SE1 CY1 5 Cybernetics and Circuits Feedback - Part C Prof Richard Mitchell

In the third quarter of the course the topics are Dynamic Feedback Systems Frequency Response
Use of MatLab Introduction to time domain analysis
These will continue to be assessed by computer based labs
The topics build on last terms lectures
In this lecture we start by reminding us of these topics.
p1 RJM 08/12/15
SE1CY15-Feedback - Part C © Prof Richard Mitchell 2015 Cry

Feedback Systems

We have considered two forms of feedback system
Have input I, output O, with disturbance D

General

Control System

Analyse with 'forward over 1 minus loop' rule for overall TF
Using Forward over 1 minus Loop

Forward is TF input to O no loop; Loop is TF round loop

$$
\begin{array}{lcc}
\begin{array}{l}
D=0, \text { Forward }=A \\
\text { Loop }=A \beta
\end{array} & \frac{O}{I}=\frac{A}{1-A \beta} & \begin{array}{l}
\text { Forward }=C P \\
\text { Loop }=-C P
\end{array} \\
I=0, \begin{array}{c}
\text { Forward, } D . . O=1 \\
\text { Loop }=A \beta
\end{array} & \frac{O}{D}=\frac{1}{1+C^{\star} P} \\
\begin{array}{l}
\text { Hence by Principle } \\
\text { of Superposition }
\end{array} O=\frac{A}{1-A \beta} I+\frac{1}{1-A \beta} D & O=\frac{O}{D}=\frac{1}{1+C^{\star} P}
\end{array}
$$

p3 RJM 08/12/15

High Loop Gain

It is important for loop gain to be high (-ve or +ve)

$$
\begin{array}{ll}
O=\frac{A}{1-A \beta} I+\frac{1}{1-A \beta} D & O=\frac{C^{\star} P}{1+C^{\star} P} \star I+\frac{1}{1+C^{\star} P} * D \\
A \beta \text { big so } 1-A \beta \sim-A \beta & C P \text { big so } 1+C P \sim C P \\
O \approx \frac{1}{-\beta} \star I+O^{\star} D=-\frac{1}{\beta} \star I & O \approx \frac{C P}{C P} \star I+\frac{1}{C P} \star D=I \\
O \text { set by } I \text { and } \beta & O \text { set by } I \\
\text { largely unaffected if } A \text { changes. } & \text { largely unaffected if } P \text { changes. } \\
\text { largely unaffected by } D . & \text { largely unaffected by } D .
\end{array}
$$

Lecture 11 In Class Exercise

Suppose $A=990$
$\beta=-0.1$
a) Find 1 minus Loop
b) Find O / I assuming $D=0$
c) Find O / D assuming $I=0$
d) Evaluate O if $I=10$ and $D=-5$
e) Find O / I if A changed to 1000
p6 RJM 08/12/15
SE1CY15-Feedback - Part C

Operational Amplifier

Also get feedback with operational amplifier (op amp) circuits
V_{i}
V
 Vo Two inputs and one output
$\left.V_{0}=A^{*}\left(V_{i}^{+}-V_{i}\right)^{-}\right)$
Model : summer + block with gain A

A very big, $\sim 10^{5}$, so if V_{0} say in range -10 to +10 V

$$
V_{i}^{+}-V_{i}^{-}=V_{0} / A \sim 0 \text { : so } V_{i}^{+}=V_{i}^{-}
$$

To achieve this, we put feedback round them .. Such as
p9 RJM 08/12/15
SE1CY15 - Feedback - Part C
© Prof Richard Mitchell 2015 vern

Operational Amplifier + Pot Divider

V_{i}^{-}set by potential divider
But $V_{i}^{-}=V_{i}$ approximately:
So $V_{I}=V_{0} \frac{R_{2}}{R_{1}+R_{2}}$ or $\frac{V_{0}}{V_{I}}=\frac{R_{1}+R_{2}}{R_{2}}$

Block Diagram for complete analysis

$$
\begin{aligned}
\frac{V_{0}}{V_{I}} & =\frac{A}{1--A \frac{R_{2}}{R_{1}+R_{2}}} \\
& \approx \frac{A}{A \frac{R_{2}}{R_{1}+R_{2}}}=\frac{R_{1}+R_{2}}{R_{2}}
\end{aligned}
$$

http://www.reading.ac.uk/~shsmchlr/javascript/transfunc.html p10 RJM 08/12/15 SE1CY15-Feedback - Part C © Prof Richard Mitchell 2015

Put Some Values In

Suppose $R_{1}=9 \mathrm{k} \Omega$ and $R_{2}=1 \mathrm{k} \Omega$
By approximate analysis
So $V_{I}=V_{0} \frac{1 k}{9 k+1 k}$ or $\frac{V_{0}}{V_{I}}=\frac{10 k}{1 k}=10$

For full analysis, assuming A is 10^{5}
$\frac{V_{0}}{V_{I}}=\frac{10^{5}}{1--10^{5} \frac{1 \mathrm{k}}{9 \mathrm{k}+1 \mathrm{k}}}=\frac{10^{5}}{1+10^{5} \frac{1}{10}}=\frac{10^{5}}{1+10000}=9.999 \approx 10$
Is $A \beta$ system: $\beta=-0.1: O / I \sim-1 / \beta=10:|1-A \beta|=10001>1$
p11 RJM 08/12/15
SE1CY15-Feedback-Part C

