6 ：Feedback Not Just for Control

We have modeled a feedback control system by the diagram：

We have used＇forward over one minus loop＇rule to show that
If $D=0, \frac{O}{I}=\frac{C^{\star} P}{1+C^{\star} P}$ or $O=\frac{C^{\star} P}{1+C^{\star} P} \star I$
If $I=0, \frac{O}{D}=\frac{1}{1+C^{\star} P}$ or $O=\frac{1}{1+C^{\star} P} * D$
If C^{\star} P is large，$O \sim I+0$＊D ．．
p1 RJM 03／09／15 SE1CY15 Feedback－Part B © Prof Richard Mitchell 2015

What if want O bigger than I ？

Control Engineers want $O=I$ ，Audio Engineers $O=I$＊G
More General Feedback System has this form：

We can again analyse by forward over one minus loop NB this is Control system if $A=C^{*} P, \beta=-1$ ！
p2 RJM 03／09／15
SE1CY15 Feedback－Part B

With Some Numbers

Suppose $A \beta \gg 1$ \｛much greater than 1\} 'negligibly large', 1-AB~AB

$$
\frac{O}{I}=\frac{A}{1-A \beta} \approx \frac{A}{-A \beta}=-\frac{1}{\beta} \quad(O \text { is independent of } A)
$$

$$
\text { e.g. if } A=-5000, \beta=-0.2, A \beta=1000,1-A \beta=-999 \sim-A \beta
$$

$$
\text { So } O \approx-\frac{1}{\beta} \star I=5 * I \quad \text { Actually } O \approx \frac{-5000}{-999} * I=5.005 * I
$$

$$
\text { Also } O=\frac{1}{-999} * D=-0.001 * D \approx 0 * D
$$

$$
\text { If } A \rightarrow 5050, O \approx \frac{-5050}{-1009} \star I=5.005 * I
$$

$$
\begin{array}{ll}
\text { p4 RJM 03/09/15 } & \begin{array}{l}
\text { SE1CY15 - Feedback - Part B } \\
\text { O Prof Richard Mitchell } 2015
\end{array}
\end{array}
$$

Also works ．．

Also works if $A \beta \ll-1$ ，（large and negative）
e．g．if $A=-5000, \beta=0.2, A \beta=-1000,1-A B=1001, \sim-A B$
$O=-4.995^{*} I \sim-1 / \beta$＊$I$ ，independent of A and $O \sim 0 \star D$

Feedback good if modulus of Loop Gain，｜AB｜，large
$\{$ modulus means size irrespective of sign：$|5|=5 \quad|-5|=5\}$

Then $O=I$ times $-1 /$ feedback value，is independent of A （and hence of changes in A）and unaffected by D．
If loop gain smaller，result not as good ．．．
p5 RJM 03／09／15
SE1Cy15 Feedback－Part B
© Prof Richard Mitchell 2015

If $I=2$ ，and $D=0, O=-5^{*} 2=-10$
Check：$F=-10^{\star} 0.21=-2.1$ ，so $X=2+-2.1=-0.1 ; O=100^{\star}-0.1+0=-10$ If $I=0$ and $D=1, O=-0.05$＊ $1=-0.05$ ．

Check：$F=-0.0105=X$ ，so $O=-0.0105 * 100+1=-0.05$
If $I=2$ and $D=3 ; O=-5^{*} 2+3^{*}-0.05=-10.15$
Check：$F=-2.1315 ; X=-0.1315 ; O=-13.15+3=-10.15$
p6 RJM 03／09／15 SE1CY15 Feedback－Part B
Prof Richard Mitchell 2015

Lecture 6 - In Class Exercise

Suppose $A=200, \beta=-0.2$
a) Find O / I if $D=0$
b) Find O / D if $I=0$
c) Find \%change in O / I if A changes by 10% to 220

Positive/Negative Feedback

We will correct erroneous definitions / claims often made. Wrong to say negative feedback because - sign in 'summer'
(Changing sign of β has same effect as changing + to -)
The important point is to have both
a) claims for what negative feedback does
b) a consistent definition for negative feedback

To that end the correct view is that Negative Feedback
a) reduces effects on output of disturbances reduces effects on output of parameter changes
b) occurs if |closed loop gain| < lopen loop gain|

NB $|x|$ or modulus of x, means size : ignore sign
p8 RJM 03/09/15 SE1CY15 Feedback - Part B

Negative Feedback (Harold Black 1930s)

Forward (Open Loop) Gain = A
Closed Loop Gain $=\frac{\boldsymbol{A}}{1-\boldsymbol{A} \boldsymbol{\beta}}$
Negative Feedback

| Closed Loop Gain | < | Open Loop Gain |

$$
\left|\frac{\boldsymbol{A}}{1-\boldsymbol{A} \boldsymbol{\beta}}\right|=\frac{|\boldsymbol{A}|}{|1-\boldsymbol{A} \beta|}<|\boldsymbol{A}| \quad \text { i.e. } \frac{1}{|1-\boldsymbol{A} \beta|}<1 \quad \text { or } 1<|1-\boldsymbol{A} \beta|
$$

