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In the third quarter of the course the topics are

Dynamic Feedback Systems Frequency Response

Use of MatLab Introduction to time domain analysis

These will continue to be assessed by computer based labs

The topics build on last terms lectures

In this lecture we start by reminding us of these topics.

11 : Systems - a reminder
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A BX

We analyse systems with inputs and outputs

Two blocks in series

A B
X CY

A CX*Y

X is Transfer Function (TF)

Combine, for single TF

bb = a*X  (or X *a)     or    = X
a

Feedback Systems
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O
D

I
C

E
P

O
D

I
A

β

X

F

We have considered two forms of feedback system

Have input I, output O, with disturbance D

General

Control System

Analyse with ‘forward over 1 minus loop’ rule for overall TF

Using Forward over 1 minus Loop
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D = 0, Forward = A
Loop = Aβ

I = 0, Forward, D..O = 1
Loop = Aβ

Hence by Principle 
of Superposition

O
D

I
A

β

X

F

O A = 
I 1 - Aβ

O 1 = 
D 1 - Aβ

A 1O = I + D
1 - Aβ 1 - Aβ

O
D

I
C

E
P

Forward is TF input to O no loop; Loop is TF round loop

Forward = CP
Loop = -CP

O C*P = 
I 1 + C*P

O 1 = 
D 1 + C*P

C*P 1O =  I +  D
1 + C*P 1 + C*P

High Loop Gain
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It is important for loop gain to be high (-ve or +ve)

1 1O  *I + 0*D = - *I
-β β



Aβ big so 1 - Aβ ~ -Aβ

O set by I and β

largely unaffected if A changes.

largely unaffected by D.

A 1O = I + D
1 - Aβ 1 - Aβ

C*P 1O = * I  + * D
1 + C*P 1 + C*P

CP big so 1 + CP ~ CP

CP 1O  *I + *D = I
CP CP



O set by I

largely unaffected if P changes.

largely unaffected by D.

Lecture 11 In Class Exercise

p6 RJM 08/12/15 SE1CY15 – Feedback – Part C
© Prof Richard Mitchell 2015

a) Find 1 minus Loop

b) Find O/I assuming D = 0

c) Find O/D assuming I = 0

d) Evaluate O if I = 10 and D = -5

e) Find O/I if A changed to 1000

Suppose 

A = 990 

β = -0.1

O
D

I
A

β

X

F

a) 1 - 990*-0.1 = 1 + 99 = 100
O 990b)  =  = 9.9
I 100
O 1c)  =  = 0.01
D 100

d) 99 - 0.05 = 98.95

O 1000e)  =  = 9.901
I 101
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Potential Divider

2 s
1 2

R= V
R  + R

s o
1

V  - VI = 
R

And Vo = I * R2

Vs Vo
1/R1

I
R2Block Diagram

Shows feedback!

2
o 21
s 2 12

1

1 R
V Forward RR = =  = 1V 1 - Loop R  + R1 - - R

R

VoVs 2
1 2

R
R  + R

So can model as

One of many electronic circuits that are feedback systems
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Potential Divider with load:
Now Vo = R2 * (I – IL), so

Vs Vo
1/R1

I
R2

IL

2
o 21L
s 2 12

1

1 R
V RRIf I  = 0,   =  = 1V R  + R1 - - R

R

o 2 1 2s
L 2 12

1

V -R R RIf V  = 0,   =  = -1I R  + R1 - - R
R

2 1 2o s L
2 1 2 1

R R RV  = V  - I
R  + R R  + R

By superposition:
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Operational Amplifier

A very big, ~105, so if Vo say in range -10 to +10V

Vi
+ - Vi

- = Vo/A ~ 0:    so  Vi
+ = Vi

-

To achieve this, we put feedback round them .. Such as

VOVi
+

A

Vi
-

Vo = A * ( Vi
+ - Vi

- )

Model : summer + block with gain A

Two inputs and one output

Also get feedback with operational amplifier (op amp) circuits
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Operational Amplifier + Pot Divider

o2 1 2I o
1 2 I 2

VR R  + RSo V  = V  or  = 
R  + R V R

Vi
- set by potential divider 

But Vi
- = Vi approximately:



o
2I

1 2
1 2

2 2
1 2

V A  = RV 1 - -A
R  + R

A R  + R      = R RA
R  + R

Block Diagram for complete analysis

VOVI A

Vi
-

2
1 2

R
R  + R

o 2
1 2

V *R
R  + R

http://www.reading.ac.uk/~shsmchlr/javascript/transfunc.html
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Put Some Values In

Suppose R1 = 9 kΩ and R2 = 1 kΩ

By approximate analysis


oI o
I

V1k 10kSo V  = V  or  =  = 10
9k 1k V 1k





5 5 5
o

55I

V 10 10 10 =  =  =  = 9.999 1011kV 1 + 100001 + 101 - -10
109k 1k

For full analysis, assuming A is 105

Is Aβ system: β = -0.1 : O/I  ~ -1/ β = 10 : |1-A β| = 10001 > 1

o 2
1 2

V *R
R  + R

Blocks which Integrate
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V (voltage)

V I
1/R

I V
R

V = I * RI = V * 1/R

When we model a resistor, we use V = I * R or I = V/R

Output is a constant proportional to input

But, when I flows into a capacitor, the voltage V across it rises

V = V + amount due to I

V (voltage)

V = 1/C * Integral I I V


1
C
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RC Circuit
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VCE

I

R
Voltage input, E, from battery. 