RC Circuit

Voltage input, E, from battery. Output V, across capacitor
$I=\frac{E-V}{R}$ and $V=\frac{1}{C} \int I d t$

If $V=0$ initially, it will then rise as I flows.
When will it stop rising? When input to integrator is 0 .
That is when $I=0$, which is when $E-V=0$ or $V=E$
This is its STEADY STATE value
p13 RJM 08/12/15 SE1CY15 - Feedback - Part C
© Prof Richard Mitchell 2015syenters

Differentiator

We note that a capacitor is modelled by an integrator

$$
V=1 / C * \text { Integral I }
$$

Another electronic component is an inductor

$$
V=L \frac{d I}{d t}
$$

So a block diagram is

Point to note, we may need to integrate or to differentiate.
p14 RJM 08/12/15 SE1CY15-Feedback - Part C
© Prof Richard Mitchell 2015

Two Key Questions

We have found the steady state value of the output
V is steady state when $V=$ the constant E
Speed O is steady state when $O=v^{\star} k / F$ constants
This is true if the system input (E or v) is constant (after $t=0$)
What if it isn't?
Also ... if $O=0$ at time 0 ,
How does O get to its steady value?

Summary

In this lecture have reminded ourselves of
Block Diagrams Feedback Systems: Forward/1-Loop Importance of High Loop Gain
We have also looked at electronic circuits with feedback The potential divider and op-amps
We have also considered blocks with integrators / differentiators We can work out steady values for constant inputs And posed two questions

Next week we address the first .. Assuming inputs are sinusoids And start using complex numbers which actually make it easier ..

12: Sinusoids and Feedback

Last week we reminded ourselves about feedback systems And looked at some electronic and motor systems We model these by simple blocks we combine Some blocks have the form output = input * value But some are integrators or differentiators.
We worked out the steady state output if the input is a step In this lecture we analyse systems where the input is a sinusoid

Now we will see how blocks can process sinusoids
And model integration/differentiation using $\sqrt{-1}=j$
We will introduce in context of electronics, but applies elsewhere
p19 RJM 08/12/15
SE1CY15 - Feedback - Part C
© Prof Richard Mitchell 2015 cyoutics

When Signals are Sinusoids

Note that \cos is a shifted $\sin : \pm \cos (\omega t)=\sin \left(\omega t \pm \frac{\pi}{2}\right)$
Also $p \sin (\omega t)+q \cos (\omega t)=\sqrt{p^{2}+q^{2}} \sin \left(\omega t+\tan ^{-1} \frac{q}{p}\right)$
The angle a in $\sin (\omega t+a)$ is termed a phase shift

If one signal in system is a sinusoid, all others are sinusoids of same angular frequency with different amplitudes + may be phase shifted Applies to all linear systems - found easily using complex numbers
$\begin{array}{ll}\text { p20 RJM 08/12/15 } & \begin{array}{l}\text { SE1CY15 - Feedback - Part } C \\ \text { O Prof Richard Mitchell } 2015\end{array}\end{array}$ Chen

Sinusoidal Currents into R and/or C

These illustrate a Key General Point

For any linear system, under steady state conditions,

$$
\text { If input is } K_{1} \sin (\omega t) \text {, output is } K_{2} \sin (\omega t+\phi)
$$

Sinusoid, same ang freq, diff amplitude and phase shifted

For block diagram analysis, need blocks which can both change amplitude and do a phase shift (ie angle shift) ...
We need numbers which have size and angle ...

Two Points to Note

$$
\begin{array}{cll}
\operatorname{Im}(z) & \begin{array}{l}
\text { A 'normal' number is a special case } \\
\text { of } a \text { complex number }
\end{array} \\
z=a=a<0 & \text { A point on 'real' axis } \\
& \text { Value }=\text { distance from } 0 \text {, angle } 0
\end{array}
$$

For systems often have $z=\frac{z_{1}}{z_{2}}$
modulus and argument easy: $\left|z_{\mid}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$ and $\angle z=\angle z_{1}-\angle z_{2}$

$$
z=\frac{a+j b}{c+j d} \quad|z|=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}} \quad \angle z=\tan ^{-1}\left(\frac{b}{a}\right)-\tan ^{-1}\left(\frac{d}{c}\right)
$$

$$
\begin{array}{ll}
\text { p26 RJM 08/12/15 } & \begin{array}{l}
\text { SE1CY15 - Feedback - Part C } \\
\text { @ Prof Richard Mitchell } 2015
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { SE1CY15 - Feedback - Part C } \\
& \text { © Prof Richard Mitchell } 2015
\end{aligned}
$$