Negative Feedback, when $|1-A B|>1$,
Reduces effect of Disturbances D on output O
Reduces effect of changes in A on output O
p9 RJM 03/09/15
SE1CY15 Feedback - Part B © Prof Richard Mitchell 2015

Negative Feedback \& Disturbances

$$
\begin{gathered}
\text { Open Loop: } \frac{O}{D}=1 ; \quad \text { no reduction in effect of } D \\
\text { Closed Loop: } \frac{O}{D}=\frac{1}{1-\boldsymbol{A} \beta} ; \quad \text { reduction if }|1-A \beta|>1 \\
A=5 \text { and } \beta=-4: 1-\boldsymbol{A} \beta=1+20=21 \text {. Negative Feedback. } \\
\frac{O}{D}=\frac{1}{21}<1 \quad D \text { must change by } 21 \text { if change } O \text { by } 1 \\
A=5 \text { and } \beta=0.04: 1-A \beta=0.8<1 \text {. Positive Feedback } \\
\frac{O}{D}=\frac{1}{0.8}=1.25 \quad D \text { in effect amplified }
\end{gathered}
$$

p10 RJM 03/09/15
SE1CY15 Feedback - Part B SE1CY15 Feedback - Part B
© Prof Richard Mitchell 2015

... and Changes in Parameters

Let A change by a small proportion: call it δ : i.e. $A:=A(1+\delta)$
Relative change in open loop $=\frac{\mathrm{A}(1+\delta)-\mathrm{A}}{\mathrm{A}}=\delta$
Relative change in closed loop (see next slide) $=\frac{\delta}{1-A \beta}$
Feedback reduces the effect of change in A if $|1-A \beta|>1$.
Let $A=5$ and $\beta=-4(-v e f b)$ and A change by 10% to 5.5 ie $\delta=0.1$
Rel Change: open loop $=0.1$; closed loop $=0.1 / 21=0.005$ (smaller)
If instead $\beta=0.04$ (+ve fb)
Rel Change: open loop $=0.1$; closed loop $=0.1 / 0.8=0.125$ (bigger)
p11 RJM 03/09/15 $\quad \begin{gathered}\text { SE1CY15 Feedback- Part B } \\ \text { O Prof Richard Mitchell } 2015\end{gathered}$
Yer

Interest Only: $A \rightarrow A(1+\delta)$
Closed Loop Gain $=\frac{A(1+\delta)}{1-A(1+\delta) \beta} \quad$ Relative change $=\frac{\text { new }- \text { old }}{\text { old }}$
$\frac{\frac{A(1+\delta)}{1-A(1+\delta) \beta}-\frac{A}{1-A \beta}}{\frac{A}{1-A \beta}}=\frac{(1+\delta)(1-A \beta)}{1-A(1+\delta) \beta}-1$
$=\frac{(1+\delta)(1-\mathrm{A} \beta)-(1-\mathrm{A}(1+\delta) \beta)}{1-\mathrm{A}(1+\delta) \beta}$

$$
=\frac{1+\delta-\mathbf{A} \beta-\delta \mathbf{A} \beta-1+\mathbf{A} \beta+\delta \mathbf{A} \beta}{1-(\mathbf{A}+\mathbf{A} \delta) \beta}=\frac{\delta}{1-\mathbf{A}(1+\delta) \beta}
$$

As $\delta \ll 1$, this approximates to $\frac{\delta}{1-\boldsymbol{A} \beta}$, as stated earlier
Can also do by differentiating closed loop TF w.r.t A
p12 RJM 03/09/15 SE1CY15 Feedback - Part B
SE1CY15 Feedback - Part B
O Prof Richard Mitchell 2015
Cry

Effect of Changing A:50 to 55

| $\beta=$ | a) $-1 / 50$ | b) $-1 / 10$ | c) $1 / 100$ | d) $3 / 100$ |
| :--- | :--- | :--- | :--- | :--- | e) $1 / 10$

	β	$1-A \beta$	$\frac{O}{D}=\frac{1}{1-A \beta}$	$\frac{O}{I}=\frac{A}{1-A \beta}$	$\frac{O}{I} \quad(A=55)$	$\%$ diff
a	$-1 / 50$	$1+1=2$	$1 / 2=0.5$	$50 / 2=25$	$55 / 2.1=26$	$+4 \%$
b	$-1 / 10$	$1+5=6$	$1 / 6=0.17$	$50 / 6=8.3$	$55 / 6.5=8.5$	$+1.5 \%$
c	$1 / 100$	$1-0.5=0.5$	$1 / 0.5=2$	$50 / 0.5=100$	$55 / 0.45=122$	$+22 \%$
d	$3 / 100$	$1-1.5=-0.5$	$1 /-0.5=-2$	$50 /-0.5=-100$	$55 /-0.65=-84.6$	-15%
e	$1 / 10$	$1-5=-4$	$1 /-4=-0.25$	$5-/-4=-12.5$	$55 /-4.5=-12.2$	-2%

b) highest loop gain: best at rejecting D \& changes in A.

No system has high loop gain.
c) and d) have +ve feedback: $O / D>1$ and $\%$ diff $>10 \%$

Summary

We have analysed simple feedback systems : used forward over one minus loop for closed loop TF We have seen benefit of high loop gain We have considered positive and negative feedback.