Output V, across capacitor


E-V 1 I =  and  V = I dt
R C

E V
R

E - V I

1
C

If V = 0 initially, it will then rise as I flows.

When will it stop rising? When input to integrator is 0.

That is when I = 0, which is when E-V = 0 or V = E

This is its STEADY STATE value

Differentiator
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We note that a capacitor is modelled by an integrator

V = 1/C * Integral I

LI

VI dL
dt

Another electronic component is an inductor

So a block diagram is

dt
dI L V 

Point to note, we may need to integrate or to differentiate.

Also need Integrators for Motors
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Voltage applied – means current flows

Generates torque making motor turn

Frictional torque opposes motion

NetTorque = MoI * angular acceleration

Integrate this to get angular velocity

Torque O = angular 
velocity

F

∫

dO
dt1

J
k

v

Frictional Torque

O = speed

v

For Motor
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Torque O = angular 
velocity

F

∫

dO
dt1

J
k

v

Frictional Torque

dO = 0 means v*k - F*O = 0
dt

v*kHence O =  
F

For steady state: 

Two Key Questions
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We have found the steady state value of the output

V is steady state when V = the constant E

Speed O is steady state when O = v*k/F  constants

This is true if the system input (E or v) is constant (after t=0) 

What if it isn’t?

Also … if O = 0 at time 0, 

How does O get to its steady value? 
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Summary

In this lecture have reminded ourselves of

Block Diagrams Feedback Systems : Forward / 1 – Loop

Importance of High Loop Gain

We have also looked at electronic circuits with feedback

The potential divider and op-amps

We have also considered blocks with integrators / differentiators

We can work out steady values for constant inputs

And posed two questions

Next week we address the first .. Assuming inputs are sinusoids

And start using complex numbers which actually make it easier …
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12:  Sinusoids and Feedback

Last week we reminded ourselves about feedback systems

And looked at some electronic and motor systems

We model these by simple blocks we combine

Some blocks have the form output = input * value

But some are integrators or differentiators.

We worked out the steady state  output if the input is a step

In this lecture we analyse systems where the input is a sinusoid

Now we will see how blocks can process sinusoids

And model integration/differentiation using √-1 = j

We will introduce in context of electronics, but applies elsewhere
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When Signals are Sinusoids
f is frequency

ω is angular f

K is amplitude

ωt is an angle

t

-K

K
1/2f = π/ω

1/f = 2π/ω1/4f

ω = 2 π f
K sin (ωt)

If one signal in system is a sinusoid, all others are sinusoids of same
angular frequency with different amplitudes + may be phase shifted

Applies to all linear systems – found easily using complex numbers

π
2Note that cos is a shifted sin :  ± cos(ωt) = sin(ωt ± )
q2 2 -1
pAlso p sin (ωt) + q cos (ωt) = p  + q sin (ωt + tan )

The angle a in sin (ωt + a) is termed a phase shift
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Consider Pure Resistive System

Suppose R1 = 1 kΩ and R2 = 9 kΩ

Also, suppose Vs = 5 sin(7t)

2o s
1 2

R 9V  = V  =  5 sin(7t) = 4.5 sin(7t)
R  + R 10

s
1 2

V 5 sin(7t)I =  =   = 0.0005 sin(7t)
R  + R 10k

All 3 signals, same frequency, different amplitude, no phase shift

http://www.reading.ac.uk/~shsmchlr/javascript/SinAndRC.html

Sinusoidal Currents into R and/or C
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VI I = sin(40t)  
V = 5 sin(40t) 

VI


1
C

π
2

1V =  sin(40t) dt 
0.01

1   = - cos(40t)
0.01 * 40

   = -2.5 cos(40t)

   = 2.5 sin(40t - )



2 2 -1 -2.5
5

V = 5 sin(40t) - 2.5 cos(40t) 

   = 5 +2.5 sin(40t + tan ( ))

   = 5.59 sin(40t - 0.464)

VI 1R+
C 

V = V across R + V across C

In Class Exercise
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LI

dIFind V = I R + L  as phase shifted sin
dt

Suppose I = sin(40t), L = 0.2H and R = 6Ω  

V = 6sin(40t) + 0.2*40*cos(40t)
   = 6 sin(40t) + 8 cos(40t)

2 2 -1 8
6V = 6  + 8  sin(40t + tan )

V = 10 sin(40t + 0.927)
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These illustrate a Key General Point
For any linear system, under steady state conditions,

If input is K1 sin(ωt), output is K2 sin(ωt + )

Sinusoid, same ang freq, diff amplitude and phase shifted

For block diagram analysis, need blocks which can both change 
amplitude and do a phase shift (ie angle shift) …

We need numbers which have size and angle ...
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Complex Numbers Give Size and Angle
z = a + j * b      a is real part;  b is imaginary part;  j = √-1

Re(z)

Im(z)

z = a + j b Plot on 2D graph, 
the Argand plane

Same point also defined 
by distance from 0,0 and 
angle from real axis

Distance r is modulus

Angle  is argumentRe(z)

Im(z)
b z = a + j b



r

a
2 2z  = r = a  + b     

 
-1 bz =  = tan

a

Two Points to Note
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Re(z)

Im(z)

a

z = a = a 0

A ‘normal’ number is a special case 
of a complex number

A point on ‘real’ axis

Value = distance from 0, angle 0

a + j bz = 
c + j d

2 2

2 2
a  +  bz  = 
c  +  d

         
-1 -1b dz = tan  - tan

a c

1
2

1
1 2

2

zFor systems often have z = 
z

zmodulus and argument easy : z  =  and z = z  - z
z

  
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Integration and Complex Numbers


