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Soft, Hard and Wet (biological/chemical) approaches

Introductions, Theory and Applications
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Aims of Module
Aims:
Swarm Intelligence and Artificial Life are two active areas of 
research in computational optimisation and modelling. This module 
aims to inspire students into exploring the creative potential of 
these fields as well as providing insight into the state-of-the-art.

So – will describe work in A-Life : 

Overview + Soft, Hard, Wet

Fundamentals & concepts, Progress & achievements
And include latest research presentations –

theory and method ; advances and applications



Assessment – 100% coursework
Presentation of academic paper :  30% 

Do in pairs (one group of 3, unless one wants to be on own)
Find a recent relevant paper (journal/book chapter)
Read paper and then develop 6 minute presentation on it
Presentation to be given this Friday afternoon

Web Page : 70%
For start of next term, develop web page on swarm intelligence 

and/or artificial life
Must include novel applet (or video of applet) illustrating work
Should be eye catching and interesting

Afternoons this week for finding paper, preparing presentation, as 
well as looking at notes, following up information
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History of A Life
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Probably the first to actively study and write on related topics was 
John Von Neumann, mid 20th Century

In “The General and Logical Theory of Automata” he proposed 
that living organisms are just machines.

He also studied machine self replication, suggesting an organism 
must contain list of instructions on how to copy itseld

Predating discovery of DNA (Crick, Watson, Franklin, Wilkins)

Also significant, Mathematical Games column in Scientific American,  
which publicised John Conway’s Cellular Automaton ideas (1960s)

The term ‘artificial life’ was coined by Chris Langton, late 1980s. 

He was also responsible for the first specific conference (on 
Synthesis and Simulation of Living Systems)



What is Life ?
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“What was life? No one knew. It was undoubtedly aware of itself, 
so soon as it was life; but it did not know what it was”. 

Thomas Mann [1924]
“Life is a dynamic state of matter organized by information”. 

Manfred Eigen [1992]
“Life is a complex system for information storage and processing”.

Minoru Kanehisa [2000]
The general condition that distinguishes organisms from inorganic 
objects and dead organisms, being manifested by growth through 
metabolism, a means of reproduction, and internal regulation in 
response to the environment. 

Websters Dictionary (other defs also)



What living things have in common
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http://www.windows2universe.org/earth/Life/life1.html says 
biologists have determined that all living things share these:

Living things need to take in energy

Living things get rid of waste

Living things grow and develop

Living things respond to their environment

Living things reproduce and pass their traits onto their 
offspring

Over time, living things evolve (change slowly) in response to 
their environment
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Also difficult: where did Life come from?
Geogenesis:

Life started on Earth, in a relatively short period of time
Atomic synthesis of C, N, O  elements complicated
Exact Conditions required to bootstrap life unknown
Not observed new life being created from elements

Exogenesis:
Life started on an equivalent of Earth
Life (or necessary components) travelled through space
Seeded life then flourished on Earth

Panspermia :
Life (and seeds of life) exists throughout the universe
Life could exist (and may already exist) elsewhere in the universe.

Could A-Life help resolve the uncertainty?
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Overview of ALife
Promotion:
Artificial Life, a field that seeks to increase the role of synthesis in 
the study of biological phenomena, has great potential, both for 
unlocking the secrets of life and for raising a host of disturbing 
issues-scientific and technical as well as philosophical and ethical.  

Christopher G. Langton
Academic:
Artificial Life … investigates the scientific, engineering, 
philosophical, and social issues involved in our rapidly increasing 
technological ability to synthesize life-like behaviors from scratch in 
computers, machines, molecules, and other alternative media.

Artificial Life – Journal MIT press
Synthesis:
To make a synthesis of; to put together or combine into a complex 

whole; to make up by combination of parts or elements.  
Oxford English Dictionary



More from Chris Langton (1989)
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AL views life as a property of the organization of matter, rather 
than a property of the matter which is so organized. 
Whereas biology has largely concerned itself with the material basis 
of life, AL is concerned with the formal basis of life. 
It starts at the bottom, viewing an organism as a large population of 
simple machines, and works upwards synthetically from there —
constructing large aggregates of simple, rule-governed objects which 
interact with one another nonlinearly in the support of life-like, 
global dynamics. 
The ‘key’ concept in AL is emergent behavior.”
AL is concerned with tuning the behaviors of such low-level machines 
that the behavior that emerges at the global level is essentially the 
same as some behavior exhibited by a natural living system. [...] 
Artificial Life is concerned with generating lifelike behavior.”
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Alife Underview
Alife is “ Fact Free Science” John Maynard Smith, 1994

Instead of testing a hypothesis on observable data, Alife seeks to 
synthesise life like behaviour in agents.

[Strong AL vs Weak AL debate as in with AI]

An agent has a set of assigned properties, components or abilities 
but not globally defined behaviours.