Integration and Complex Numbers

So Model for Capacitor and Inductor

$$
\begin{aligned}
& \text { Consider } \frac{1}{\mathrm{j} \omega}: \quad\left|\begin{array}{l}
\left.\frac{1}{\mathrm{j} \omega} \right\rvert\,
\end{array}\right|=\frac{\sqrt{1^{2}+0^{2}}}{\sqrt{0^{2}+\omega^{2}}}=\frac{1}{\omega} \\
& \angle \frac{1}{\mathrm{j} \omega}=\tan ^{-1}\left(\frac{0}{1}\right)-\tan ^{-1}\left(\frac{1}{0}\right)=-\tan ^{-1}(\infty)=-\frac{\pi}{2}
\end{aligned} \text { Has size } \frac{1}{\omega} \text { and angle }-\frac{\pi}{2} .
$$

Hence for Block Diagrams

And then
For any System, where $I=\sin (\omega t)$, we model it by a complex transfer function, $\mathrm{H}(\mathrm{j} \omega)$, and readily determine O ...

Argand Plot for R, C and $R+C$

If I is $\sin (\omega t)$, find V across component(s)

$V=|z| \sin (\omega t+\phi)$
p30 RJM 08/12/15
SE1CY15 - Feedback - Part C
OProf Richard Mitchell 2015

With Some Values

Earlier example, $I=\sin (40 t), R=5 \Omega, C=0.01 \mathrm{~F}, 1 / \omega C=2.5$

p31 RJM 08/12/15
SE1CY15 - Feedback - Part C
SE1CY15 - Feedback - Part C
© Prof Richard Mitchell 2015

In Lecture Exercise

$I=\sin (40 t), L=0.2 H$ and $R=6 \Omega$
Do Argand plot for this find complex transfer functions and hence determine V

Transfer Function for RC Circuit

$$
\begin{aligned}
& Z \text { for resistor }=R \text {; for capacitor }=\frac{1}{j \omega C} \\
& \text { Pot Divider } \frac{V_{0}}{V_{S}}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega C R+1}
\end{aligned}
$$

Or using block diagrams

$$
\text { So } \frac{V_{0}}{V_{s}}=\frac{\text { Forward }}{1-\text { Loop }}=\frac{\frac{1}{R} \star \frac{1}{j \omega C}}{1--\frac{1}{R} \star \frac{1}{j \omega C}}=\frac{1}{j \omega C R+1}
$$

SE1CY15 - Feedback - Part C
O Prof Richard Mitchell 2015
© Prof Richard Mitchell 2015

And So

$\frac{V_{0}}{V_{s}}=\frac{1}{1+\mathrm{j} \omega C R}\left|\frac{1}{1+\mathrm{j} \omega C R}\right|=\frac{1}{\sqrt{1+\omega^{2} C^{2} R^{2}}} \angle \frac{1}{1+\mathrm{j} \omega C \mathrm{R}}=0-\tan ^{-1} \omega C R$
Suppose $R=1 k \Omega, C=400 \mu F$ and $V_{s}=5 \sin (7 t)$
$\frac{V_{0}}{V_{s}}=\frac{1}{1+j 7 * 400^{*} 10^{-6} * 1 * 10^{3}}=\frac{1}{1+j 28 * 10^{2-6+3}}=\frac{1}{1+j 2.8}$
$\left|\frac{1}{1+\mathrm{j} 2.8}\right|=\frac{1}{\sqrt{1+7.84}}=0.336: \angle \frac{1}{1+\mathrm{j} 2.8}=-\tan ^{-1} 2.8=-1.23 \mathrm{rad}$
Hence $V_{0}=5 * 0.336 \sin (7 t-1.23)=1.68 \sin (7 t-1.23)$
http://www.reading.ac.uk/~shsmchlr/javascript/sinAndRC. $h+m$ l
p34 RJM 08/12/15 SE1CY15 - Feedback - Part C © Prof Richard Mitchell 2015

In terms of General Impedances

e.g If $V_{s}=10 \sin (3 t), Z_{1}=j \omega 2=j 6$ and $Z_{2}=8$
$\frac{V_{0}}{V_{s}}=\frac{8}{8+j 6}=\left|\frac{8}{\sqrt{64+36}}\right|<-\tan ^{-1} \frac{6}{8}=0.8 \angle-0.644$
Hence $V_{0}=10 * 0.8 \sin (3 t-0.644)=8 \sin (3 t-0.644)$

Summary

In this lecture: systems where its signals are sinusoids All same frequency
May have different amplitude - may be phase shifted Amplitude and Phase shift found using complex numbers

Key point - use complex numbers to model calculus We process by finding their modulus and argument Shown working on electronics
Next week we develop this further,
looking at other systems, with the same form of model

13 : Modelling Other Systems

Last week we saw how to model circuits
Including, as signals were sinusoids, how to represent integrators Hence using complex numbers

This week we develop this further and show
that the concept applies to other (non electronic) systems
that the concept applies to other (non electronic
First a reminder of the RC circuit from last week

Motor

These concepts are not just applicable to electronics

\checkmark applied to armature circuit
\rightarrow current i
\rightarrow force to make motor move
\rightarrow motor moves, output velocity O
\rightarrow friction (which depends on velocity) opposes motion
P39 RJM 08/12/15 SE1CY15-Feedback - Part C
© Prof Richard Mitchell 2015