1Consider :

j  

2 2

2 2
1 1  +  0 1 =  = 

j 0  +  



       
   

-1 -1 -11 0 1 = tan  - tan  = -tan ( ) = -
j 1 0 2
1Has size  and angle -  

2




1So   
j

 

2
1 1But sin( t) = - cos( t) = sin( t - )   
 

1Change of size by   and change angle by -  
2




dSimilarly, j   
dt

 

So Model for Capacitor and Inductor
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VI


1
C

1 1V = I dt    model by    V = I * 
C jωC

VI


1

j C
Consistent with 
complex impedance 

1Z = 
j C

dI πInductor: V = L  = ωL cos(ωt) = ωL sin(ωt + )
dt 2

π
2Model by jωL = ωL

LI

VI
jωL

Z = jωL

VI dL
dt

Hence for Block Diagrams
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VI


1

j C

VI
R or

IV 1
R

Resistor

Capacitor VI
jωL

For any System, where I = sin(ωt), we model it by a complex 
transfer function, H(jω), and readily determine O …

OI
H(jω) O = H(jω)  sin(ωt + H(jω) )

Inductor

And then

Argand Plot for R, C and R + C
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Re(z)

Im(z)
z = R = R 0

R

Re(z)

Im(z)

1-
ωC


1 1 1 πz = -j  =  = -
ωC jωC ωC 2

Re(z)

Im(z)

1-
ωC

 

1z = R-j  
ωC

   = z

R


If I is sin(ωt), find V across component(s)

V = R sin(ωt)


 2
1V =  sin( t- )
C

 



 
 
 

-1
22 1

ωC

V = z  sin(ωt + )
1 1   = sin ωt-tan

ωCR
R +
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With Some Values

p31 RJM 08/12/15 SE1CY15 – Feedback – Part C
© Prof Richard Mitchell 2015

Earlier example,  I = sin(40t),  R = 5Ω, C = 0.01F,  1/ωC = 2.5

So V = 5.59 sin(40t - 0.464)

Re(z)
Im(z)

-2.5 z = 5 - j2.5

5

2 2 -1 -2.5z = 5 - j2.5  = 5 +2.5  tan  = 5.59 -0.464
5

 

VI
464.059.5 

In Lecture Exercise
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LI I = sin(40t), L = 0.2H and R = 6Ω  

Hence V = 10 sin(40t + 0.927)

Re(z)

Im(z)
8

z = 6 + j8  = 10 0.927

6

π
2jωL = j*40*0.2 = j8 = 8

Do Argand plot for this find complex 
transfer functions and hence determine V

Transfer Function for RC Circuit
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






o
s

1Z for resistor = R; for capacitor = 
j C

1
j CV 1Pot Divider =  = 1V j CR + 1R +

j C

o
s

1 1*
R j CV Forward 1So  = =  = 1 1V 1 - Loop j CR + 11 - - *

R j C






Or using block diagrams
Vs VoI


1

j C
1
R
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And So
-1

2 2 2
1 1 1=    = 0 - tan CR

1 +j CR 1 + j CR1 + C R


 



o
s

V 1 = 
V 1 + j CR

Suppose R = 1kΩ, C = 400 μF and  Vs = 5 sin(7t)

-11 1 1=  = 0.336 :  = - tan 2.8 = -1.23rad
1 +j2.8 1 + j2.81 + 7.84



oHence  V  = 5 * 0.336 sin(7t - 1.23) = 1.68 sin(7t - 1.23)

http://www.reading.ac.uk/~shsmchlr/javascript/SinAndRC.html

o
-6 3 2-6+3s

V 1 1 1 =  =  = 
V 1 + j2.81 + j7 * 400 *10 *1 *10 1 + j28 *10
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In terms of General Impedances

Z

Z Vs Vo
1/Z1

I
Z2

2
o 21
s 2 12

1

1 Z
V Forward ZZSo  = =  = 1V 1 - Loop Z  + Z1 - - Z

Z

s 1 2
-1o 6

8s
o

e.g If V  = 10sin(3t), Z  = j 2 = j6 and Z  = 8
V 8 8 =  = -tan  = 0.8 -0.644
V 8 + j6 64 + 36
Hence V  = 10*0.8sin(3t - 0.644) = 8 sin(3t - 0.644)



 
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Summary
In this lecture : systems where its signals are sinusoids

All same frequency

May have different amplitude – may be phase shifted

Amplitude and Phase shift found using complex numbers

Key point – use complex numbers to model calculus

We process by finding their modulus and argument

Shown working on electronics

Next week we develop this further, 

looking at other systems, with the same form of model
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13 : Modelling Other Systems

Last week we saw how to model circuits

Including, as signals were sinusoids, how to represent integrators

Hence using complex numbers

TF(j )

 

If I = sin( t)
O = TF sin( t + TF)

This week we develop this further and show

that the concept applies to other (non electronic) systems

First a reminder of the RC circuit from last week
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RC Circuit Example


1
C 

1
j C






o
s

1 1*
R j CV Forward 1So  = =  = 1 1V 1 - Loop j CR + 11 - - *

R j C

Vs Vo
1/R

I


1

j C

Vs Vo
1/R

I


1
C
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v applied to armature circuit   

→ current i

→ force to make motor move

→ motor moves, output velocity O

→ friction (which depends on velocity) opposes  motion   

O
Armature Inertia

Force

Friction

v

O = speed

v

These concepts are not just applicable to electronics

Motor
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Incorporating the Inertia

As v*k - F * O = mass * acceleration

Net Force = that due to Current (= v*k) – that due to Friction (F * O) 