Emergence of global behaviours from local interactions is desired –
Alife overlaps with Complex Systems

This ‘bottom-up’ approach with feedback & environmental interaction 
has similarities with Cybernetics 

Next two slide shows where A Life fits with other disciplines.
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How A Life fits into AI
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Conference Topics - www.alifexi.org/cfp/
Synthesis and origin of life, self-organization, self-replication, 
artificial chemistries 

Evolution and adaptation, evolutionary dynamics, evolutionary games, 
coevolution, major evolutionary transitions, ecosystems 

Development, differentiation, regulation; generative representations

Synthetic biology 

Self-organizing technology, self-computing/computational ecosystems
Unconventional and biologically inspired computing

Bio-inspired robots and embodied cognition, autonomous agents, 
evolutionary robotics 

Collective behavior, communication, cooperation 

Artificial consciousness; the relationship between life and mind
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Continued

Philosophical, ethical, and cultural implications

Mathematical and philosophical foundations of Alife

Evolution in the Brain; Artificial Consciousness: From Alife to Mind 

Communication in Embodied Agents 

Designing for Self; Amorphous and Soft Robotics 

Dynamical Systems Analysis 

Trophic Interactions Between Digital Organisms 

Autonomous Energy Management for Long Lived Robots 

Models for Gaia Theory  - including Daisyworld

The Environment and Evolution; Hidden Epistemology
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Artificial Life Already?
Soft:

Cellular Automata,
Boids,
Evolutionary algorithms?

Hard:
Self-replicating machines,
Self-building robots?

Wet:
Rat-brained robots,
DNA cartridges?

Not all criteria for life met.
Especially, adaptability: equilibrium is punctuated  & truncated.
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Soft A - Life
A Life Components

Soft Hard Wet

Lets start with Software and Modelling
flocking, 
cellular automata
modelling daisyworld
modelling ‘real life’
attractors and discrete models
fractals and self-similarity

We start by looking at flocking
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Flocking
Alife about interacting systems ... So flocking
Collective motion:

Fish in schools, sheep in herds, birds in flocks, 
lobsters in lines

Characteristics of animal aggregations:
Distinctive edges
Freedom to move within own volume
Coordinated movement

Benefits of Flocking
Predator protection
group foraging
Social advantages – mating
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Craig Reynolds & “boids”
http://cmol.nbi.dk/models/boids/boids.html 3 rules

Separation 
Steer to avoid 
crowding with local 
flock mates.

Alignment
Steer toward the 
average heading of 
local flock mates.

Cohesion
Steer to move toward 
average position of 
local flock mates.
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Craig Reynolds & “boids”

Each boid has direct access to whole scene's geometric description

For Flocking react only to flockmates within its small neighborhood.

Neighbourhood = model of limited perception / region where 
flockmates influence steering 

distance

angle

distance, measured from the 
center of the boid

angle, measured from boid’s
direction of flight 

Flockmates outside local 
neighborhood ignored

http://www.red3d.com/cwr/boids/

http://dynamicnotions.blogspot.com/2008/12/flocking-boids-c.html
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Critique of Flocking

Reynolds’ model is hypothetical, gives only appearance of flocking

Flocking is complex - inherent scaling problems

Simple algorithm has asymptotic complexity of O(n2) each boid
assesses each other boid to determine its neighbour

Spatial data structure allows the boids to be kept sorted by 
their location reduces cost down to nearly O(n)

Lack of a quantitative model

When is a flock a flock? Phase transition to become a flock ?

When does flock change from cluster to V formation

Heterogeneous vs homogeneous 

300° vision cf. 360° vision



Langton : on Boids
“Boids are not birds; they are not even remotely like birds; they 

have no cohesive physical structure, but rather exist as 
information structures — processes — within a computer. 

But — and this is the critical ‘but’— at the level of behaviors, 
flocking Boids and flocking birds are two instances of the same 
phenomenon: flocking. 

The ‘artificial’ in Artificial Life refers to the component parts, not 
the emergent processes. If the component parts are implemented 
correctly, the processes they support are genuine — every bit as 
genuine as the natural processes they imitate. 

Artificial Life will therefore be genuine life —it will simply be made 
of different stuff than the life that has evolved on Earth.
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Cellular Automata
A regular grid of cells : each in finite states (often 0 or 1).

Commonly, 2D is used for the grid, higher dimensionality possible.

Time is discrete and the state of a cell at time t is a function of 
the states of a finite number of cells (neighborhood) at time t − 1

Every cell has the same rule for updating

Update based on neighbourhood (consider grid toroidal)

t-2 t-1 t
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Cellular Automata

John Von Neumann working at Los Alamos in the 1940s was 
interested in self-replicating robots

Stanislaw Ulam was working on crystal growth at the same time 
using a mathematical abstraction

Von Neumann created the first Cellular Automata (CA), but it was 
complex with 29 states per cell!

1970s John Conway greatly simplified CAs : Game of Life.

Practical uses have included studying crystal growth, casting of 
metals and biological patterns (e.g. coral)

'Fun' uses include pattern generation, screensavers and PhD studies

Theoretical uses have shown self replication, infinite growth and 
computational power.
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Conway’s Game of Life

John Conway (Scientific American, 1970). 

http://www.tech.org/~stuart/life/rules.html

Wanted a rule that for certain initial conditions would produce 
patterns that grow without limit, fade or get stable.