Incorporating the Inertia

Net Force $=$ that due to Current $\left(=v^{*} k\right)-$ that due to Friction ($F^{*} O$) Net Force $=$ mass ${ }^{*}$ acceleration (Newton's $2^{\text {nd }}$ Law)
Acceleration is change in (differential of), velocity We want velocity, so we integrate acceleration for O

Rotational Movement

In the above example, the motor moves in straight line
Its position (units m) changes, it moves with a given velocity (m / s)
It has mass (kg), it accelerates (ms^{-2}), due to force (N)
If the motor rotates, its angular position (units rad) changes
Have angular velocity ($\mathrm{rad} / \mathrm{s}$), angular acceleration ($\mathrm{rad} \mathrm{s}^{-2}$),
Due to torque (Nm), mass has moment of inertia J (kgm²)

SE1CY15- Feedback - Part C
@ Prof Richard Mitchell 2015

Permanent Magnet Motor

v applied to armature circuit: motor turns e_{b} 'back emf' generated Difference between v and $e_{b} \rightarrow V$ across $R \rightarrow$ current, i
$\mathrm{i} \rightarrow$ torque $\mathrm{T}\left(=\mathrm{K}^{\star} \mathrm{i}\right) \rightarrow$ angular velocity O (note inertia/friction) $O \rightarrow e_{b}\left(=B^{\star} O\right)$
Slightly more complicated model ..
p44 RJM 08/12/15
SE1CY15 - Feedback - Part C豦

Lecture 13 In Class Exercise

For motor

$$
\frac{O}{v}=\frac{K}{j \omega R J+B K+F R}
$$

Suppose $K=0.1, R=1 k, J=0.05, F=0.01, B=0.1$ and $v=10 \sin (0.1+)$ What is O ?

Mechanical Example

> Force f applied to spring attached to wall
> 'Dashpot' represents friction opposing motion

When spring compressed by x, force $k^{\star} x$ opposes (Hooke's Law)
Frictional force $=F^{*}$ differential of x also opposes
As $\int \equiv \frac{1}{j \omega}$, So $\frac{d}{d t} \equiv \mathrm{j} \omega$. Hence dashpot force is $F^{\star} \mathrm{j} \omega^{\star} x$ Hence $f=k^{\star} x+F^{\star} j \omega^{\star} x=(k+j \omega F) x$

Hence $\frac{x}{f}=\frac{1}{k+j \omega F}$
p48 RJM 08/12/15
SE1CY15-Feedback - Part C
© Prof Richard Mitchell 2015

Standard Model

For RC circuit	First motor	Perm. magnet motor	Spring Sys
$\frac{V_{0}}{V_{S}}=\frac{1}{1+j \omega C R}$	$\frac{O}{I}=\frac{1}{j m \omega+F}$	$\frac{O}{v}=\frac{K}{j \omega R J+B K+F R}$	$\frac{x}{f}=\frac{1}{k+j \omega F}$
For convenience, it is useful to have a standard model			$\frac{K}{1+j \omega T}$
For $R C$ circuit, already there: $\mathrm{K}=1$ and $T=R C$			
For first motor	For per	magnet motor For	ring Sys
$\begin{aligned} \frac{O}{I} & =\frac{1}{j m \omega+F} \\ & =\frac{1 / F}{1+j m \omega / F} \end{aligned}$	$\frac{O}{v}=\frac{}{1}$	$\frac{\frac{K}{B K+F R}}{j \omega \frac{R J}{B K+F R}} \quad \frac{x}{f}$	$\frac{\frac{1}{k}}{1+j \omega \frac{F}{k}}$
p49 RJM 08/12/15	SE1CY15 © Prof Ri	Feedback - Part C hard Mitchell 2015	Con

Permanent Magnet Motor in this form

$$
\frac{O}{v}=\frac{K}{j \omega R J+B K+F R}
$$

Let $K=0.1, B=0.9, R=100, F=0.0001, J=0.004$
$\frac{O}{v}=\frac{0.1}{j \omega 100^{\star} 0.004+0.09+0.01}=\frac{0.1}{j \omega 0.4+0.1}=\frac{1}{1+j \omega 4}$

p51 RJM 08/12/15 SE1CY15 - Feedback - Part C
© Prof Richard Mitchell 2015 © Prof Richard Mitchell 2015

Connect Motor in Control System

Use forward over 1 minus each loop

$$
\frac{O}{I}=\frac{9^{\star} 1^{\star} \frac{1}{4} \star \frac{1}{j \omega}}{1--\frac{1}{4} \star \frac{1}{j \omega}--9^{\star} 1^{\star} \frac{1}{4} \star \frac{1}{j \omega}}=\frac{\frac{9}{j \omega 4}}{1+\frac{1}{j \omega 4}+\frac{9}{j \omega 4}}=\frac{9}{10+j \omega 4}=\frac{0.9}{1+j \omega 0.4}
$$

Still in standard form.
Key point : K and T of original motor changed
p52 RJM 08/12/15 SE1CY15-Feedback-Part C © Prof Richard Mitchell 2015

Summary

In this lecture we have further investigated system models We assume the input is a sinusoid and model integration by $1 / j \omega$ For the RC circuits and the motors the same form of model found When we put feedback round it, the same form of model appears

$$
\frac{K}{1+j \omega T}
$$

Can find output using modulus and argument of this
Later we develop this by considering what happens when w changes Next week : how to model systems when inputs are not sinusoids...

