately from the

following key lemma:

LEMMA 4.5. Suppose that � satisfies Assumption 4.3. Then for all � 2 L2.�/

(4.7) <

Z
�

�
x � nD0

k� C x � r�Sk� C

�
�ikr C

d � 1

2

�
Sk�

�
x� ds � 0:

Remark 4.6. Inequality (4.7) actually holds when � is Lipschitz, not just star-

shaped. However we will only need it for the case when Assumption 4.3 holds,

and this assumption also minimizes technicalities in the proof.

PROOF OF THEOREM 4.4. By Lemma 4.5, using equations (1.15), (1.16), and

(4.6),

<.Ak�; �/L2.�/ �
1

2
<

Z
�

.x � n/j�j2 ds � �k�k2
L2.�/

:

The lower bound for the coercivity constant � in (1.17) follows from the definition

of the normal vector n in Assumption 4.3. �

It now remains to prove Lemma 4.5.

PROOF OF LEMMA 4.5. Our strategy is to mimic the proof of

<

�
�i

Z
�

Sk� x� ds

�
� 0

discussed in Section 1.3, with Green’s identity replaced by the Morawetz-Ludwig

identity. That is, apply the identity (2.15) with v replaced by u D Sk� with

� 2 L2.�/ and D first equal to �i , and then equal to �e \ BR.0/. This formally

results in

(4.8a)

Z
�

Q�ds D

Z
�i

.jruj2 � jur j2 C jur � ikuj2/dx;

(4.8b) �

Z
�

QC ds C

Z
@BR.0/

QR ds D

Z
�e\BR.0/

.jruj2 � jur j2 C jur � ikuj2/dx;
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where

Q˙.x/ D 2<

�
rMu˙

@u˙

@n

�
C .k2ju˙j2 � jru˙j2/.x � n/; x 2 �;

QR.x/ D 2<.RMuur/C .k2juj2 � jruj2/R; x 2 @BR.0/;

and the subscripts ˙ denote limits on � from �e and �i , respectively. However,

u does not satisfy the conditions of Lemma 2.5 since it is only in C 2.�i / and

not necessarily in C 2.�i / (and similarly for �e). A careful limiting argument,

making explicit use of Lipschitz domain results from harmonic analysis, shows that

nevertheless equations (4.8) do hold, with u˙ and ru˙ given almost everywhere

on � by

u˙.x/ D Sk�.x/;(4.9a)

ru˙.x/ D n.x/

�
�
1

2
I CD0

k

�
�.x/C r�Sk�.x/:(4.9b)

We postpone this argument, proceed with the proof, and then return to it at the end.

Adding (4.8a) and (4.8b) yields

(4.10)

Z
�

.Q� �QC/ds C

Z
@BR.0/

QR ds D

Z
BR.0/

.jruj2 � jur j2 C jur � ikuj2/dx:

Note that, using the definition of Mu (2.14) and the fact that, on � , r.ur/˙ D

.x � n/
@u˙

@n
C x � r�u˙,

Q˙ D .x � n/

ˇ̌̌
ˇ@u˙

@n

ˇ̌̌
ˇ
2

C 2<

�
x � r�u˙

@u˙

@n
C

�
ikr C

d � 1

2

�
u˙

@u˙

@n

�

C .k2ju˙j2 � jr�u˙j2/.x � n/:

(4.11)

Now let R ! 1 in (4.10). Since u is a solution of the Helmholtz equation

in �e satisfying the radiation condition (1.3),
R

@BR.0/QR ds ! 0 as R ! 1

by Lemma 2.4, and the volume integral over BR.0/ tends to the integral over R
d .