Have grid of cells which are occupied or not … have 8 neighbours

The rules for deriving a generation from the previous one are : 

Occupied cells with 0 or 1 occupied neighbours die of loneliness

Occupied cells with 4..8 occupied neighbours die of overcrowding

Otherwise occupied cells survive

Unoccupied cells with 3 occupied neighbours come to life.

See code at http://blogs.msdn.com/calvin_hsia
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Gliders, guns and spaceships
Coloured Examples at http://www.collidoscope.com/cgolve/

Not just 
pretty 
patterns

Explores 
spontaneity, 
synchronicity 
and 
attractors
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Modern Cellular Automata Rule Notation 

Modern CA software accepts multiple forms of rule specification. 
Rules may be specified in either basic or canonical format. 
Basic rule notation is based upon traditional "birth /survive”. 
"a" to "e" indicate the number of side neighbours in the rule. 

"a" corresponds to zero side neighbours …  “e” to four 
Here are the meaningful combinations of total and side counts: 

0a 1ab 2abc 3abcd
4abcde 5bcde 6cde 7de 8e

Here is full basic rule specification for Game Of Life: 
3abcd / 2abc3abcd
Birth / Survive states

See  http://www.collidoscope.com/modernca/
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Evolutionary Computation for ALife
Aim to find a solution to a particular problem:

Create a population of individuals to represent potential 
solutions

Evaluate the individuals

Introduce some selective pressure to promote better 
individuals (or eliminate lesser quality individuals)

Apply some variation operators to generate new solutions

Repeat
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Karl Sims
Evolution of physically realistic agents 
Have populations comprising different components …

http://uk.youtube.com/watch?v=b1rHS3R0llU
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Tierra - Tom Ray

Evolution of memory 
based agents

Useful resources to 
view here

http://life.ou.edu/pubs/images/  
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Simulated Hardware

Technically Soft 
Alife
as in Karl Sims…

A NN effects motor commands and predicts next state
If agent encounters an unexpected obstacle it learns about itself /
environment
Prof Ralf Der

http://news.bbc.co.uk/go/pr/fr/-/1/hi/technology/7544099.stm



Summary
Have introduced Artificial Life

Definitions
Scope
How relates to other disciplines
Seen that it divides into Soft/Hard and Wet

We have started on Soft A-Life
Flocking, Cellular Automata and some Evolutionary Computing
Tomorrow look at more aspects …

Consider however the paper mentioned on the next slide … a good 
introduction to A-Life
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Suggested Introductory Paper

http://people.reed.edu/~mab/publications/papers/BedauTICS03.pdf
Artificial life: organization, adaptation and complexity from the 

bottom up    by    Mark A. Bedau
Artificial life attempts to understand the essential general properties 

of living systems by synthesizing life-like behavior in software, 
hardware and biochemicals. As many of the essential abstract 
properties of living systems (e.g. autonomous adaptive and 
intelligent behavior) are also studied by cognitive science, artificial 
life and cognitive science have an essential overlap. This review 
highlights the state of the art in artificial life with respect to 
dynamical hierarchies, molecular selforganization, evolutionary 
robotics, the evolution of complexity and language, and other 
practical applications. It also speculates about future connections 
between artificial life and cognitive science.



2 : More Soft ALife
Today Continue to look at Soft A Life

Daisyworld

Modelling ‘real’ life

Will build on this tomorrow with

Attractors

Discrete Models – and Self Similarity

Fractals
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Daisyworld
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Andrew J Watson and James E Lovelock; Biological homeostasis of 
the global environment: the parable of Daisyworld, Tellus (1983) 35B

Lovelock’s Imaginary world to demonstrate Gaia principle
Life & Earth work together to mutual advantage

Grey Planet - black/white daisy seeds in soil
Daisies grow best at 22OC No grow if < 7OC or > 37OC
Daisyworld’s Sun is heating up: What happens to Daisyworld?

from Sun

of Planet

Time

C

7
22
37

Temp



Modelling Life on Daisyworld
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Model its temperature : model energy received, absorbed, emitted.
Energy received comes from the sun
Energy absorbed is affected by planet albedo
Planet albedo is affected by the areas of daisies
Areas affected by birth/death rates : affected by temperature

Energy Emitted (Stefan Boltzmann Law) k *Temp4

Assume = Energy Absorbed = Energy Received - Energy Reflected
= Solar Luminosity * Solar Flux Const - Energy Received * Albedo

For World Temp, solve : StefansConst * (WorldTemp + 273)4

= FluxConstant * Luminosity of Sun * (1 – Planet Albedo)
For any daisy species local temp is different re its albedo

(Daisy Temp + 273)4 = AlbedoToTempConst * 
(Planet Albedo - Daisy Albedo) + (WorldTemp + 273)4
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Albedos and Areas of Daisies

  i i i
 0  0

Suppose have n species of Daisy
Let D  be area of Daisy Species i, A  its albedo, T  its temp
D  and A  can represent area and albedo of grey soil

 
 

n
i i

i=0
Planet Albedo = D *A  

Areas of each daisy, found by solving differential equation
 

 

i i
dD = D * (Uncolonised Fertile Soil * Birth rate - Death rate)
dt

 

n
i

i=1
Uncolonised Fertile Soil =  Prop of Fertile Soil - D  

2
i

o o o
Birth Rate = Max (0, 1 - 0.003265 * (22.5 - T)  )