Which applies to CP systems ... test if $|1+C P|>0$

So far we assume that as I increases so will O
In practice this is not true, so next week
We consider what happens when systems are limited
p15 RJM 03/09/15

Graphs for b) : $A=50, \beta=-0.1$
It can be useful to plot graphs of O vs I and O vs D

$$
\text { Here } \frac{O}{I}=\frac{50}{6} \text { and } \frac{O}{D}=\frac{1}{6} \text {, so }
$$

As straight lines ... associated system is said to be linear If gradient of $O / D<1$: system has negative feedback
p14 RJM 03/09/15

Lecture 6 After Class Exercise

Here, $I=2, A=10$
Find O and state whether positive feedback if:
a) $\beta=-1$
b) $\beta=+1$
c) $\beta=-0.02$
d) $\beta=+0.02$
p16 RJM 03/09/15
SE1CY15 Feedback - Part B
© Prof Richard Mitchell 2015 © Prof Richard Mitchell 2015

Limits

O/I graph implies that as I increases, so O increases Not true in practical systems
e.g. output of a component can't exceed its power supply, etc The output has limits; and we can incorporate them.

Below are shown limits graphically and as a block diagram

If $-L \leq I n \leq L$, Out $=I n ;$
if In < L , Out $=-L ; \quad$ if $I n>L$, Out $=L$
p18 RJM 03/09/15
SE1CY15 Feedback - Part B
OProll

SE1CY15 - Feedback - Part B

Limits in Feedback Systems

Let $A=50 ; \beta=-0.1 ;+L=+25$ and $-L=-25$.
Consider O vs I assuming $D=0$.
When no limiting, limit box transfer function $=1$. Thus $\frac{O}{I}=\frac{50}{1--5}=\frac{50}{6}=8.333$ i.e. $O(=Z=Y)=\frac{50}{6} * I$
So when just at limit, $\mathrm{Y}=\mathrm{Z}=0=25, \frac{25}{\mathrm{I}}=\frac{50}{6}$ or $\mathrm{I}=3$

General Case

In general, find I when $Y=Z=O$, ie limit block $T F=1$

$$
\text { Then } \frac{O}{I}=\frac{L}{I}=\frac{A}{1-A \beta} \text { so } I=L \frac{1-A \beta}{A}
$$

So, two limit points are $I=+L \frac{1-A \beta}{A} \&-L \frac{1-A \beta}{A}$
For our example, limit at $\pm 25 \frac{1--50 * 0.1}{50}= \pm 25 \frac{6}{50}= \pm 3$
p21 RJM 03/09/15

$$
\begin{aligned}
& \text { SE1Cy15 Feedback - Part B } \\
& \text { OProf Richard Mitchell } 2015
\end{aligned}
$$

What happens when pass Limit?

$I=3, O=25$
If I increases, X and Y increase, but Z and O stay at 25
Use same argument for limit -25;
or say 'by symmetry' when $I=-3, O=-25$
if I more -ve O stay - 25
Hence (non linear) graph of OvI

p20 RJM 03/09/15 SE1CY15 Feedback - Part B rey

Another example

I just limit at $+L \frac{1-A \beta}{A} \&-L \frac{1-A \beta}{A}$
Suppose $A=100 ; \beta=-0.1+L=10$ and $-L=-10$ System linear when $-10 \leq Y \leq 10$, then

$$
\frac{O}{I}=\frac{A}{1-A \beta}=\frac{100}{11} \approx 9.09
$$

Values of I where just limit are

$$
\pm 10 * \frac{1--10}{100}=1.1
$$

p22 RJM 03/09/15 SE1CY15 Feedback - Part B
O Prof Richard Mitchell 2015 yery

Lecture 7 In Class Exercise

Calc O \& I at $L=20$ to label the graph

O vs D : a different response

Strategy, find D when just limit: $y=Z=+L$: when $\frac{O}{D}=\frac{1}{1-A \beta}$
Then ${ }^{+} L+D=O ; D=(1-A \beta)^{\star} O$ so ${ }^{+} L+O-A \beta O=O$

$$
\text { Hence }{ }^{+} L=A \beta O \text { or } O=\frac{{ }^{+} L}{A \beta}: \quad D=(1-A \beta) \frac{{ }^{+} L}{A \beta}
$$

Do similarly for when $Y=Z=-L$: or use symmetry

So，when $A=100 ; \beta=-0.1$
If $-10 \leq y \leq 10$ ，response as usual：$\frac{O}{D}=\frac{1}{1-A \beta}=\frac{1}{11}$
When just about to limit（remember $A \beta=100^{\star}-0.1=-10$ ）

$$
O=\frac{+L}{A \beta}=\frac{10}{-10}=-1 ; \quad D=(1-A \beta)^{\star}-1=-11 ;
$$

By symmetry，$Y=Z=-10$ when $D=11$ ；
Hence，when $-11 \leq D \leq 11$ ，effects of D on O

> reduced by feedback.