Net Force = mass * acceleration (Newton’s 2nd Law)

Acceleration is change in (differential of), velocity

We want velocity, so we integrate acceleration for O

Force
O

F

∫

dO
dt1

m
k

v

dO net force v*k - F*Oacceleration =  =  = 
dt mass m
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Forward over 1 minus Loop

So, if v is 4 sin(9t), k = 1 N/v, m = 0.2 kg, F = 0.1N/m    (note units)

2 2
1 1 =  = 0.55

j1.8 + 0.1 1.8 +0.1
 -11 1.8 = -tan  = -1.52

j1.8 + 0.1 0.1

So, O = 2.2 sin(9t - 1.52)

Replace ∫ by 1/jωForce
O

F

dO
dt1

m
k

v


1

j 




1 1k * *
m jO k =  = 1 1v jm  + F1 - -F * *  

m j

O 1 1 =  = 
v j0.2*9 + 0.1 j1.8 + 0.1

Rotational Movement
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In the above example, the motor moves in straight line

Its position (units m) changes, it moves with a given velocity (m/s)

It has mass (kg), it accelerates (ms-2), due to force (N)

If the motor rotates, its angular position (units rad) changes

Have angular velocity (rad/s), angular acceleration (rad s-2), 

Due to torque (Nm), mass has moment of inertia J  (kgm2)

Torque
O

F

dO
dtk

v


1

jJ
1
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So

So, if I is 4 sin(9t), k = 1 Nm/v, J = 0.2 kg m2, F = 0.1 Nm per rad/s

2 2
1 1 =  = 0.55

j1.8 + 0.1 1.8  + 0.1
 -11 1.8 = -tan  = -1.52

j1.8 + 0.1 0.1

So, O = 2.2 sin(9t - 1.52)

Torque
O

F

dO
dtk

v


1

jJ
1






1 1k * *
J jO k =  = 1 1v jJ  + F1 - -F * *  

J j

O 1 1 =  = 
v j0.2*9 + 0.1 j1.8 + 0.1
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Permanent Magnet Motor

v applied to armature circuit: motor turns eb ‘back emf’ generated

Difference between v and eb → V across R → current, i

i → torque T (= K*i) → angular velocity O (note inertia/friction) 

O → eb (= B*O)

Slightly more complicated model ..

O
Armature

v - eb

Inertia 
Friction

T

Back emf

v

eb
ang. vel

v
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Full Block Diagram

1/R

v - eb T

B

v

eb

O

F

dO
dt1

J
K

i


1

j

1 1 1
jωR J

1 1 1 1 1
jω jωR J J

*K* *O  = 
v 1 - -B* *K* *  - -F* *

Use Forward over 1 - Loops
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Simplify 
1 1 1

jωR J
1 1 1 1 1

jω jωR J J

*K* *O  = 
v 1 - -B* *K* *  - -F* *

K
jωRJ

BK F
jωRJ jωJ

O  = 
v 1 +   + 

O K = 
v jωRJ + BK  + FR

This is in same form as 
in previous examples

O K = 
v a + jωb

So if have values for K, R, J, B and know v, can work out O

j RJMultiply by 
j RJ


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Lecture 13 In Class Exercise

O K = 
v jωRJ + BK  + FR

For motor

Suppose K = 0.1, R = 1k, J = 0.05, F = 0.01, B = 0.1 and v = 10sin(0.1t)

What is O? 
O 0.1 = 
v j0.1*1000*0.05 + 0.1*0.1  + 0.01*1000

0.1= 
j5 +  10.01

O 0.1 =  = 0.0089
v 25+100.2001

-1 5
10.01

O  = tan  = -0.46 rad
v



v = 0.089 sin(0.1t - 0.46)
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Mechanical Example
Wall

Spring, k

Dashpot, F

Force, f

Position, xForce f applied to 
spring attached to wall

‘Dashpot’ represents 
friction opposing motion

When spring compressed by x, force k*x opposes (Hooke’s Law)

Frictional force = F * differential of x also opposes
1 dAs   ,   So   j . Hence dashpot force is F*j * x

j dt
 


  

 Hence f = k*x + F*j * x = (k + j F) x


x 1Hence  = 
f k + j F
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Standard Model

O 1 = 
I jmω + F

O K = 
v jωRJ + BK  + FR

o
s

V 1 = 
V 1 + j CR

For RC circuit First motor Perm. magnet motor

For convenience, it is useful to have a standard model
K

1+jωT

For RC circuit, already there : K = 1 and T = RC

O 1 = 
I jmω + F

1/F    = 
1 + jmω/F

For first motor

K
BK  + FR

RJ
BK  + FR

O  = 
v 1 + jω

For perm. magnet motor


x 1 = 
f k + j F

Spring Sys



1
k

F
k

x  = 
f 1 + j

For Spring Sys
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Block Diagram For This Form 

1 1 KK * *
T jω jωTO K =   =  = 1 1 1I 1 + jωT1 - - * 1 + 
T jω jωT

Using 
Forward over 
1-loop

So System reduces to

O
dO
dt

1
T

1
jω

I X
K

K
1+jωT

http://www.reading.ac.uk/~shsmchlr/javascript/SysAndSin.html
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O K = 
v jωRJ + BK  + FR

O 0.1 0.1 1 =  =  = 
v jω100*0.004 + 0.09  + 0.01 jω0.4+0.1 1+jω4

1
jω

1
4

Ov
1

Permanent Magnet Motor in this form

Let K = 0.1, B = 0.9, R = 100, F = 0.0001, J = 0.004
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Connect Motor in Control System

1 1 99*1* *
4 jω jω4O 9 0.9 =  =  =  = 1 1 1 1 1 9I 10 + jω4 1 + jω0.41 - - * - -9*1* * 1 +  + 

4 jω 4 jω jω4 jω4

1
jω

1
4

OI X
MotorController

19

Still in standard form. 