 {Parabolic from 5  - 40 , max at 22.5 }
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Algorithm – at each solar time
Initialise areas of daisies

Repeat

  

n
0 i

i=1
Calc Area Grey Soil, D  = 1 - D

   

n
i i

i=0
Calc Planet Albedo, A  = A *D

4 FluxConstant*luminosity*(1-Albedo)PlanetTemp, PT = 
Stephan's Constant

For i = 1 to n Update Di

Until all Di’s reached steady value

 

44
i iT  = AlbedoToTemp*(Albedo-A) + PT  273

 iBirthRate = 1.0 - 0.003265 * Sqr (22.5- T )
 i = D  * (BirthRate * AreaFertileSoil - DeathRate)

Update Di : 
Numerically 
integrate using
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Runs with 2, 4 or 8 species 



Other Approaches / Extensions
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Basic model : ‘flat’ earth – for sphere : divide into areas, each 
receiving different luminosity, and simulating each area.
Can daisies’ albedo can evolve? See [Lenton is Lovelock’s ‘successor’]

Lenton, T. M. 1998. Gaia and natural selection. Nature 394: 439-447
T.M.Lenton and J.E.Lovelock 2000. Daisyworld is Darwinian, 
Constraints on Adaptation are Important for Planetary Self-
Regulation. J Theor Biol 206 109-114

At http://www.sussex.ac.uk/Users/jgd20/lisbon2007/
Computational Modelling of the Earth / Life System -

Includes – simulating Daisyworld using Cellular Automata
Also Homeostasis and Rein Control: From Daisyworld to Active 
Perception, by Inman Harvey, Proc ALife 9 2004

shows also how Rein control can be used for robotics



Modelling Real Life

p40 RJM  08/01/14 SE4SI12 Artificial Life – Part A
© Dr Richard Mitchell 2014

Consider population models and their analysis

Inc. interacting species : predator-prey, mutualist, competitive

Starting with continuous models
Model by change of population P

b and d are birth 
and death rates

P constant, rises exponentially or decay to 0 0 5
0

50

100

Time

Po
p

If birth rate b - b2 * P ; death rate d + d2 * P.

2 2
dP (b d      (b d )*P)   *   P
dt

   

0 50

10

20

Time

Po
p

2 2

b-dPop stabilises at 
b d

 
dP (b d) * P 
dt



Classic Interacting Species

p41 RJM  08/01/14 SE4SI12 Artificial Life – Part A
© Dr Richard Mitchell 2014

Let F be number of foxes and R be number of rabbits.
System model, as follows, where a, b, c, d are constants:

dF c*R*F-d*F
dt

dR a*R-b*R*F
dt



For  a = 20, b = 4, c = 3 and d = 27: stable at 9,5; 

Plot R and F v time but more useful Plot R v F  (the phase plane plot)

5 10 150

5

10

Rabbit

Fo
x

0 0.5 10

10

20

Time

Ra
bb

it
 a

nd
 F

ox

Stable when 
F = a/b and R = d/c

Initial values 
set size of ‘egg’
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Logistic Rabbit Model
If no Foxes, Rabbits increase exponentially – unrealistic, so

0 5 10 150
2
4
6
8
10

Specie R

Sp
ec

ie
 F

With 
different 
constants, 
plot can go 
straight to 
equilibrium

e
da-ceSuggests both populations stable at R   and F  

d b
 

where lines a-bF-cR = 0

and dR-e=0 meet


dF d*R*F-e*F
dt

 2dR a*R - b*R*F - c*R
dt



 

dR R(39 - R- 5F) 
dt
dF F(-27 3R) 
dt
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Mutualist Interaction
Interacting species which help each other
Also have commensalist (one helps other) systems.
Mutualists – some survive independently, sometimes reliant
Eg Hippo and Bird Clean teeth and food

Sea-anemone & damsel fish Habitat + protection / food
Plants and Insects Plant pollination insect food
Egret and Cattle Egret eat insects on cattle.

Analyse on phase plane, noting isoclines (loci where x and y const)

Equilibrium Points, where both x and y are constant

    2dx x 13 2x 21y  
dt     2dy y 13 8x-3y  

dt



p44 RJM  08/01/14 SE4SI12 Artificial Life – Part A
© Dr Richard Mitchell 2014

Plot Zero Isoclines on Phase Plane

dx/dt = x( -13 - 2x2 + 21y)
dy/dt = y(-13 + 8x - 3y2)

dx/dt = 0

dy/dt = 0

The iscolines for dx/dt are x = 0 and -13 - 2x2 + 21y = 0
Those for dy/dt are y = 0 and -12 + 8x - 3y2 = 0
Equilibium points: where a dx/dt isocline and a dy/dt isocline meet
Main iso’s meet at 2,1 and 5,3; x = 0 and y = 0 meet at 0,0

Show signs of x y
Argue how x,y
change
Show two points 
stable
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Go further : Phase Plane + Arrows