But what happens when $D>11$ ？

p25 RJM 03／09／15 SE1CY15 Feedback－Part B
O Prof Richard Mitchell 2015 Prof Richard Mitchell 2015

So，when $A=100 ; \beta=-0.1$

If D increased by 1 ，as Z stays at L, O up by 1
Similarly if $D=-11$ and $O=-1$
If $D \downarrow 1$ to $-12, O=-12+10=-2$ ．ie $O \downarrow 1$
So when limiting，O / D now 1
In effect no feedback，
no reduction of effect of D on O

p26 RJM 03／09／15
SE1CY15 Feedback－Part B

Lecture 7 In Class Exercise

p27 RJM 03／09／15

And so ．．

So at limiting point，when $O=L+D, L(1-A \beta)-A \beta D=A I$
For $\frac{O}{I}, D$ constant，so $I=\frac{L(1-A \beta)}{A}-\beta D$
Hence limits are at $\begin{aligned} & O=L+D, I=\frac{L(1-A \beta)}{A}-\beta D \\ & O=-L+D, I=\frac{-L(1-A \beta)}{A}-\beta D\end{aligned}$
For $\frac{O}{D}, D=\frac{L(1-A \beta)}{A \beta}-\frac{I}{\beta}=\frac{L}{A \beta}-L-\frac{I}{\beta}$ ；so $O=D+L=\frac{L}{A \beta}-\frac{I}{\beta}$
p29 RJM 03／09／15
SE1CY15－Feedback－Part B
〇 Prof Richard Mitchell
Trat
© Prof Richard Mitchell 2015

$$
\text { Hence limits are at } \begin{aligned}
O & =\frac{L}{A \beta}-\frac{I}{\beta} ; D=O+L \\
O & =\frac{-L}{A \beta}-\frac{I}{\beta} ; D=O-L
\end{aligned}
$$

-

\square

Figures

Effect is to shift the graphs so not symmetrical about 0，0

$O=L+D, I=\frac{L(1-A \beta)}{A}-\beta D$
$O=-L+D, I=\frac{-L(1-A \beta)}{A}-\beta D$
$O=\frac{L}{A \beta}-\frac{I}{\beta} ; D=O+L$
$O=\frac{-L}{A \beta}-\frac{I}{\beta} ; D=O-L$

Remember，when linear，$O=\frac{A}{1-A \beta} I+\frac{1}{1-A \beta} D$
Hence，when $Y=Z=L, O=L+D=\frac{A}{1-A \beta} I+\frac{1}{1-A \beta} D$
So $(L+D)(1-A \beta)=A I+D$
$\operatorname{Or} L+D-A \beta L-A \beta D=A I+D$
$\operatorname{Or} L(1-A \beta)-A \beta D=A I$
p28 RJM 03／09／15
SE1CY15 Feedback－Part B
O Prof Richard Mitchell 2015
p30 RJM 03／09／15
SE1CY15－Feedback－Part B
© Prof Richard Mitchell 2015
侟

Limits and Hole in the Ozone Layer

The ozone layer is a feedback system
Must be (according to Gaia) so correct amount of u.v. getting to Earth's surface:

Too much u.v \rightarrow cancer; too little \rightarrow rickets
If ozone layer too thin, u.v. gets through : finds oxygen; turns it to ozone, thickens ozone layer: feedback!
Worked til too much CFC - which destroys ozone
CFCs are disturbances, and normally feedback reduces effects of CFCs
But when too much, system not cope as then has no feedback to reduce any extra disturbance

P31 RJM 03/09/15 SE1CY15 Feedback - Part B SE1CY15 Feedback - Part B
© Prof Richard Mitchell 2015 \qquad

Limits Summary - MatLab code

Code below is a function to plot responses O / I or O / D (when DorI= 0) Each finds 'limit' points and then generates arrays of O and I or D
function fblims (A, b, lim, whatplot); \% plot limit system
$O m A b=1-A^{*} b ; \quad \% 1$ minus A *
Ilim $=\lim$ * OmAb / A; \% value of I when just limiting
if whatplot $=0 \quad \%$-ve loop gain - plot O/I
plot ([-Ilim-5, -Ilim, Ilim, Ilim+5], [-lim, - \lim, lim, lim]);
else $\quad \%$-ve loop, plot O/D
Olim = lim / ($\left.A^{*} b\right) ; \%$ when just limits
Dlim = Olim * OmAb; $\quad \%$ D when just limits
plot([-Dlim-5, -Dlim, Dlim, Dlim+5], [-Olim-5, -Olim, Olim, Olim +5]): end

Example Output + General Summary
Graphs $A=100, \beta= \pm 0.1, \lim =10$

$A B<0 \quad 0$

p33 RJM 03/09/15

SE1CY15 Feedback - Part B
© Prof Richard Mitchell 2015

Summary

We have seen effect of limits on feedback systems We have considered examples when loop gain -ve
We get different responses for O / I and O / D
But we find using same strategy -

$$
\text { Find the values of } O \text { and (I or } D \text {) where just limit }
$$

Next week
We consider what happens when loop gain +ve
And see how, with an integrator, we can make square waves
p34 RJM 03/09/15
SE1CY15 Feedback - Part B
© Prof Richard Mitchell 2015