Concluded

$\frac{d O}{d t}=\frac{K^{\star} I-O}{T}=\frac{K^{\star} \sin (\omega t)-\frac{K}{1+\omega^{2} T^{2}}(\sin (\omega t)-\omega T \cos (\omega t))}{T}$
$=\frac{K \omega^{2} T^{2} \sin (\omega t)+K \omega T \cos (\omega t)}{T\left(1+\omega^{2} T^{2}\right)} \quad$ integrate this to get O
$0=\frac{K \omega^{2} T^{2} \frac{-1}{\omega} \cos (\omega t)+K \omega T \frac{1}{\omega} \sin (\omega t)}{T\left(1+\omega^{2} T^{2}\right)}=\frac{-K \omega T \cos (\omega t)+K \sin (\omega t)}{\left(1+\omega^{2} T^{2}\right)}$
Yes - complex numbers easier
$\begin{array}{ll}\text { p57 RJM 08/12/15 } & \begin{array}{l}\text { SE1CY15-Feedback - Part } C \\ \text { O Prof Richard Mitchell } 2015\end{array}\end{array}$

Lecture 14 - Frequency Response

We have also analysed systems where the input is a sinusoid
For this we use $1 / j \omega$ for S
As a result the transfer function is a complex number
This has modulus and argument
Which can represent gain and phase shift of system
Hence, if we know the input sinusoid we can find its output Also useful to see how gain and phase vary with frequency Today we plot this variation -

Using one graph, then two related graphs
This is very useful for analysing systems
p58 RJM 08/12/15 SE1CY15-Feedback-Part D © Prof Richard Mitchell 2015

Input, $K_{1} \sin (\omega t) \quad$ Output $K_{2} \sin (\omega t+\phi)$

Higher freq: smaller K_{2}, larger phase shift $-\phi$

More useful, plot graphs showing how gain and phase vary with ω In fact we see how the transfer function varies with ω p60 RJM 08/12/15 SE1CY15 - Feedback - Part D © Prof Richard Mitchell 2015

Transfer Function at different ω

For System $\frac{K}{1+j \omega T}$ if $K=5, T=2, \omega=3$, TF is $\frac{5}{1+j 6}$
$T F=\frac{5}{\sqrt{37}} \angle-\tan ^{-1} 6 \quad$ or $\quad \frac{5}{37}-j \frac{30}{37}$
Can Plot on Argand Diagram ... in Cartesian or Polar form

But if $\omega=1$, System $\frac{5}{1+\mathrm{j} 2}=\frac{5}{\sqrt{5}} \angle-\tan ^{-1} 2$ or $1-\mathrm{j} 2$
p61 RJM 08/12/15
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2015

MatLab can plot for different ω

$\gg K=5 ; T=0.2 ;$
$\gg w=[1,2,3,4,5,6,7] ; \%$ some w
$\gg+f=K . /\left(1+j^{\star} w^{*} T\right)$ \% calc TF at each. tf =
4.8077-0.9615i 4.3103-1.7241i
$3.6765-2.2059 i \quad 3.0488-2.4390 i$
$2.5000-2.5000 i \quad 2.0492-2.4590 i$
1.6892-2.3649i

>> plot(real(tf), imag(tf), '*', [-1 5], [00], [00],[-3 1]):
$\%$ plot *'s and axes
Note *'s get closer: linearly spaced ω not best :
So need to plot over larger ω range .. And not linearly spaced p63 RJM 08/12/15

SE1CY15 - Feedback - Part D
O Prof Richard Mitchell 2015 © Prof Richard Mitchell 2015

MatLab Calculations

> $K=5 ; T=0.2 ; w=1 ;$
$\gg+f=K /\left(1+j^{*} w^{*} T\right) \quad \%$ find TF at $w=1$
tf $=4.8077-0.9615 i$
Then use real $(t f)$, imag($t f$) or abs $(t f)$, angle $(t f)$
We need to make such calculations over large range ... Say 0.1 .. 1000
$\gg+f=K . /\left(1+j^{*}[0.1,1,10,100,1000]^{\star} T\right)$ \%note ./ to get TF as vector
tf $=4.9980-0.1000 i$ 4.8077-0.9615i 1.0000-2.0000i
$0.0125-0.2494 i \quad 0.0001-0.0250 i$
$\begin{array}{llllllll}\text { > } a b s(t f) & \text { gives } & 4.9990 & 4.9029 & 2.2361 & 0.2497 & 0.0250\end{array}$
>> angle ($\dagger f$) gives $-0.0200 \quad-0.1974 \quad-1.1071-1.5208 \quad-1.5658$
p62 RJM 08/12/15 SE1CY15 - Feedback - Part C SE1CYIS - Feedback - Part C虎 © Prof Richard Mitchell 2015

