Biomechanics bibliography

[Alexander92:_explor_biomec]
R. Alexander, R. Alexander, (1992) Exploring Biomechanics: Animals in motion
[Alexander92_THM]
R. Alexander, R. Alexander, (1992) The human machine
[Ashby16:Materials_in_design]
M. Ashby, M. Ashby, (2016) Materials Selection in Mechanical Design
[Ashby2011:eng_materials]
M. Ashby and D. Jones, (2011) Engineering Materials 1 : An Introduction to Properties, Applications and Design http://idpproxy.reading.ac.uk/login?url=http://lib.myilibrary.com?id=405358 online: http://idpproxy.reading.ac.uk/login?url=http://lib.myilibrary.com?id=405358
[banados16:_noeth]
M. BaƱados and I. Reyes, (2016) A short review on Noether's theorems, gauge symmetries and boundary terms https://doi.org/10.1142/S0218271816300214
[burdet10:_human_robot]
E. Burdet, E. Burdet, (2010) Human Robotics: neuromechanical control and learning
[Chen78:_small]
W. Chen and R. Poppele, (1978) Small-signal analysis of response of mammalian muscle spindles with fusimotor stimulation and a comparison with large signal responses
[collins2001three]
S. Collins, A. Ruina, (2001) A three-dimensional passive-dynamic walking robot with two legs and knees http://ruina.mae.cornell.edu/research/topics/locomotion_and_robotics/3d_passive_dynamic/3d_passive_dynamic.pdf
[collins2005efficient]
S. Collins, M. Wisse, (2005) Efficient bipedal robots based on passive-dynamic walkers http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/efficient_bipedal_robots/efficient_bipedal_robots.pdf
[garcia1998simplest]
M. Garcia, M. Coleman, (1998) The simplest walking model: stability, complexity, and scaling https://doi.org/10.1115/1.2798313
[Hasan83]
Z. Hasan, Z. Hasan, (1983) A model of spindle afferent response to muscle stretch http://jn.physiology.org/cgi/content/abstract/49/4/989
[hoyt1981gait]
D. Hoyt and C. Taylor, (1981) Gait and the energetics of locomotion in horses
[hultborn1979function]
H. Hultborn, H. Wigstr{\"o}m, (1979) On the function of recurrent inhibition in the spinal cord
[inman1953major]
V. Inman, . others, (1953) The major determinants in normal and pathological gait
[Joyce69:_isoton]
G. Joyce and P. Rack, (1969) Isotonic lengthening and shortening movements of cat soleus muscle
[king2016application]
R. King, W. Harwin, (2016) Application of data fusion techniques and technologies for wearable health monitoring https://doi.org/10.1016/j.medengphy.2016.12.011
[Krylow95]
A. Krylow, W. Rymer, (1995) Muscle Models
[kuo2007six]
A. Kuo, A. Kuo, (2007) The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective https://doi.org/10.1016/j.humov.2007.04.003
[Miall93:_is_cereb_smith_predic]
R. Miall, J. Stein, (1993) Is the Cerebellum a {S}mith Predictor? http://prism.bham.ac.uk/pdf_files/SmithPred_93.PDF
[mortazavi2013met]
B. Mortazavi, C. Roberts, (2013) {MET} calculations from on-body accelerometers for exergaming movements
[Rothwell93:_contr]
J. Rothwell, J. Rothwell, (1993) Control of human voluntary movement
[stewart13:_how_mathematicians_think_about_patterns]
P. Stewart, P. Stewart, (2013) How Mathematicians Think About Patterns https://www.youtube.com/watch?v=_nZX4YpL9k0 online: https://www.youtube.com/watch?v=_nZX4YpL9k0
[Stroud13]
K. Stroud and D. Booth., (2013) Engineering mathematics
[tudor2019walking]
C. Tudor-Locke, . others, (2019) Walking cadence (steps/min) and intensity in 21--40 year olds: CADENCE-adults https://doi.org/10.1186/s12966-019-0769-6
[valero2003towards]
F. Valero-Cuevas, J. Towles, (2003) Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters
[zhao10:_full_featur_pedom_desig_realiz]
N. Zhao, N. Zhao, (2010) Full-Featured Pedometer Design Realized with 3-Axis Digital Accelerometer http://www.analog.com/media/en/analog-dialogue/volume-44/number-2/articles/pedometer-design-3-axis-digital-acceler.pdf