8: More Limits in Feedback Systems

Last week we introduced limits into feedback Systems

Where $-L<=Y<=L$, limit block has gain unity: $Z=Y$
But if $Y>L, Z$ is L and if $Y<-L, Z=-L$
We considered the case where $A \beta<0$
And determined O / I and O / D separately

Limits in Feedback Systems

Strategy: find O and I or D, where just limit ($(Y=Z=L)$ And then consider what happens to O when I or D exceeds these
浣

Limits when have Positive Loop Gain

This week we consider what happens when $A \beta>0$
Strategy : again find O and I when just limit $(Y=Z=L)$
The response now is different
Interestingly we cant always find what O is just knowing I Later we consider how with an integrator get square wave. Let's start with an example ...
p37 RJM 03/09/15
SE1CY15 - Feedback - Part B SE1CY15 - Feedback - Part B
© Prof Richard Mitchell 2015

Limits and Positive Loop Gain

This change from +10 to -10 is represented graphically as
If I reduced now no change.
But if I increased to 0 $X=-1,0=-10$ still

Even if I upped to +0.9 :
Even if I upped to +0.9 :
$\quad X=-0.1, O=-10$, still, but..

Limits when have Positive Loop Gain

Suppose $O=10$ and $I=1 ; F=1, X=2, Y=200$, so $O=10$ If I reduced to -0.9: $X=0.1, Y=10, O=10$ No change. If I now -0.91: $\quad X=-0.91+1=0.09, Y=9,0=9$
Then $\quad X=-0.01, Y=-1,0=-1$
And then $\quad X=-1.01, Y=-101, O=-10$
Very rapidly, O flipped +10 to -10 when I passed -0.9 .
p38 RJM 03/09/15

$$
\begin{aligned}
& \text { SE1CY15 Feedback - Part B } \\
& \text { OPof Richard Mitchell } 2015
\end{aligned}
$$

How to Flip Back

If, however, I upped to 0.91,

$$
X=I+0 / 10=-0.09 \quad O=100 * X=-9
$$

Then $X=0.01, O=1$; Then $X=1.01, Y=101, O=10$

Thus, when I exceeds 0.9, O flips back to +10
 O depends on I and on O ! Hysteresis: figure to right
p40 RJM 03/09/15
SE1CY15 Feedback - Part B © Prof Richard Mitchell 2015

How To find I Where O Flips

Again find I when system just limits,

$$
\text { ie } Y=0=10
$$

Limit block $=1$
$\frac{O}{I}=\frac{100}{1-0.1 * 100}=-\frac{100}{9} ;$ or $I=-\frac{9}{100} * O=-\frac{9}{100} * 10=-0.9$ In general, flip when $O=L$, so $\frac{L}{I}=\frac{A}{1-A \beta}$ or $I=L * \frac{1-A \beta}{A}$ If $I \geq-0.9, O$ stays at 10 , but if $I<-0.9, O$ will flip to -10 By symmetry, I must exceed +0.9 for O to flip to +10 Could be found by same analysis.

Lecture 8 In Class Exercise

Suppose $A=100, \beta=0.2,+L=50,-L=50$.

$$
\text { Initially, I = } 0 \text { and } O=-50
$$

a) What must happen to I to make O change to +50
b) What must then occur to I for O to return to -50?

Now Consider Adding 'disturbance'

But Output of Limiter is System Output, D added in feedback

Again analyse by finding just limit point, when limit block $=1$ Use Forward/1-Loop, now for O / I and O / D

$$
\frac{O}{I}=\frac{A}{1-A \beta} \text { as usual, but } \frac{O}{D}=\frac{\beta A}{1-A \beta} \text { as forward is } \beta A
$$

$$
\text { So } O=\frac{A}{1-A \beta} I+\frac{A \beta}{1-A \beta} D
$$

p43 RJM 03/09/15
SE1CY15 - Feedback - Part B
© Prof Richard Mitchell 2015 CRy

Lecture 8 - In Class Exercise

Calculate the values of I where $Y=+10$ and -10 and so plot OvI

Adding Feedback - for Square Wave

We will add feedback to this ... and an integrator ..
Let's consider integrators ... eg pouring liquid into a container If do so at constant rate, amount in container rises constantly If drink at constant rate, amount decreases constantly

 t

I

p46 RJM 03/09/15
SE1CY15 - Feedback - Part B
© Prof Richard Mitchell 2015 Richard Míchell 2015

Application: Square Wave Generator

Hysteresis loop: 0 becomes 10 when I>0.9, -10 when $\mathrm{I}<-0.9$
Suppose $O=10$ initially and $I=0.9$, and $C>0$

$$
-C^{\star} O<0 \text {, so I will decrease ... }
$$

When I reaches -0.9 , O becomes -10
Now $-C^{\star} O>0$, so I will increase
When I reaches +0.9 , 0 becomes +10 ...
p47 RJM 03/09/15

Application: Square Wave Generator

At time $\dagger, I=$ Flip $-C^{\star} \operatorname{Lim}^{\star} \dagger$
So at $\dagger=$ 2*Flip / C*Lim, $I=-$ Flip Then $O:=-L i m$
After a further time of 2^{\star} Flip / C ${ }^{\star}$ Lim
I = +Flip, so O := +Lim