Continuous Plot in MATLAB

Better if ω logarithmically not linearly spaced, and join dots Use logspace (a, b) : generates 50 values between 10^{a} and 10^{b}.
\gg w logspace $(-1,2)$; \quad \% w from 0.1 to 100 : ok this sys
$\gg+f=K . /\left(1+j^{*} w^{*} T\right)$; $\quad \%$ trans func at all w
>> plot(real(tf),imag(tf), ... \% plot 'locus'
[-0.5,K+0.5], [0 0],[0, 0], [-K/2-0.5, 0.5]);

Shows how gain and phase vary with frequency on one plot System's Frequency Response NB this is a semi-circle
radius $K / 2$, origin $K / 2,0$
p64 RJM 08/12/15
SE1CY15 - Feedback - Part D Prof Richard Mitchell 2015

Two Plots

The single plot shows how gain and phase vary together
Can be of interest to see how gain and phase each vary with ω
But saw polar plot calculated from $\omega=0$ to 100 or even $1000 \mathrm{rad} / \mathrm{s}$
Information $\omega=0.1: 1$ just as important as from $1: 10,10: 100$
So the w axis is plotted using logarithmic scales:

As gain varies a lot from 10..0.05 also use logarithmic gain scale Phase varies from 0 to -90°... so use linear scale

So plot $\log ($ gain $)$ vs $\log (\omega)$ and phase vs $\log (\omega)$
p66 RJM 08/12/15
SE1CY15 - Feedback - Part C
O Prof Richard Mitchell 2015

Bode Plot for $5 /(1+j \omega 0.2)$

Given have already calculated w and $\dagger f$...
>> subplot($2,1,1$); $\log \log (w, a b s(t f))$;
> subplot($2,1,2$): semilog $x\left(w\right.$, angle $(t f)^{\star} 180 /$ pi $)$;

Plots \log Gain $v \log w$

Plots Phase $v \log \omega$

p67 RJM 08/12/15
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2015

Approximate Behaviour

Recall: $T F=\frac{K}{1+j \omega T}$: Gain $=\frac{K}{\sqrt{1+\omega^{2} T^{2}}}$; Phase $=-\tan ^{-1}(\omega T)$
Suppose ω T very small (<1), so treat $1+j \omega T$ as 1

$$
\text { TF }=\frac{K}{1} \text {, so Gain }=\text { K; Phase }=0
$$

Suppose ω T very big (>>1), so approximate $1+\mathrm{j} \omega \mathrm{T}$ as $\mathrm{j} \omega \mathrm{T}$

$$
T F=\frac{K}{j \omega T} \text {, so Gain }=\frac{K}{\omega T} \text {; Phase }=-90^{\circ}
$$

These define behaviour at very low and very high frea Actual behaviour in between these, eg

$$
\text { At } \omega T=1 \text { TF }=\frac{K}{1+j}: \text { Gain }=\frac{K}{\sqrt{1+1}}=\frac{K}{\sqrt{2}} ; \text { Phase }=-45^{\circ}
$$

Plotting Approximate Behaviour

At Low Freqs, approximate Gain $=K$ and Phase $=0$
Plot $\log ($ Gain $)$ vs $\log (\omega) \log (\mathrm{K})$ is constant
So Plot horizontal straight line : its slope is 0
At High Freqs, Gain $=\frac{K}{\omega T}$ and Phase $=-90^{\circ}$

$$
\log \left(\frac{K}{\omega T}\right)=\log \left(\frac{K}{T} * \omega^{-1}\right)=\log \left(\frac{K}{T}\right)+\log \left(\omega^{-1}\right)=\log \left(\frac{K}{T}\right)-\log (\omega)
$$

So Plot is const $-\log (\omega)$ plotted vs $\log (\omega)$
Like plotting $c-x$ vs x ie straight line slope -1 We call these high and low freq lines asymptotes
p69 RJM 08/12/15

Asymptotic Plot (actual superimposed)

Asymptotic TF: K and $\frac{K}{j \omega T}$ ie 5 and $\frac{5}{\mathrm{j} \omega 0.2}=\frac{25}{\mathrm{j} \omega}$

$G=K$ and $K / \omega T$
line slopes 0 and -1
Meet at $\omega T=1: \omega=5$
$P=0$ and $P=-90^{\circ}$
Change at $w=5$

Actual plots start on low freq asymptotes and end on high f lines Given TF, easy to sketch asymptotes and then add actual p70 RJM 08/12/15 SE1CY15-Feedback - Part D SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2015 \qquad © Prof Richard Mitchell 2015 Syselvetics

Freq Response of Motor in Feedback

With feedback, corner freq moved from 0.25 to $2.5 \mathrm{rad} / \mathrm{s}$ Let's plot superimposed $\frac{1}{1+j \omega 4}$ and $\frac{0.9}{1+j \omega 0.4}$

Graphs ... Asymptotes and actual

Continued
 $$
\frac{V_{0}}{V_{s}}=\frac{j \omega+1}{j \omega 4+1}
$$
 Two corner freqs : $\frac{1}{4}$ and $1 \mathrm{rad} / \mathrm{s}$