Next, combine expression (4.11) for Q˙ with expressions (4.9) for u˙ and ru˙

(noting that (4.9b) implies that r�u is continuous across �) and substitute into



A NEW BOUNDARY INTEGRAL EQUATION 1405

equation (4.10) to obtain

Z
�

�
.x � n/

�ˇ̌̌
ˇ@u�

@n

ˇ̌̌
ˇ
2

�

ˇ̌̌
ˇ@uC

@n

ˇ̌̌
ˇ
2�

C 2<

��
x � r�uC

�
ikr C

d � 1

2

�
u

��
@u�

@n
�
@uC

@n

���
ds

D

Z

Rd

.jruj2 � jur j2 C jur � ikuj2/dx:

(4.12)

Finally, note that (4.9b) implies that

(4.13)

@u�

@n
.x/ �

@uC

@n
.x/ D �.x/; x 2 �;

@u�

@n
.x/C

@uC

@n
.x/ D 2D0

k�.x/; x 2 �;

so that ˇ̌̌
ˇ@u�

@n
.x/

ˇ̌̌
ˇ
2

�

ˇ̌̌
ˇ@uC

@n
.x/

ˇ̌̌
ˇ
2

D <

��
@u�

@n
.x/C

@uC

@n
.x/

��
@u�

@n
.x/�

@uC

@n
.x/

��

D 2<.D0
k�.x/

x�.x//; x 2 �:(4.14)

Substitute (4.13) and (4.14) into (4.12), and note that the right-hand side of (4.12)

is positive to obtain (4.7).

We now need to justify the claim made earlier that (4.8) holds with u˙ and

ru˙ given by (4.9). Consider (4.8a). The standard strategy for proving an identity

involving the single-layer potential such as this is to approximate �i by a sequence

of domains inside �i , apply the identity in each of these domains, and then take

the limit. In the general Lipschitz case, both a sequence of approximating domains

and the limiting process are described in [60, theorem 1.12, remark 1.14]. Since

we are dealing with a star-shaped domain, a convenient sequence is given by

�t D t�i ; t 2 .0; 1/; t ! 1�:

In order to justify the limiting process we need the following two facts, conse-

quences of the famous results about the single-layer potential on Lipschitz domains

[48, 60] (see Remark 4.7 below): if u D Sk� for � 2 L2.�/ with � satisfying

Assumption 4.3 and x 2 � , then

(1) the limits

lim
t!1�

u.tx/ and lim
t!1�

ru.tx/

exist for almost every x 2 � and are given by the right-hand sides of (4.9);
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(2) u� and .ru/� 2 L2.�/ where u� is defined by

u�.x/ D sup
0<t<1

ju.tx/j;

and .ru/� is defined similarly.

To obtain (4.8a), apply Lemma 2.5 with v D u andD D t�i for t 2 .0; 1/; this

is allowed since u 2 C 2.�i /. Note that the volume term in (2.15) involving Lu

is 0 because u is a solution of the Helmholtz equation. The integrals over @.t�i /

are of the following form:Z
@.t �i /

Q
�
u.x/;ru.x/; n@.t �i /.x/

�
ds@.t �i /.x/

where Q is a continuous function that is quadratic in the first two variables. Making

the change of variable x D ty; y 2 � , this becomes

td�1

Z
�

Q.u.ty/;ru.ty/; n� .y//ds� .y/

where we have used the fact that n@.t �i /.x/ D n�.y/. This expression tends toZ
�

Q.u�.y/;ru�.y/; n� .y//ds� .y/;

where u� and ru� are given by (4.9), as t ! 1� by the dominated conver-

gence theorem. Indeed, the integrand converges pointwise almost everywhere due

to point 1 above, and the integral is dominated by a multiple of ku�k2
L2.�/

C

kru�k2
L2.�/

, which is finite due to point 2. Equation (4.8b) follows in an almost

identical way. �

Remark 4.7 (Single-Layer Potential on Lipschitz Domains). This material is sum-

marized in [38, chap. 2, sec. 2], [60], with a particularly accessible account found

in [48, chap. 15]. Given a Lipschitz domain D, a key concept in formulating

boundary conditions for potential problems with L2 boundary data is the notion of

nontangential limit. This is defined by assigning to every point x 2 @D a “non-

tangential approach cone,” ‚.x/. The important point about these cones is that if

y 2 ‚.x/, then there exists a ˛ > 1 such that jy � xj � ˛ dist.y; @D/. Thus

when y tends to x whilst remaining in ‚.x/, y is “relatively far” from the other

points on @D. If u D Sk�, then the nontangential limits of u and ru exist almost

everywhere on @D and are given by the right-hand sides of the expressions (4.9),

and the “nontangential maximal functions” of u and ru, defined as the suprema in

the approach cone of juj and jruj, respectively, are in L2.�/.