Key point : K and T of original motor changed

Use forward  over 1 minus each loop
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Or Can Simplify First 

But motor is


1

1 + j 4 

19*
1 + jω4 O 9 9 0.9 =  =  =  = 1I 1 + jω4 + 9 10 + jω4 1 + jω0.41 + 9*  
1 + jω4 

1
1 + jω4

OI X
MotorController

9

Same answer. Same form

1
jω

1
4

OI X
MotorController

19
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Key Point to Note

2 2
O K = 
I 1 + T

  -1 -1 -1O = tan 0 - tan T = - tan T
I

Modulus of 
transfer function

if I = sin(ωt)
   



-1
2 2

KO = sin( t + )    where  = -tan ( T)
1+ T

argument of 
transfer function

If interested, two slides after lecture summary confirm this : 
Also shows that complex numbers makes it easier

K
1+jωT
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Summary
In this lecture we have further investigated system models

We assume the input is a sinusoid and model integration by 1/jω

For the RC circuits and the motors the same form of model found

When we put feedback round it, the same form of model appears

Can find output using modulus and argument of this

Later we develop this by considering what happens when ω changes

Next week : how to model systems when inputs are not sinusoids…

K
1+jωT
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Confirmation – if interested 
    



-1
2 2

KI = sin( t);  O = sin( t - ) where  = tan ( T)
1+ T

 
2 2 2 2

1 ωTcos( ) =   sin( ) = -
1 + ω T 1 + ω T

1



2 21 + ω T

 
  
 2 2 2 2 2 2

K 1 ωTO = sin(ωt)  - cos(ωt)
1 + ω T 1 + ω T 1 + ω T

 2 2
KO = sin(ωt) - ωTcos(ωt)

1 + ω T

NB sin (A - B) = sin(A) cos(B) - cos(A) sin(B)

     So sin ( t- ) = sin( t) cos( ) - cos( t) sin( )
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Concluded

 
2 2

K sin(ωt) - ωTcos(ωt)= 
1 + ω T

 2 2
KK*sin(ωt) - sin(ωt) - ωTcos(ωt)

dO K*I - O 1 + ω T= =
dt T T

2 2
2 2

Kω T sin(ωt) + KωTcos(ωt)= 
T(1 + ω T )

2 2 -1 1
ω ω

2 2 2 2
Kω T cos(ωt) + KωT sin(ωt) -KωTcos(ωt) + Ksin(ωt)O =  = 

T(1 + ω T ) (1 + ω T )

integrate this to get O

O
dO
dt1

T
I X

∫K

Yes - complex numbers easier
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Lecture 14 - Frequency Response
We have also analysed systems where the input is a sinusoid

For this we use 1/jω for ∫ 

As a result the transfer function is a complex number

This has modulus and argument

Which can represent gain and phase shift of system

Hence, if we know the input sinusoid we can find its output

Also useful to see how gain and phase vary with frequency

Today we plot this variation –

Using one graph, then two related graphs

This is very useful for analysing systems

First Order Systems - Reminder
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I X O
K

dO
dt1

T
1

j

1 1K
T jO  = 1 1I 1 - -

T j





O K = 
I 1 + j T

2 2
O K = 
I 1 + T

  -1 -1 -1O = tan 0 - tan T = - tan T
I

Modulus of 
transfer function

if I = K1 * sin(ωt)

-1
1 2 2

KO = K  * sin( t + )    where  = -tan ( T)
1+ T

   
 argument of 

transfer function
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Input, K1 sin(t)   Output K2 sin(t+)

Higher freq : smaller K2, larger phase shift -

More useful, plot graphs showing how gain and phase vary with ω

In fact we see how the transfer function varies with ω
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Transfer Function at different ω

Re(z)

Im(z)

-30/37

5/37

-15 5But if  = 1,  System  = - tan 2    or 1-j2
1+j2 5

 

Re(z)

Im(z)

 = -tan-16

r = 5/√37

-1

K 5For System  if K = 5, T = 2,  = 3,  TF is 
1+j T 1+j6

5 5 30      TF  = -tan 6       or       -j
37 3737






Can Plot on Argand Diagram … in Cartesian or Polar form

MatLab Calculations
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>> K = 5; T = 0.2; w = 1;

>> tf = K/(1+j*w*T) % find TF at w = 1

tf = 4.8077 - 0.9615i

Then use real(tf), imag(tf)   or     abs(tf), angle(tf)

We need to make such calculations over large range ... Say 0.1 .. 1000

>> tf = K./(1+j*[0.1, 1, 10, 100, 1000]*T)    %note ./ to get TF as vector

tf = 4.9980 - 0.1000i   4.8077 - 0.9615i   1.0000 - 2.0000i 

0.0125 - 0.2494i   0.0001 - 0.0250i 

>> abs(tf)      gives 4.9990    4.9029    2.2361    0.2497    0.0250

>> angle (tf)  gives -0.0200   -0.1974   -1.1071   -1.5208   -1.5658
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MatLab can plot for different ω
>> K = 5; T = 0.2;
>> w = [1,2,3,4,5,6,7]; % some w
>> tf = K./(1+j*w*T) % calc TF at each.
tf =

4.8077 - 0.9615i   4.3103 - 1.7241i 
3.6765 - 2.2059i   3.0488 - 2.4390i
2.5000 - 2.5000i   2.0492 - 2.4590i
1.6892 - 2.3649i -1 0 1 2 3 4 5-3

-2

-1

0

1

>> plot(real(tf), imag(tf), '*', [-1 5], [0 0], [0 0],[-3 1]);  
% plot *’s and axes

Note *’s get closer : linearly spaced ω not best : 
So need to plot over larger ω range .. And not linearly spaced
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Continuous Plot in MATLAB
Better if ω logarithmically not linearly spaced, and join dots

Use logspace(a, b) : generates 50 values between 10a and 10b.