We can plot this by generating asymptotes as before
For each $1+j \omega T$, approx as 1 before $\omega=1 / T$, and $j \omega T$ after
So consider what happens before $\frac{1}{4}$, from $\frac{1}{4}$ to 1 , then after 1

So $w<0.25$	$0.25<\omega<1$	$\omega>1$
$\frac{V_{0}}{V_{s}} \approx \frac{1}{1}=1$	$\frac{V_{0}}{V_{s}} \approx \frac{1}{j \omega 4}$	$\frac{V_{0}}{V_{s}} \approx \frac{j \omega}{j \omega 4}=\frac{1}{4}$
Gain $=1$	Gain $=\frac{1}{w 4}$	Gain $=0.25$
Phase $=0$	Phase $=-90$	Phase $=0$

p74 RJM 08/12/15 SE1CY15-Feedback - Part D
SE1CY15 - Feedback - Part D

Summary

In this lecture we consider plotting frequency response That is, how does system transfer function vary with ω. We first plotted these on one graph

Calculating gain/phase or real $+j$ imag points and joining them
Then we plotted $\log (g a i n)$ vs $\log (\omega)$ and phase vs $\log (\omega)$
Both the actual graphs and the asymptotes
Asymptotes useful for sketching such graphs
Saw that with phase lead circuit.
Next week we move to considering how system changes with time
We will do frequency response of second order systems later
p76 RJM 08/12/15
SE1CY15 - Feedback - Part C © Prof Richard Mitchell 2015

15 - Time Response of Systems

We modelled different dynamic systems which include integrators We have determined their output

If the input is a step, the output is a constant value

- determined by when the input to the integrator is 0

If the input is a sinusoid, the output is also a sinusoid

- determined by modelling the system using complex numbers

This answered one of two questions posed
The other is how does the output get to its final value. Strictly so far we have determined the steady state response

We now work towards how it gets there: the transient response
p77 RJM 08/12/15 SE1CY15-Feedback - Part C
SE1CY15 - Feedback - Part C
© Prof Richard Mitchell 2015 Cren

Consider the RC Circuit

From block diagram, $\frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{I}^{\star} \frac{1}{\mathrm{C}}=(\mathrm{E}-\mathrm{V}) \star \frac{1}{\mathrm{R}} * \frac{1}{\mathrm{C}}$
When E is connected at $t=0$, in effect it is a step input V will reach the final value of E (which is constant after $t=0$) Final value means V not changing, ie $d V / d t=0$
Clearly this is when $I=0$, which is when $E-V=0$, or $V=E$
p78 RJM 08/12/15
SE1CY15-Feedback - Part C
@ Prof Pichard Mitchell 2015
Eyeverics

Now consider a motor and general system

We argue intuitively how O or V gets to steady state .. Use integrators p79 RJM 08/12/15 SE1CY15 - Feedback - Part C © Prof Richard Mitchell 2015

If Put Constant Into An Integrator:

$$
\text { Or, if } K \text { smaller, and } O \text { is not } O \text { initially }
$$

$+$
\qquad
O (slope K ${ }^{\star}$ I)
 $+$

At time $t, O=($ value of O at $t=0)+K * I * t$
p80 RJM 08/12/15
SE1CY15-Feedback - Part C © Prof Richard Mitchell 2015 © Prof Richard Mitchell 2015

What if I series of constants?

Suppose $K=2$ and $a t t=0,0=0$,
$I=1$ from $0 . .5 \mathrm{~s}$,
$I=-0.5$ from $5 . .8 s$,
and I thereafter $=0.25$
After 5s,
$0=0+1 * 2 * 5=10$
After 8s,
$0=10+-0.5^{\star} 2^{\star} 3=7$
After 10s,

$0=7+0.25^{\star} 2^{\star} 2=8$
p81 RJM 08/12/15
SE1CY15 - Feedback - Part C
© Prof Richard Mitchell 2015
0
$+$ t

P81 RJM 08/12/15	SE1CY15 - Feedback - Part C O Prof Richard Mitchell 2015

If Put Feedback Round Integrator

Initially O is 0 , so $X \& d O / d t$ are big, so O rises much X and $\mathrm{dO} / \mathrm{d}+$ now smaller, so O rises but by less X and dO/dt even smaller, so O rises by even less Eventually $O=I$, so $X=d O / d t=0$, and hence O is constant
p82 RJM 08/12/15 SE1CY15-Feedback - Part C SE1CY15 - Feedback - Part C
© Prof Richard Mitchell 2015

Formalising The Response

At steady state, $\mathrm{d} O / \mathrm{dt}=0$, that is $\mathrm{K} \star \mathrm{I}-\mathrm{O}=0$
So steady state value of O is $K^{*} I=K$ if I is unit step
In Maths, you will learn to show transient response is $-\mathrm{Ke}^{-\dagger / T}$
Done by solving $\frac{d O}{d t}=-\frac{O}{T}$ (i.e. ignoring input I)
The complete response is $O=\mathrm{K}-\mathrm{Ke}^{-t / T}$
p84 RJM 08/12/15
SE1CY15-Feedback - Part C
© Prof Richard Mitchell 2015
Syenetrs