Square wave +/-Lim, period 4*Flip / C*Lim

$$
\begin{aligned}
A t+ & =0, \\
I & =+ \text { Flip }, \\
O & =+\operatorname{Lim}
\end{aligned}
$$

MatLab code and Summary

function fblims (A, b, lim, D); \% plot limit system
OmAb $=1-A^{*} b ; \quad \% 1$ minus $A^{*} b$
$\operatorname{Ilim}=\lim * O m A b / A ; \quad \%$ value of I when just limiting
if $A^{*} b>0 \quad \%+v e$ loop gain - plot hysteresis plot([-Ilim-5, Ilim-b*D, Ilim-b*D, Ilim+5, ...
-Ilim-b*D, -Ilim-b*D, -Ilim-5], ..
[-lim, -lim, lim, lim, lim, -lim, -lim]);

Summary

This week we have looked again at feedback systems and limits Here loop gain is positive, and we found 'hysteresis' effect Adding 'disturbance' means this not symmetrical about 0
We have seen effect of a constant into an integrator And how an integrator in loop around limited system can be used to generate a square wave.
Before next week, try following exercise on blackboard

Lecture 8 After Class Exercise

Suppose $A=100, \beta=0.2,+L=50,-L=50$. Initially, $I=0$ and $O=-50$.
a) What must happen to I to make O change to +50
b) What must then occur to I for O to return to -50 ?

```
p52 RJM 03/09/15
```

SE1CY15 Feedback - Part B
Prof Richard Mitchell 2015

9 : Electronics and Feedback

We have seen and analysed feedback control systems
Where the aim is that output = input
And a more general feedback system
Where the aim is often output = input * value
In this lecture we consider electronic systems
Which are also often feedback systems
We have previously shown how a potential divider is feedback We will build on that..

Potential Divider is Feedback System!

$$
\frac{V_{0}}{V_{s}}=\frac{\frac{1}{R_{1}} R_{2}}{1--\frac{1}{R_{1}} R_{2}}=\frac{R_{2}}{R_{2}+R_{1}}
$$

Now another component

Operational Amplifier

$$
V_{0}=A^{*}\left(V_{i}^{+}-V_{i}^{-}\right)
$$

A very big, $\sim 10^{5}$,
We can consider this in block diagram terms

Example

There are various ways of using feedback - a simple one

The fedback signal is from a potential divider ... so $V_{i}^{-}=\frac{V_{0}{ }^{*} 1 k}{9 k+1 k}=\frac{V_{0}}{10}$

But, as we have said, $V_{i}^{+}=V_{i}$
So $V_{I}=V_{0} / 10$,
or $V_{O}=10 * V_{I}$

Lecture 9 - In Class Exercise

Find V_{0} if $V_{I}=1 \mathrm{~V}$, OpAmp gain $A=1000, R_{1}=80 \mathrm{k} \Omega$ and $R_{2}=20 \mathrm{k} \Omega$. Note, find the exact value, and compare with the approximate one. By how much does V_{0} change, if A increases by 10% to 1100 ? Does the system have negative feedback?

Now, for another circuit

As preparation for another op-amp circuit consider this...

Want V_{m} in terms of V_{i} and V_{0}.
Use Superposition, find V_{m} when $V_{0}=0$ and when $V_{i}=0$..

$$
\text { If } V_{0}=0, V_{m}=\frac{R_{2}}{R_{1}+R_{2}} V_{i} \quad \text { If } V_{i}=0, V_{m}=\frac{R_{1}}{R_{1}+R_{2}} V_{0}
$$

$$
\text { Hence } V_{m}=\frac{R_{2}}{R_{1}+R_{2}} V_{i}+\frac{R_{1}}{R_{1}+R_{2}} V_{0}
$$

Virtual Earth Amplifier

One input connected to earth (OV), so other is virtually OV ...

Here the other is mid point of two resistors
$V_{m}=\frac{R_{2}}{R_{1}+R_{2}} V_{i}+\frac{R_{1}}{R_{1}+R_{2}} V_{0}$

$$
V_{m} \approx 0 \text {, so } \frac{R_{2}}{R_{1}+R_{2}} V_{i}=-\frac{R_{1}}{R_{1}+R_{2}} V_{0}
$$

$$
\frac{V_{0}}{V_{i}} \approx-\frac{R_{2}}{R_{1}}
$$

p61 RJM 03/09/15 SE1CY15-Feedback - Part B © Prof Richard Mitchell 2015

Block Diagram of this

First for the two resistors

P62 RJM 03/09/15 $\begin{array}{ll}\text { SE1CY15 - Feedback - Part B }\end{array}$