Arrows show 
dx/dt and 
dy/dt at 
intervals
Can be used to 
help sketch x 
and y values
See how x,y
move from 
start posns
To 5,3 or 0,0
Not to 2,1 

0 2 4 6 8
0

1

2

3

4

5

6

7

Specie x

Sp
ec

ie
 y

Note Separatrix (thru 2,1) : x,y → 5,3 if above this, else → 0,0
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Types of Equilibrium Point

4.9 5 5.1
2.9

3

3.1
Stable sink

1.9 2 2.1
0.9

1

1.1
Saddle

-0.1 0 0.1
-0.1

0

0.1
Stable spiral

8.9 9 9.1
4.9

5

5.1
Centre

NB Also have 
unstable 
source and 
unstable 
spiral –

How can we 
categorise a 
point?

Where loci 
meet are 
equilibrium 
point – but 
different 
types exist
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Jacobean Matrix for Analysis

Define eq point as (Xe,Ye), here F1 = dx/dt & F2 = dy/dt = 0.

Model system as being linear around an equilibrium point

dx/dt = a11X +a12Y
dy/dt = a21X +a22Y

e e
111 X ,Y

Fa
x



 e e

112 X ,Y
Fa
y



 e e

221 X ,Y
Fa
x



 e e

222 X ,Y
Fa
y






We then define two matrices A (the Jacobean) and Z

11 12
21 22

a a
a a
 

   
A

Then system of equations can be written as dZ/dt = A Z

 
  
 

X
Y

Z
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Then Use Eigenvalues of Jacobean 
For a 2*2 matrix with eigenvalues λ1 and λ2:

If λ1 and λ2 are both < 0, the equilibrium point is stable ‘sink’

If λ1 and λ2 are both > 0, the point is unstable ‘source’

If one < 0 and the other > 0, have a ‘saddle’ point

The eigenvector for λ < 0 is used for the separatrix

If eigenvalues complex have spiral points –

stable (spiral in) if real(λ1 ) < 0, unstable otherwise

If purely complex, have a ‘centre’

For λ2 + bλ + c : stable sink if b2 ≥ 4c; else spiral in

For λ2 - bλ + c : source if b2 ≥ 4c; else spiral out

For λ2 + bλ - c : will be saddle point
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Analysis on the Example

21F ( 13 2x 21y)  x(-4x) 
x


    


1F 21x
y





2 22F (-13 8x-3y )-6y  

y


 


2F 8y
x






  
  
 

-13 0 λ  -13 and 13
At 0,0,         

0 -13 So 0,0 is a stable point
A

 
  
 

-100 105 λ  -132.2178   and  -21.7822
At 5,3,      

24 -54 So 5,3 is stable 
A

  
  
 

   
   

   

-16 42 λ  -30 and 8
At 2,1,                     

8 -6 So 2,1 is a saddle point
-3 7

Note Eigenvectors are   and   for λ -30 and 8
1 4

A

     2
2

dy F y 13 8x-3y  
dt     2

1
dx F x 13 2x 21y
dt
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Separatrix
If start above this → 5,3; if start below → 0,0
The separatrix can be defined by dy/dx where
Can’t solve algebraically, so solve numerically
Run as ode from a known point on curve (ie saddle point)
One problem: at saddle point, dy/dx = 0/0; 
what is dy/dx?
Answer, use its eigenvector
In example, at point 2,1

dy
dy dt

dxdx
dt



-3
   

1
1Slope  -
3

       

 
  

 



Λ

0 2 4 6 80
1
2
3
4
5
6
7

Specie x

Sp
ec

ie
 y
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Applies to Fox Rabbit

 
  

 
 

0 36
At 9,5   A  

15 0
λ  23.2379j      
centre

20 0
At 0,0   A  

0 -27
λ = 20, -27
saddle

 
  

 

0 5 10 15
0

2

4

6

8

10

Specie x

Sp
ec

ie
 y



 

dR R(20 - 4F); 
dt
dF F(-27 3R)
dt
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Fox Rabbit (Logistic) Example

 
  

 
 

 
  

 

-9 45
At 9,6   A  

18 0
λ -4.5000 28.1025j
stable spiral

39 0
At 0,0   A   

0 -27
saddle

0 5 10 15
0

2

4

6

8

10

Specie x

Sp
ec

ie
 y



 

dR R(39 - R- 5F) 
dt
dF F(-27 3R) 
dt
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Models of Males and Females (M & F)

3 2
m m m

dM r FM - d M - k (M FM )
dt

 

3 2
f f f

dF r FM - d F - k (F F M)
dt

 

e.g. rm = 1.3, dm = 7, km = 0.01,
rf = 1.1, df = 19 and kf = 0.01.

0 20 40 600
10
20
30
40
50
60

Specie x

Sp
ec

ie
 y

-95.7-70 40
50,40:  =   =    stable

-26.328 -52


 
 
 

A

-7 0 -7
0,0:  =   =   stable 

0 -19 -19
 

 
 

A

-10 22 -22.1 -0.88
20,10:  =   =   saddle ( ) = 

10 -4 8.1 0.48
ve   

    
   

A
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Lotka-Volterra Mutualism Models

1 x xx xy
dxF x (r a x  a y) 
dt

    2 y yx yy
dyF y (r a x  a y)
dt

   

Isoclines are lines: eg when x = 0 or rx – axxx + axyy = 0, etc.  