>> w = logspace(-1,2); % ω from 0.1 to 100 : ok this sys
>> tf = K./(1+j*w*T); % trans func at all ω
>> plot(real(tf),imag(tf), … % plot ‘locus’

[-0.5,K+0.5], [0 0],[0, 0], [-K/2-0.5, 0.5]); 

Shows how gain and phase vary 
with frequency on one plot –
System’s Frequency Response
NB this is a semi-circle

radius K/2, origin K/2,0
0 1 3-3

-2

-1

0

5

14 – In Class Exercise
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Vs Vo
1/R

I


1

j C


o
s

V 1 = 
V 1 + j CR Sketch its polar plot.

0 0.3 0.6-0.6

-0.4

-0.2

0

1

At very low ω, gain is 1
So is semi-circle
Radius 0.5, org 0.5, 0

Two Plots
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The single plot shows how gain and phase vary together

Can be of interest to see how gain and phase each vary with ω

But saw polar plot calculated from ω = 0 to 100 or even 1000 rad/s

Information ω = 0.1 : 1 just as important as from 1 :10, 10 : 100

So the ω axis is plotted using logarithmic scales: 

1001 200.1 20.2 10 30

As gain varies a lot from 10..0.05 also use logarithmic gain scale

Phase varies from 0 to -90O … so use linear scale

So plot log(gain) vs log(ω) and phase vs log(ω) 
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Bode Plot   for 5/(1+jω 0.2)
Given have already calculated w and tf ...

>> subplot(2,1,1); loglog(w,abs(tf));

>> subplot(2,1,2); semilogx(w, angle(tf)*180/pi);

10 -1 100 10 1 10 20.1

1

5

10 -1 10 0 10 1 10 2
-90

-45

0

Plots log Gain v log ω

Plots Phase v log ω
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Approximate Behaviour
-1

2 2
K KRecall:   TF =  : Gain = ;  Phase = -tan (ωT)

1 + jωT 1+ω T

Suppose T very small ( << 1), so treat 1 + jωT as 1   
K     TF = , so Gain =  K;  Phase = 0
1
  

 
O

Suppose T very big ( >> 1), so approximate 1 + j T as j T
K K     TF =  , so Gain =  ;  Phase =  -90

j T T

These define behaviour at very low and very high freq

Actual behaviour in between these, eg

OK K KAt ωT = 1  TF =  : Gain = = ;  Phase = -45
1 + j 1+1 2
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Plotting Approximate Behaviour
At Low Freqs, approximate Gain = K and Phase = 0

Plot log(Gain) vs log( )   log (K) is constant

          
       
       

-1 -1K K K Klog  = log *ω = log  + log ω = log  - log ω
ωT T T T

So Plot horizontal straight line : its slope is 0

So Plot is const – log(ω) plotted vs log(ω)

Like plotting c - x  vs x  ie straight line slope -1

We call these high and low freq lines asymptotes

OKAt High Freqs, Gain = and Phase = -90
T
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Asymptotic Plot (actual superimposed)

10 -1 10 0 10 1 10 20.1

1

5

10 -1 10 0 10 1 10 2
-90

-45

0

Actual plots start on low freq asymptotes and end on high f lines

Given TF, easy to sketch asymptotes and then add actual

G = K and K/ωT

line slopes 0 and  -1

Meet at ωT = 1 : ω = 5

P = 0 and P = -90O

Change at ω = 5

  
K 5 25Asymptotic TF : K and   ie 5  and  = 

j T j 0.2 j
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Freq Response of Motor in Feedback

19*
1 + jω4 O 9 9 0.9 =  =  =  = 1I 1 + jω4 + 9 10 + jω4 1 + jω0.41 + 9*  
1 + jω4 

1
1 + jω4

OI X
MotorController

9

With feedback, corner freq moved from 0.25 to  2.5 rad/s

1 0.9Let's plot superimposed   and  
1 + jω4 1 + jω0.4
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Graphs ... Asymptotes and actual

10-2 10-1 100 101 10210-3

10-1
100

10-2 10-1 100 101 102
-90

-45

0

With feedback, Gain higher over more frequencies

Phase near 0 over more frequencies

10-2 10-1 100 101 10210-3

10-1
100

10-2 10-1 100 101 102
-90

-45

0

0.25 2.5
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Phase Lag System

Treat like Potential Divider …

(Vs – Vo) /  R1 determines current

Current through R2 + C sets Vo

 
  

2
2

j CR  + 1 j  + 11R  +  =   =  
j C j C j 0.05

sV oV

1=60R

2=20R

=50C mF

I

Vs Vo
1/60

I 


j 1
j 0.05


  
   