Thus, statements 1 and 2 in the proof of Lemma 4.5 follow from these results

since for any L� > L, and given x 2 � , there exists a neighborhood of x such

that the surface � in this neighborhood is the graph of a Lipschitz function with
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Lipschitz constant L�, where the vertical coordinate lies in the direction of yx;

thus the limit tx ! x is contained inside the approach cone. (Strictly speaking,

the references cited above contain these results only for the Laplace case, but the

results are in fact true for the Helmholtz case as well. For a little more detail on

this, see [59].)

COROLLARY 4.8 (Coercivity for the Circle (d D 2) and Sphere (d D 3)). Let

� D S
d�1, that is, f � 1 in Assumption 4.3. Then the standard combined

potential operator Ak;� given by (1.10) is coercive uniformly in k, that is,

<.Ak;��; �/L2.�/ �
1

2
k�k2

L2.�/

for all k > 0 if

(4.15) � D k C
d � 1

2
i:

If the choice � D k is made, then given ı > 0 there exists k0 such that

(4.16) <.Ak;k�; �/L2.�/ �

�
1

2
� ı

�
k�k2

L2.�/
8k � k0;

i.e., coercivity holds with any constant less than 1
2

for large enough k.

PROOF. The first part follows immediately from the fact that on the unit circle

and sphere the star-combined potential operator Ak is the standard one Ak;� with �

given by (4.15). The second part (when � D k) follows from the first if we can

show that

kSkk ! 0 as k ! 1:

When d D 2 this follows from the bound given by (4.4); however, when d D 3

this is too crude and we must use the bound

(4.17) kSkk . k�2=3 8k > 0;

obtained in [7] via the explicit expressions for the eigenvalues of Sk . �

Remark 4.9 (Comparison of the Different Proofs of Coercivity for the Circle and

Sphere). For smooth domains the coercivity result of Theorem 4.4 does not require

any of the deep harmonic analysis results of Remark 4.7. Thus Corollary 4.8 gives

a much simpler proof of coercivity for the circle and sphere than the proof by

Fourier analysis given in [28] (although this latter proof shows that ı can be taken

to be 0 in (4.16)). Note that the proof in Corollary 4.8 for the sphere does require

one result obtained by Fourier analysis, namely, the bound (4.17); however, this

upper bound is much easier to prove than the lower bound required for coercivity

itself.
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4.3 Implementing the Star-Combined Operator

In this section we show that implementing the Galerkin approximation of the

new star-combined operator (1.15) is in principle no more difficult than imple-

menting the standard combined potential operator (1.10). We present this just for

three dimensions; the demonstration for two dimensions is even simpler.

Comparing the star-combined operator with the standard one, the only new term

is the one involving the surface gradient of the single-layer potential, namely x �
r�Sk . The Galerkin approximation of this operator requires computing surface

integrals of the form

(4.18)

Z
�

x � r�.Sk�/ .x/ds.x/ D

Z
�

. .x/x/ � r�.Sk�/.x/ds.x/

where � and  belong to the approximation space SN used in the method.

The integration-by-parts formula that we shall give in Proposition 4.11 below

shows that integrals of the form (4.18) are easily computable in terms of integrals

of certain derivatives of  and values (but not derivatives) of Sk�.