Assume all ‘a’ parameters > 0.   Consider ‘main’ equil. point

First 2 systems stable at main point, 3rd not. First ok with no 
mutualism; others obligate mutualists – can’t exist on own

y

F1 = 0

F2 = 0y F1 = 0

F2 = 0

y

F2 = 0

F1 = 0
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Note, with no mutualism (ie axy = ayx = 0)

x1 x xx
xx

rdxF x (r a x)      this is zero when x  
dt a

   

y
2 y yy

yy

rdyF y (r  a y)     this is zero when y  
dt a

   

But, because of the positive feedback, due to mutualism, stable 
point is higher than these values.

Note, we will show, if opposite can be true in competitive systems

Advantage of Mutualism

Next slide shows EQ point stable if  gradient of F1 isocline > F2’s

If isoclines are curves, this gradient test also applies …
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For Info : Confirm Gradient Test
xx e xy e

yx e yy e

a X a X
 matrix is 

a Y a Y
 
   

A

To be stable, need two negative eigenvalues, ie

ie gradient of F1 isocline > that of F2 isocline

   xx e yy e xy e yx eChar Eqn : (-a X - )(-a Y - ) a X a Y 0

   xx e yy e xy e yx eChar Eqn : (-a X - )(-a Y - ) a X a Y 0



 

xx e yy e xy e yx e

yxxx
xx yy xy yx

xy yy

a X a Y a X a Y
aaie a a a a   or 

a a

     2
xx e yy e xx e yy e xy e yx e(a X a Y ) a X a Y a X a Y 0
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Lotka-Volterra Example
-28 8

At 4,4:   
4 -12

λ = -29.8  -10.2   stable

 
  

 
A

0 2 4 6 8 100

2

4

6

8

10

Specie x

Sp
ec

ie
 y

8
3

25.33 0
At 0, :   

2.667 -8
λ = -8   25.333    saddle

 
  

 
A

20
7

-20 5.714
At ,0:   

0 10.86
λ = -20   10.86    saddle

 
  

 
A

20 0
At 0,0:   

0 8
λ = 20   8    unstable

 
  

 
A

 1
dxF  x 7x + 2y + 20
dt

  

 2
dyF  y x - 3y + 8
dt
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Competitive Species
dx x(8 0.5x 2y)
dt

  
dy y(10 x 2y)
dt

  

-2 -8
At 4,3,   λ = 1.29 and -9.29   saddle

-3 -6
 

  
 

A

-8 -32
At 16,0,   λ = -8, -6   stable

0 -6
 

  
 

A

-2 0
At 0,5,   λ = -10, -2   stable

-5 -10
 

  
 

A

8 0
At 0,0,   λ = 8,10   unstable

0 10
 

  
 

A





1F  8-x-2y 
x

  


1F 2x
y





2F -y
x

 


2F  10-x-4y
y
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Result – only one species survives

-2 -8At 4,3
   = 

-3 -6Saddle 
At 16,0 -8 -32

   = 
Stable 0 -6
At 0,5  -2 0

  = 
Stable -5 -10
At 0,0   8 0

 = 
Unstable 0 10

 
 
 
 
 
 
 
 
 
 
 
 

A

A

A

A

0 5 10 15 20
0

2

4

6

8

Specie x

Sp
ec

ie
 y

Separatrix thru 4,3 – whether go to 16,0 or 0,5
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Competitive But Stable EQ – swap lines 
-4 8

At 4,3     
1.5 6

λ -1.394  &  -8.606  stable

 
    



A
dx x(10 - x - 2y);
dt
dy y(8 - 0.5x - 2y)
dt





0 5 10 15 200

2

4

6

8

Specie x

Sp
ec

ie
 y 2 -20

At 0,4     
-2 -8

λ  -8 and 2    saddle

 
  

 


A

10 0
At 0,0     u/s 

0 8
 

  
 

A

-10 -20
At 10,0     

0 3
λ  -10 and 3    saddle

 
  

 


A

No competition, x = 10, y = 4; 
with, stable at x = 4, y = 3 

comp bad!
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Summary
We have seen simple populations of models. 

Single species, 

Interacting mutualists, predator-prey and competitors 

Isoclines, where one pop stable, interact at equilibrium points.

These can be stable sink, unstable source, saddle, stable spiral, 
unstable spiral or centre

And that the state can be found from the eigenvalues of the 
Jacobean matrix for each point.

Mutualists – stable point larger pop than if no interaction

Competitors – if stable smaller pop than if no interaction.

This leads to considerations of attractors, which leads to fractals



3 : More Modelling
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In this lecture we build on population modelling

Looking at attractors, 

Discrete models – with recurrence

See some effects of self similarity

This then leads to fractals for artificial life



Emergence
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We wish for soft artificial life to emerge in a computer – so create 
a system that changes states over time:

A phase space (cf mathematics) is a space in which all possible 
states of a system are represented. Each possible state of the 
system corresponds to one unique point in the phase space

A state space representation (cf control engineering) is a 
mathematical model of a physical system as a set of input, output 
and state variables related by first-order differential equations.