 

  
o
s

j 11 *
60 j 0.05 j 1 j 1V  =  =  = j 11V j 3 + j 1 j 4 11 + *  
60 j 0.05 

p74 RJM 08/12/15 SE1CY15 – Feedback – Part D
© Prof Richard Mitchell 2015

Continued
o
s

jω + 1V  = 
V jω4 + 1



o
s

So ω  0.25  
V 1  = 1
V 1
Gain = 1
Phase = 0

We can plot this by generating asymptotes as before

For each 1+jωT, approx as  1 before ω = 1/T, and jωT after

So consider what happens before ¼, from ¼ to 1, then after 1

o
s

0.25 < ω < 1  
V 1   
V jω4

1Gain = 
ω4

Phase = -90

o
s

       ω > 1
jωV 1   = 

V jω4 4
Gain = 0.25
Phase = 0

Two corner freqs : ¼ and 1 rad/s
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Bode and Polar Plots

10-2 10-1 100 101 102
0.25

0.5
1

10-2 10-1 100 101 102
-90
-45

0

0 0.2 0.4 0.6 0.8 1-0.4

-0.3

-0.2

-0.1

0

0.1

In mid freqs, around √(1*4) = 0.5 rad/s, phase is –ve, so Vo ‘lags’ Vs

Such a ‘phase lag’ circuit can be used for control

¼ 

o
s

V 1  = 1 0
V 1

 
1 1= -90

j 4 4 
 1 1 = 0

4 4


¼ 

Summary

In this lecture we consider plotting frequency response

That is, how does system transfer function vary with ω.

We first plotted these on one graph

Calculating gain/phase or real + j imag points and joining them

Then we plotted log(gain) vs log(ω) and phase vs log(ω)

Both the actual graphs and the asymptotes

Asymptotes useful for sketching such graphs

Saw that with phase lead circuit.

Next week we move to considering how system changes with time

We will do frequency response of second order systems later
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15 – Time Response of Systems

We modelled different dynamic systems which include integrators

We have determined their output

If the input is a step, the output is a constant value

- determined by when the input to the integrator is 0

If the input is a sinusoid, the output is also a sinusoid

- determined by modelling the system using complex numbers

This answered one of two questions posed

The other is how does the output get to its final value.

Strictly so far we have determined the steady state response

We now work towards how it gets there: the transient response
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Consider the RC Circuit
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VCE

I

R E V
E - V I

C
1



dt
dV

R
1

When E is connected at t = 0, in effect it is a step input

V will reach the final value of E (which is constant after t=0)

Final value means V not changing, ie dV/dt = 0

Clearly this is when I = 0, which is when E – V = 0, or V = E

dV 1 1 1From block diagram,  = I*  = (E - V) * *
dt C R C



SE1CY15 – Feedback – Part C

© Prof Richard Mitchell, 2015 14

Now consider a motor and general system
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Force
O

F

∫

dO
dt1

m
k

v

If v is step applied at t = 0

Oss when v * k – F * O = 0,

or O = v * k /F

From block diagram, 
dO 1 = *(v*k - F*O)
dt m

I OX
∫1

TK

dO
dt dO 1 I*K - O = *X = 

dt T T

I*K – Oss = 0  or Oss = I*K

We argue intuitively how O or V gets to steady state .. Use integrators
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If Put Constant Into An Integrator:

Or, if K smaller, and O is not 0 initially

At time t, O = (value of O at t = 0) + K * I * t

O∫I
K

dO
dt

O (slope K*I)

tt

K*I

t

I dO
dt

O (slope K*I)

tt

K*I

t

I dO
dt

If O is  block output
dO  must be block input
dt


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What if I series of constants?

Suppose K = 2 and at t = 0, O = 0,

I = 1 from 0..5s, 

I = -0.5 from 5..8s, 

and I thereafter = 0.25 

After 5s, 

O = 0 + 1*2*5 = 10 

After 8s, 

O = 10 + -0.5*2*3 = 7

After 10s, 

O = 7 + 0.25*2*2 = 8
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If Put Feedback Round Integrator

Initially O is 0, so X & dO/dt are big, so O rises much

X and dO/dt now smaller, so O rises but by less

X and dO/dt even smaller, so O rises by even less

Eventually O = I, so X = dO/dt = 0, and hence O is constant

O = 0 
at t=0; 
I is 1

I OX
∫1

TK

dO
dt

dO
dt
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Step Responses
Often we analyse systems as follows:

At time t = 0, output O = 0, input turned on

I goes 0 to value : is a ‘step’  (unit step if value = 1)

O moves smoothly from 0 to a final value

Called an exponential lag (it lags behind input)

Input I
Output O

time, t

O reaches a (constant) value – its steady state; 

How gets there is the (exponential) transient response
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Formalising The Response

X = I * K - O

 dO 1So  = K*I - O
dt T

At steady state, dO/dt = 0, that is K*I – O = 0

So steady state value of O is K * I = K if I is unit step

In Maths, you will learn to show transient response is –Ke-t/T

I OX
∫

1
TK

dO
dt

The complete response is O = K - Ke-t/T

dO ODone by solving  = -   (i.e. ignoring input I)
dt T



SE1CY15 – Feedback – Part C

© Prof Richard Mitchell, 2015 15

So for RC circuit
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VCE

I

R

dV E - V = 
dt R*C

dVSteady state found by solving  = 0
dt

dV VTransient found by solving  = -
dt R*C

So  complete response is V = E - E e-t/RC

So Vss = E

So Vt = -E e-t/RC
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Fundamental Point

 dO 1If system model  = K*I - O ; I = unit step; O at t= 0 is 0
dt T

Then O = K - Ke-t/T K

T

O

0.63*K

http://www.reading.ac.uk/~shsmchlr/javascript/SysAndStep.html

-1

-3

-5

At t = T, K - K e  = K * 0.63         (O is 63% of final value)