We first set up some notation: Consider a surface patch �0 � � (not necessarily

all of �) that is parametrized by a Lipschitz map � W y�0 ! �0, where y�0 � R
2 is

a reference plane polygonal domain. For yx 2 y�0, � is given by

�.yx/ D

�
yx
�.yx/

�

where � W R
2 ! R is a Lipschitz function; see [12, 43]. (A typical situation is

where y�0 is a unit planar triangle or a square.)

Note that since � is Lipschitz its gradient exists almost everywhere on � , and

hence so does the gradient of �. All expressions below involving derivatives of �

are to be understood as holding almost everywhere on y�0. A point x 2 �0 then

corresponds to yx 2 y�0 via x D �.yx/. The map � provides a parametrization of �0

such that the columns of the 3 	 2 Jacobian matrix

J.yx/ D

�
@�

@yx1
.yx/;

@�

@yx2
.yx/

�

are linearly independent and form a basis for the tangent plane at x D �.yx/. The

unit normal n.x/ is orthogonal to this plane at x D �.yx/. The Gram determinant

of � is defined as

g.yx/ D .det G.yx//1=2 where G.yx/ D J.yx/TJ.yx/:

DEFINITION 4.10 (The Surface Gradient r� ). On the patch �0 defined above, the

surface gradient operator r� is defined by

(4.19) .r�v/.x/ D J.yx/G.yx/�1 yryv.yx/; yx 2 y�0;

where yv.yx/ WD v.�.yx// and yr denotes the (two-dimensional) gradient with respect

to the vector yx.
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This is a standard formula for the surface gradient in terms of the parametriza-

tion � and coincides with those given for general Lipschitz domains in [12, def. 3.1]

and [60, def. 1.9] and for smooth domains in [25, sec. 2.1] and [49, sec. 3.4]. (See

[55, sec. 2.5.6] for an alternative point of view.) To see that the property (3.1)

holds, let w be C 1 in a neighborhood of �0. The chain rule implies that

yr yw.yx/ D J.yx/T.rw/.�.yx//; yx 2 y�0:

This expression can be used to resolve rw.�.yx// in terms of the basis�
@�.yx/

@yx1
;
@�.yx/

@yx2
; n.�.yx//

�

to obtain

rw.x/ D J.yx/G.yx/�1 yr yw.yx/C
@w

@n
.x/n.x/;

which is equal to (3.1) using definition (4.19).

Any vector field w W �0 ! R
3 can be resolved in the tangent and normal

directions via the formula

w.x/ D w.�.yx// D J.yx/y!.yx/C .w.x/ � n.x//n.x/

for some field y! W y�0 ! R
2. Since r�v is in the tangent plane (by (4.19)), we

have

(4.20) w.x/ � r�v.x/ D y!.yx/ � .J.yx/TJ.yx/G.yx/�1/yryv.yx/ D y!.yx/ � yryv.yx/:

We now derive the integration-by-parts formula for dealing with integrals of the

form (4.18). For simplicity we will assume that � (and hence also �) is C 2, as

is the case in many applications. Note that this does not imply that � has to be

globally smooth; � could be a Lipschitz polyhedron, for example, but the edges

of the polyhedron are required to coincide with element edges. This assumption

avoids difficulties in taking the derivative of the Gram determinant g.yx/.

The formula obtained is given on the reference domain y�0, since this is where

practical boundary integral computation would be done.

PROPOSITION 4.11. Suppose w 2 .C1.�0//3 and v 2 C1.�0/. ThenZ

�0

w.x/ � r�v.x/ds.x/ D

Z

@y�0

g.yx/.y!.yx/ � y�.yx//yv.yx/d�.yx/

�

Z
y�0

yr � Œg.yx/y!.yx/
yv.yx/ds.yx/;

where y�.yx/ is the outward normal from y�0 at yx 2 @y�0.