Can solve these to look at transient behaviour

But for A-Life more interested in steady state

This is Long-term behaviour : characterised by Attractors.
This relates to the equilibria we saw last time.
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Attractors

An attractor is a 'set', 
'curve', or 'space' that a 
dynamical system 
irreversibly evolves to if 
left undisturbed .

May be known as a ‘limit set’

Not necessarily trivial
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Dynamics of Attractors

http://www.scholarpedia.org/article/Attractor_network

Activation of each system unit is associated with direction in a 
multidimensional space (configuration space)

Every point in the space represents a possible state of the system 
(state vector).

Motion of this vector represents its evolution in time (described as a 
dynamic system)

There are three types of attractors; 

point attractors, 

periodic attractors

strange attractors
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Why use Attractors?
No need to know the start time or duration or to observe entire 

evolution of system to get result

Only need to know the attractor, a given initial condition involves a 
path towards an attractor and an indication that the system has 
reached the attractor

They allow control of timing of system’s response

Robust to small changes in system parameters

dilution (removal of system connections)

asymmetry 

clipping/quantization of parameter values

NB system could be ‘computer’ based (e.g. networks), biological (e.g. 
heart) or mechanical (e.g. pendulum).
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Using Attractors
These systems are typically defined as series of ODEs

dx  = 10(y-x)
dt
dy  = -xz + 28x - y
dt
dz 8 = xy -  y
dt 3

http://www.edc.ncl.ac.uk/highlight/rhnovember2006g02.php/

Computation performed by mapping from an initial condition to a 
particular attractor
Dynamics partition the configuration space into basins of 
attraction around the attractors.    Let’s see some.
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Fixed Point Attractor

Results are computed as 
different input data settle 
into different fixed points

The region of initial states 
that settle into a single 
fixed point is called its 
basin of attraction

Most networks are fixed point 
networks

C.f. Stable equilibrium point in 
population examples

The state vector comes to rest

0
10

20
30

5
10

15
4

5

6

7

x1
x2

x3

Example with three variables
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Limit Cycle Attractor

The state vector 
settles into a 
periodic cycle

The attractor is a 
limit cycle

-Shown in red

Transient in purple

6
7

8

0
10

20
0

5

10

15

x1x2

x3
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Strange Attractor - chaotic

Two copies of the system 
that initially have nearly 
identical states will grow 
dissimilar as they evolve.
Divergence is restricted 
so that in many 
directions the state 
vectors are growing 
closer

-20

0

20

-200-1000100
0

200

400

600

x1

x2

x3
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Higher Dimensions
chaotic attractors (also encounter repellors)

Rössler studied chaotic attractor a = 0.2, b = 0.2, c = 5.7
NB a = 0.1, b = 0.1, and c = 14 more commonly used since

dy  = x + a y
dt

dz  = b + z (x - c)
dt

dx  = -y - z
dt
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Lorenz attractor

σ is called the Prandtl number, 
ρ is called the Rayleigh number. 
All σ, ρ, β > 0, but usually 
σ = 10, β = 8/3 and ρ is varied 

Simple model  of convection in atmosphere.
Sensitive to initial conditions

y

z

x

dx  = (y - x)
dt



dy  = x( ) - y
dt

z 

dz  = xy - z
dt



2500

10
5
0

-5
-10

1500 2000 t



Some Discrete Models
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In the above, the models were continuous

They can be of single species, or multiple.

We now move to considering discrete models

Here xn is the ‘population’ at ‘time’ n

The change in xn is set by a recurrence relation of the form

n+1 n nx  = r x  (1 - x )

These are of interest as the value of r affects what happens

Different steady states are found

These show self similarity, which leads nicely to fractals.
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Logistic Map – discrete model

n+1 n nx  = r x  (1 - x )

n   x
0  0.2000
1  0.3200
2  0.4352
3  0.4916
4  0.4999
5  0.5000
6  0.5000
7  0.5000
8  0.5000
9  0.5000

10  0.5000

x0 = 0.2; r = 2

0 5 10
0

0.2

0.4

0.6
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But if r changed to 3.1

0 5 10 15 20
0.2

0.4

0.6

0.8

1

n+1 n nx  = r x  (1 - x ) x0 = 0.2; r = 3.1

n   x
0  0.2000
1  0.4960
2  0.7750
3  0.5406
4  0.7699
…

21 0. 7646
22  0.5579
23 0.7646
24  0.5579

Finally – oscillates between 2 values
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But if r is 3.5 …
n+1 n nx  = r x  (1 - x )

n   x
0 0.2000
1 0.5600
2 0.8624
3 0.4153
4 0.8499
…
27 0.8750
28 0.3828
29 0.8269
30 0.5009
31 0.8750

x0 = 0.2; r = 3.5

Oscillates between 4 values

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1
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‘Final’ values for diff r
n+1 n nx  = r x  (1 - x ) ‘Final’ values for diff r

See also http://en.wikipedia.org/wiki/File:LogisticCobwebChaos.gif

1.0

0.8

0.6

0.4

0.2

0.0
2.6       2.8       3.0       3.2        3.4       3.6
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Self-similarity
Compare prev with when zoom in ..