Block Diagram Analysis

Combining these we get

$$
\begin{aligned}
\frac{V_{0}}{V_{i}} & =\frac{\frac{R_{2}}{R_{1}+R_{2}} *-A}{1--A \frac{R_{1}}{R_{1}+R_{2}}} \quad \text { A big, so } A R_{1} \gg R_{1}+R_{2} \\
& =\frac{-A R_{2}}{R_{1}+R_{2}+A R_{1}} \approx-\frac{R_{2}}{R_{1}} \quad \text { }
\end{aligned}
$$

p63 RJM 03/09/15

Lecture 9 In Class Exercise

On Limits

As we have said, op-amps have a power supply $\pm V_{s}$ In practice, V o is limited a bit more than to $\pm V_{s}$. We define two more voltages :
$+\mathrm{V}_{\text {sat }}$ is the most positive output voltage, saturation voltage $-V_{\text {sat }}$ is the most negative output voltage, saturation voltage
$-V_{\text {sat }}<V_{0}<+V_{\text {sat }}$
Defining $V_{d}=V_{i}^{+}-V_{i}^{-}$ Hence

$$
-\frac{V_{\text {sat }}}{A}<V_{d}<+\frac{V_{\text {sat }}}{A}
$$

Note: linear and non linear mode of operation for the op-amp. Observe that, $\mathrm{V}_{\text {sat }}$ value is close but not equal to the V_{s} value. So far we have used op amp circuits in linear mode, but ...
p67 RJM 06/01/14

And so
Last week ..

Now with the - sign

And by extension

Block diagram is thus

Which shifts the hysteresis graph horizontally
p70 RJM 03/09/15 SE1CY15-Feedback - Part B © Prof Richard Mitchell 2015

Summary

This week we have looked at electronic feedback systems
Reminding us that the potential divider is feedback
Then introducing the operational amplifier
And how it can be used with feedback
As a non-inverting amplifier

And as an inverting virtual earth amplifier
In addition, we have seen that the op-amp has limits And so can generate hysteresis effects

Next week, we introduce dynamic systems ...

Lecture 9-After Class Exercise

Suppose $R_{1}=20 \mathrm{~K}, R_{2}=80 \mathrm{~K}, V_{\text {sat }}=10 \mathrm{~V}$ and amp gain $A=1000$
When $V_{e}=0$, find where system linear and so plot $V_{0} \vee V_{i}$
Then, suppose $V_{e}=1 V$, and so find the limits
$\frac{V_{O}}{-V_{I}}=\frac{1000}{1-0.2^{\star 1} 1000}=\frac{1000}{-199}$; so $\frac{10}{-V_{I}}=\frac{1000}{-199}$ or $V_{I}=1.99$ (and also -1.99)
$V_{O}=-V_{I} \frac{1000}{-199}+V_{e^{\star}} \frac{0.8^{\star} 1000}{-199} ;-199^{\star} 10=-V_{I}^{*} 1000+800$ so $V_{I}=2.79$
and for -10 limit, $-199^{\star}-10=-1000 V_{I}+800$, or $V_{I}=-1.19$
p72 RJM 03/09/15
SE1CY15 - Feedback - Part B

10 - Introducing Dynamic Systems

We have mainly looked at static systems
Here the system components are fixed
Where we work out the output given the input (and past output in positive loop gain limited systems)
These include control systems and $A \beta$ systems
We have also shown how these can be implemented in electronics
We have found transfer functions Output = Input * constant
For the rest of the feedback course we consider dynamic systems
Here we work out how the output gets to its value
We will introduce some concepts in this lecture
p73 RJM 03/09/15
SE1CY15 - Feedback - Part B © Prof Richard Mitchell 2015

But

In some cases we need a more sophisticated block
Remember when manually controlling the robot If robot travelling too slow, increase speed If travelling too fast, decrease speed
These mean that the controller block cant be output = input * value
Instead it must be
output = output + input * value
This, we said earlier was the process of integration. Let's develop the associated ideas...
p75 RJM 03/09/15
SE1CY15 - Feedback - Part B
© Prof Richard Mitchell 2015 © Prof Richard Mitchell 2015

Two tanks connected by pipe

This is first of two examples of systems with inherent feedback and blocks of output $=$ input * constant are not sufficient

Liquid flows due to difference in pressure at ends of pipe

$$
\begin{aligned}
\text { Pressure } & =\frac{\text { Weight }}{\text { Area }}=\frac{\text { Density }{ }^{*} g^{*} \text { Volume }}{\text { Area }} \\
& =\frac{\text { Density * } g^{*} \text { Height * Area }}{\text { Area }}=\text { constant * Height }
\end{aligned}
$$

So difference in Height causes Flow through pipe
p76 RJM 03/09/15 SE1Cy15 Feedback - Part B SE1CY15 Feedback - Part B
O Prof Richard Mitchell 2015

System reaches final state 'steady state', when signals constant This will be when $F=0$, which is when $O=I$ NB: summer does $I-O$: so signals I and O same type (units m) Flow F is volume moving at rate : units $\mathrm{m}^{3} / \mathrm{s}$ p77 RJM 03/09/15

Analogous Systems

Often same model can apply to two different system types Water system
water flows thru pipe as pressure difference across pipe pipe has resistance (affected by its size): restricts flow water flows into tank; means height of water increases speed at which height rises affected by tank's capacity
Electronic system
current flows thru resistor, as voltage difference across it resistor has resistance - which resists current flow current flows into capacitor; so voltage across it increases speed of voltage rises affected by capacitor's capacitance
p78 RJM 03/09/15
SE1CY15 Feedback - Part B
Prof Richard Mitchell 2015