PROOF. By (4.20), we haveZ
�0

.w.x/ � r�v.x//ds.x/ D

Z
y�0

.y!.yx/ � yryv.yx//g.yx/ds.yx/;
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and the result follows from the divergence theorem on y�0. Note that all the inte-

grals make sense classically because of the assumed smoothness of w, v, �, and

��1. �

Finally, we note that if Proposition 4.11 is used to compute the integral (4.18)

with � supported on �0, then the functions yv and y! are given by

yv.yx/ D .Sk�/.�.yx//

and

y!.yx/ D G.yx/�1J.yx/T.yx .yx//

D  .yx/G.yx/�1

�
.@�.yx/=@yx1/ � �.yx/
.@�.yx/=@yx2/ � �.yx/

�
:

In the high-frequency case, the resulting integrals will be highly oscillatory. The

efficient calculation of these type of integrals is an active area of research (see

[10, 29, 36] and the references therein).

5 Concluding Remarks

One of the attractions of the coercivity result of Theorem 1.1 is that it proves that

if the new integral equation (1.18) is solved by any Galerkin method, then the error

estimate (1.11) holds. Moreover, it follows from Theorems 1.1 and 4.2 and the

expression (1.19) that given k0 > 0, the constant C in the estimate (1.11) satisfies

(5.1) C � C0k
.d�1/=2

for all k � k0, where C0 is independent of k. In particular, this result applies to the

nonstandard Galerkin methods of [20, 28] for high-frequency scattering by convex

polygons and smooth convex two-dimensional obstacles, respectively (if the star-

combined formulation (1.18) is used instead of the standard combined potential

formulation (1.9)).

The method of [28] designs a k-dependent approximation space, SN;k , based

on knowledge of the high-frequency asymptotics (e.g., [47]), for scattering by a

smooth convex obstacle in two dimensions. The space SN;k approximates v WD
@u=@n on � as an oscillatory factor multiplied by a polynomial of degree N in the

illuminated zone and in the two shadow boundary zones, and is designed so that

the best approximation error inf�N 2SN;k
kv � �N kL2.�/ grows slowly with k for

fixedN . If the method is implemented using the star-combined formulation (1.18),

then the estimate (1.11), with C given by the right-hand side of (5.1), combined

with the bound on the best approximation error from [28], yields the following

theorem:

THEOREM 5.1 (k-Explicit Quasi-Optimality for the Method of [28]). LetN denote

the degree of the polynomials used in each of the three zones (so N is proportional

to the total number of degrees of freedom of the method), and let p be an integer
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with 6 � p � N C 1. Then for every k0 > 0 there exist ı; C1; and Cp all greater

than 0 such that

(5.2)
kv � vN kL2.�/

k
� Cpk

1=18

��
k1=9

N

�p

C k4=9 exp.�C1k
ı/

�

for all k � k0, where Cp only depends on p and � , and ı and C1 only depend

on � .

Since kvkL2.�/ is proportional to k as k increases, the left-hand side of (5.2)

measures the relative error. This bound shows that the number of degrees of free-

dom only needs to grow slighter faster than k1=9 in order to maintain accuracy as

k ! 1; this is to be contrasted with the linear growth required in conventional

boundary element methods in two dimensions as proved in [42]. Preliminary re-

sults on implementing the star-combined formulation show that this property is

realized in practice [39].

The method of [20], which concerns high-frequency scattering by convex poly-

gons, is slightly more complicated to explain. However, in a similar way to the

method of [28] considered above, if the method of [20] is implemented using the

star-combined formulation, then combining (1.11) and (5.1) with results about the

best approximation error in [20] proves k-explicit quasi-optimality of the method.

In this case, the number of degrees of freedom only needs to grow like .log k/3=2

in order to maintain accuracy as k ! 1. This rigorous convergence analysis has

been made possible by the coercivity result of this paper.

Finally, we note that the proof of Theorem 1.1 required only the most basic

Morawetz-type identity for the Helmholtz equation from [52]. The application of

more sophisticated identities, such as those appearing in [51, 53], to these type of

problems (in particular for more general “nontrapping” scattering geometries) is

under way.
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