3.45 3.5 3.55 3.6

0.8

0.85

0.9
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Orbits
The Hénon map is a discrete-time dynamical system - exhibiting 
chaotic behavior. The Hénon map takes a point (x, y) in the plane and 
maps it to a new point

-2 -1 0 1 2-0.4

-0.2

0

0.2

0.42
n+1 n nx  = y  + 1 - ax

n+1 ny  = bx

Here a = 1.3 b = 0.4
Known to be chaotic
Orbit – plots of x,y

For other values of a and b the map may be chaotic, intermittent, 
or converge to a periodic orbit



Self Similarity - Fractals
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The self similarity observed earlier, leads to Fractals

These have been used in various ways re modelling life

Examples include trees, Plants, Clouds, Mountains

D’arcy Wentworth Thompson, On Growth and Form, 1917

Laid foundations for biomathematics; found equations to describe 
static forms of organisms; saw transformations by changing paras



Fractals
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Complex objects defined by systematically and recursively replacing 
parts of a simple start object with another, using a simple rule

Simplest : Have initiator and generator, both many lines. 
Replace each line in the initiator with the generator shape. 
Makes more lines, so replace all these lines with generator



Koch, SnowFlake, Forest Examples
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Sierpinski : Space Filling Curve
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four shapes \_/ (+ rotations) A B C D, joined by four corners. 
A(n) is A(n-1) \ B(n-1) _ D(n-1) / A(n-1)   {n > 0}   
A(0) is nowt.     Similar for B(n), C(n) and D(n)



Also
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Sierpinski Gasket : 
triangle from which 
smaller triangles are cut

Can also get 
‘natural’ fractals ..

More sophisticated replication methods …
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Lindenmayer  System (L-Systems)

Mathematical formalism proposed by biologist Aristid Lindenmayer in 
1968 : foundation for axiomatic theory of biological development 

A Lindenmayer system is a variant of a formal grammar (a set of 
rules and symbols), acting as a parallel rewriting system

It models the growth processes of plants, organisms and self-similar 
fractals – due to the recursive nature of the rules.

Useful:   http://algorithmicbotany.org/papers/#abop
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Details

L-systems are defined as a tuple

G = {V, S, ω, P} 
where

V (the alphabet) is a set of symbols containing elements that can be 
replaced (variables) 

S is a set of symbols containing elements that remain fixed 
(constants) 

ω (start, axiom or initiator) is a string of symbols from V defining 
the initial state of the system 

P is a set of production rules defining the way variables can be 
replaced with combinations of constants and other variables. 



Example
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An L-system is an ordered triplet 
•G = <V, w, P> 
•V = alphabet of the symbols in the system; V = {F, B} 
•w = nonempty word , the axiom: B 
•P = finite set of production rules (productions) 
•B := F[-B][+B] 
•F := FF 

B F

B

B BB

F

F



Production Rules for Artificial Plants
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Add branching symbols [ ] 
simple example 
Main trunk shoots off one 
side branch 

• Angle 45 
• Axiom: F 
• Seed Cell 
• Rule: F=F[+F]F 
• Angle 

Gen 1

Gen 2

Gen 3

Gen 8

F F
[+F]



Some Examples
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V = {F, X} the alphabet

the axiom: X 

P = finite set of production rules 
X := F[+X][-X]FX 

F := FF 

Probabilistic production 
rules 
A := B C ( P = 0.3 ) 
A := F A ( P = 0.5 ) 
A := A B ( P = 0.2 ) 

http://coco.ccu.uniovi.es/
malva/sketchbook/
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More Example L - Systems

Colin McRae Dirt : pre-generated and preloaded!



Making Life Realistic
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Fractals etc can help make realistic looking images

But ‘life’ tends to move and interact

So want artificial life to also behave realistically

Need to define appropriate behaviour, dependent on surroundings

Of interest is having situations with multiple entities

Applications

Film and TV

Games

Simulations for engineering, architecture and transport

Premier system is MASSIVE …



MASSIVE

p92 RJM  08/01/14 SE4SI12 Artificial Life – Part A
© Dr Richard Mitchell 2014

Software package from Stephen Regelous for visual effects

Key feature : can create 1000s …1000000s of agents

Fuzzy logic used so each agent react individually to surroundings

Used to control prerecorded animation clips

(say from motion capture or hand animation)

Creates characters that move, act and react realistically

Developed initially for Lord of the Rings …

Used in Avatar, King Kong, Narnia, I Robot, Doctor Who, WallE, … 

http://www.massivesoftware.com/



Some Images
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Summary
We have looked at more modelling of systems

Some differential equations, and the associated attractors which 
define their steady state

We have considered discrete models – recurrence relations, and 
seen the different states, and the associated self similarity

This lead to fractal systems, including Lindenmayer systems, which 
have been used to produce computer generated images

More sophisticated examples also exist, of ‘agents’ interacting with 
others, determining their actions/ movements. 

Next time, we move to hardware systems and how they learn.
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