At t = 3T, K - K e = K * 0.950      (O is 5 % from final value)

At t = 5T, K - K e = K * 0.993      (O <1% from final value)

  -1 -3 -5e 0.37;   e 0.05;   e 0.007

p87 RJM 08/12/15 SE1CY15 – Feedback – Part C
© Prof Richard Mitchell 2015

If you are interested …

We have stated that I is a unit step, = constant for t>0

O(t) = K – K * e-t/T

 dO 1Also  = K*I - O
dt T

t
t tT
T T

- - -dO dK dK*e 1 K =  -  = 0 - - K*e  = e
dt dt dt T T

   
 
 

t t
T T- -1 1 KK*I - O  = K - K + K*e  = e

T T T

Hence expression for O is a solution to the diff eqn

This demonstrates that these are consistent
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Electronic Example

Vs Vo
1/R

I 1
C 

Suppose Vs is Step = 9V; R = 5kΩ and C = 20µF

 
o o3 6

dV 1= * 9 - V
dt 5 *10 *20 *10

 o o
dV 1= * 9 - V
dt 0.1

-t/0.1
oV  = 9 - 9 e

In standard form, so if Vo = 0 at t=0

9

0.1

Vo
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Lecture 15 - In Class Exercise

Derive an expression for dO/dt in standard form. 

Suppose I = step height 1 applied at t = 0 when O = 0: 

Sketch a graph of O versus t : label final value and time constant.

5

8

O

OI X
∫5 1

8

dO
dt

Final value 5, TC = 8, so

dO 5*I O = 
dt 8


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Effect of Feedback – to Step Input

System could be 
motor on its own: 

open loop

Suppose I = 1, K = 1 and T = 4s

4

1

0.63

t

In standard form, so can say:
Steady State value 1
Reaches 63% of 1 at 4s
Within 1% of 1 by 20s

I OX
∫1

TK

dO
dt

K*I - OdOModelled by  = 
dt T

1*1 - O 1 - OdO  =  = 
dt 4 4
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Now This Motor In Control System

Controller output = 9*(1-O), X = 9*(1-O) – O, so

Not in right form as O multiplied by 10: so divide by 10

O1 X
MotorController

19

dO
dt ∫1

4

 dO 1 9 - 9*O - O = * 9*(1 - O) - O  = 
dt 4 4

9 - 10*O= 
4

9
10
4

10

 - O Final value 0.9. ReachdO 0.9 - O =  =        
63% of this at t = 0.4sdt 0.4
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Open and Closed Loop Responses

dO 0.9-OClosed loop:  = 
dt 0.4

dO 1-OOpen loop:  = 
dt 4

Final value 1

Time Const 4

Final value 0.9

Time Const 0.4

See Frequency 
Response 
Lectures: 
same example : 
same 0.9 & 0.4

http://www.reading.ac.uk/~shsmchlr/javascript/SysAndStep.html
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Another Example - Motor

1.5

0.1

I

eb

O

0.01

dO
dt1

0.05
0.1 

  dO 1 = I - 0.1*O *0.15  - 0.01*O
dt 0.05

 dO 1 = I*0.15  - 0.025*O
dt 0.05

 dO 1 = I*0.6  - O
dt 2

Now in standard form, 
K = 0.6, T = 2 
so if I step

O(t) = 0.6 – 0.6 * e-t/2
1/0.025*
1/0.025
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Aβ Feedback System With Integrator

OI
A

β

X

F

∫

dO
dt

 dO 1For standard form, rejig so  = K*I - O
dt T

dO I = -A(-I - β O) = -Aβ(-  -  O) 
dt β

So K = -1/  and T = -1/A;  
Feedback gain  sets final value, loop gain A the speed

 dO  = A I + O
dt


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Some Example Responses

0.125 0.25 0.375 0.6250

0.63

1.26

2O

t

I = 1
a) A = 16,  = -0.5
b) A = 8,   = -0.5
c) A = 8,   = -1
Want final value &
t when 63% of it

A  Final Value t at 63% I/- 1/-A
a 16 -0.5 2 0.125 2 1/8
b 8 -0.5 2 0.25 2 1/4
c 8 -1 1 0.125 1 1/8
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Summary

We have investigated the step response of a first order system

Have seen steady state response – being a constant

And transient response – being an exponential

The time constant indicates the speed of response :

reaches 63% of final value at t = time constant

within 1% of final value at 5 * this value

We have seen that putting feedback round such systems, speeds 
up the response

Next week, we introduce the s-operator 

to simplify diagrams/analysis .. Be consistent with jω
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Lecture 11 - After Class Exercise

Find Vo if VI = 1V, OpAmp gain A = 1000, R1 = 80kΩ and R2 = 20kΩ.

Note, find the exact value, and compare with the approximate one.

By how much does Vo change, if A increases by 10% to 1100? 

Does the system have negative feedback?
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Lecture 12 – After Class Exercise

VoVs

L

R

I

If VL is the voltage across the inductor, I = VL/jωL.

As such, draw a block diagram of the circuit.

Hence work out the circuit transfer function.

What is VO if L = 0.5H, R = 20Ω and VS is 7 sin(8t)?
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Lecture 13 – After Class Exercise
v - eb T

0.1

v

eb

O

0.03

dO
dt

1
0.1

11

I


1

j

Motor

1
30

I
Controller

8

The above shows a permanent magnet motor in a control system

Use forward / (1 – loops) to find the transfer function O/I.

What is O if I is 9 sin (40 t)?