Resistor-Capacitor System

Voltage across Resistor, E-V, determines I
I into capacitor causes V to increase

$$
N B I=\frac{E-V}{R}
$$

so Res block is $\frac{1}{R}$
Final, Steady value, when $V=E$, then $I=0$
E and V measured in volts V, I measured in amps A
p79 RJM 03/09/15
SE1CY15 Feedback - Part B
O Prof Richard Mitchell 2015 very

On Integrators and Final Value

In the robot example with P + I control, Actual = Desired Because, Actual constant if output of controller constant Which means input to controller is 0 , ie Desired - Actual $=0$

We argued, V finally becomes E, which (as Cap is integrator) requires its input I to be 0 - which happens when $E-V=0$

Consider the Inertia

Net Force $=$ that due to Current - that due to Friction (F^{*} O) Net Force $=$ mass * acceleration (Newton's $2^{\text {nd }}$ Law) Acceleration is change in (differential of), velocity We want velocity, so we integrate for O

Steady velocity is when input to integrator is zero Which is when $v^{*} k=F * O$... So $O=v^{*} k / F$
p84RJM 03/09/15 SE1CY15 - Feedback - Part B
© Prof Richard Mitchell 2015

Rotational Movement

In the above example, the motor moves in straight line Its position (units m) changes, it moves with a given velocity (m / s)
It has mass (kg), it accelerates (ms^{-2}), due to force (N)
Can also have motor which rotates with equivalent concepts

Linear Motion	Units	Rotational	Units
Position	m	Angular Position	radians (rads)
Velocity	$\mathrm{m} \mathrm{s}^{-1}$	Angular Velocity	$\mathrm{rads} \mathrm{s}^{-1}$
Acceleration	$\mathrm{m} \mathrm{s}^{-2}$	Angular Acceleration	$\mathrm{rads} \mathrm{s}^{-2}$
Force	N	Torque	N m
Mass	kg	Moment of Inertia	$\mathrm{kg} \mathrm{m}^{2}$

p85 RJM 05/01/15	SE1CC11 - Feedback - Part B O Dr Richard Mitchell 2015

How we set motor speed by computer

Computer outputs only two values, high and low
So how get variable speeds?
Answer we use square waves (but with variable mark/space ratio)

Signal changes rapidly ..
But average value constant - for given mark/space
Send to motor, which turns at the rate set by the average value. Called Pulse Width Modulation

Permanent Magnet Motor

v applied to armature circuit: motor turns: e_{b} 'back emf' generated Difference between v and $e_{b} \rightarrow V$ across $R \rightarrow$ current, i
$i \rightarrow$ torque $T\left(=K^{\star} i\right) \rightarrow$ angular velocity O (note inertia/friction)
$O \rightarrow e_{b}\left(=B^{\star} O\right)$
Slightly more complicated model ..
p87 RJM 03/09/15
SE1CY15 - Feedback - Part B
© Prof Richard Mitchell 2015
\qquad
\qquad Syberetics

Rotary Motion

Current generates input Torque $=$ MoI * angular acceleration Angular Acceleration is differential of angular velocity

Steady angular velocity is when input to integrator is zero
Which is when $v^{*} k=F * O$... So $O=v^{*} k / F$
p86 RJM 03/09/15
SE1CY15 - Feedback - Part B
© Prof Richard Mitchell 2015 Cry

So Full Block Diagram is

Find constant angular velocity .. where $\frac{d O}{d t}=0$
$T=(v-O \star B) * \frac{1}{R} * K=F * O \quad v * \frac{K}{R}=F * O+O * B^{*} \frac{K}{R}$
$v^{*} K=O^{*}\left(F^{*} R+B^{*} K\right) \quad O=v^{*} \frac{K}{F^{*} R+B^{*} K}$

$$
\begin{array}{ll}
\text { p88 RJM 05/01/15 } & \begin{array}{l}
\text { SE1CC11 - Feedback - Part B } \\
\text { O Dr Richard Mitchell } 2015
\end{array}
\end{array}
$$

Measuring Speed

PWM sets nominal speed, but disturbances may slow iy
So somehow need to measure motor speed.
Can add extra hardware (eg encoders)... But PWM can help

Use back emf e_{b} proportional to speed Note resistor in circuit

Kirchhoff: $V_{p w m}+V_{R}=e_{b}$
At end of PWM cycle $v_{\text {pwm }}=0$, when $v_{R}=e_{b}$
So computer generating PWM measures v_{R} then
And so determines the speed
See http://www.reading.ac.uk/~shsmchlr/jscyber/demoPWM.html
SE1CY15 - Feedback - Part B RJM 03/09/15 SE1CYI5 - Feedback - Part B
O Prof Richard Mitchell 2015

What if output is motor position?

Position is integral of velocity, so ...

Some similarities with a water clock ..

Summary

This lecture has been about introducing dynamic systems We now have the concept of blocks with integrators

And have seen this applies to electronics (capacitors)
As well as motors and even water clocks
We have also worked out final values -
Where input to integrators are 0
What we need to do is to work out how systems reach the final value Where we can again use transfer functions and Forward/1-Loop Which we will do next term ...