So for RC circuit

$$
\begin{aligned}
& \text { Steady state found by solving } \frac{d V}{d t}=0 \quad \text { So } V_{s s}=E \\
& \text { Transient found by solving } \frac{d V}{d t}=-\frac{V}{R^{\star} C} \quad \text { So } V_{+}=-E e^{-t / R C} \\
& \text { So complete response is } V=E-E e^{-t / R C}
\end{aligned}
$$

P85 RJM 08/12/15
SE1CY15-Feedback - Part C © Prof Richard Mitchell 2015 \square

Fundamental Point

If system model $\frac{d O}{d t}=\frac{1}{T}\left(K^{\star} I-O\right)$: $I=$ unit step; O at $t=0$ is 0
Then $O=K-\mathrm{Ke}^{-t / T}$ \qquad ${ }^{\dagger}$
$e^{-1} \approx 0.37 ; \quad e^{-3} \approx 0.05 ; \quad e^{-5} \approx 0.007$
At $t=T, K-K e^{-1}=K * 0.63 \quad$ (O is 63% of final value)
At $t=3 T, K-K e^{-3}=K * 0.950 \quad$ (O is 5% from final value)
At $\dagger=5 \mathrm{~T}, \mathrm{~K}-\mathrm{K} e^{-5}=\mathrm{K} * 0.993 \quad$ ($0<1 \%$ from final value)
http://www.reading.ac.uk/~shsmchlr/javascript/SysAndStep.html
$\begin{array}{ll}\text { p86 RJM 08/12/15 } & \begin{array}{l}\text { SE1CY15 - Feedback - Part } C \\ \text { O Prof Richard Mitchell } 2015\end{array}\end{array}$

If you are interested ...

We have stated that I is a unit step, = constant for $t>0$

$$
\begin{aligned}
O(t) & =K-K^{\star} e^{-t / T} \\
\text { Also } \frac{d O}{d t} & =\frac{1}{T}\left(K^{*} I-O\right)
\end{aligned}
$$

This demonstrates that these are consistent

$$
\begin{aligned}
& \frac{d O}{d t}=\frac{d K}{d t}-\frac{d K^{\star} e^{-t / T}}{d t}=0--\frac{1}{T} K^{\star} e^{-t / T}=\frac{K}{T} e^{-t / T} \\
& \frac{1}{T}\left(K^{\star} I-O\right)=\frac{1}{T}\left(K-K+K^{\star} e^{-t / T}\right)=\frac{K}{T} e^{-t / T}
\end{aligned}
$$

Hence expression for O is a solution to the diff eqn

Electronic Example

Suppose V_{s} is Step $=9 V ; R=5 k \Omega$ and $C=20 \mu \mathrm{~F}$ $\frac{d V_{0}}{d t}=\frac{1}{5 * 10^{3} * 20 * 10^{-6}} *\left(9-V_{0}\right)$
$\frac{d V_{0}}{d t}=\frac{1}{0.1} *\left(9-V_{0}\right)$
In standard form, so if $V_{0}=0$ at $t=0$
$V_{0}=9-9 e^{-t / 0.1}$

0.1
p88 RJM 08/12/15
SE1CY15-Feedback - Part C SE1CY15 - Feedback - Part C
© Prof Richard Mitchell 2015

Effect of Feedback - to Step Input

System could be motor on its own:

 open loop

Modelled by $\frac{d O}{d t}=\frac{K^{\star} I-O}{T}$
Suppose $I=1, K=1$ and $T=4 s \quad \frac{d O}{d t}=\frac{1 \star 1-O}{4}=\frac{1-O}{4}$
In standard form, so can say:
Steady State value 1
Reaches 63% of 1 at $4 s$
Within 1% of 1 by 20 s

Now This Motor In Control System

Controller output $=9^{\star}(1-O), X=9^{\star}(1-O)-O$, so

$$
\frac{d O}{d t}=\frac{1}{4} \star\left(9^{\star}(1-O)-O\right)=\frac{9-9^{*} O-O}{4}=\frac{9-10^{*} O}{4}
$$

Not in right form as O multiplied by 10: so divide by 10

$$
\frac{d O}{d t}=\frac{9 / 10-O}{4 / 10}=\frac{0.9-O}{0.4} \quad \begin{aligned}
& \text { Final value 0.9. Reach } \\
& 63 \% \text { of this } a t t=0.4 \mathrm{~s}
\end{aligned}
$$

p91 RJM 08/12/15 SE1CY15 - Feedback - Part C

$$
\begin{aligned}
& \text { SE1CY15 - Feedback - Part C C } \\
& \text { O Prof Richard Mitchell } 2015
\end{aligned}
$$

Open and Closed Loop Responses

Open loop: $\frac{\mathrm{dO}}{\mathrm{dt}}=\frac{1-O}{4}$
Closed loop: $\frac{\mathrm{d} O}{\mathrm{dt}}=\frac{0.9-0}{0.4}$
0.4

Final value 1
Time Const 4
Final value 0.9
Time Const 0.4

See Frequency
Response
Lectures: same example same 0.9 \& 0.4
http://www.reading.ac.uk/~shsmchlr/javascript/SysAndStep.html
p92 RJM 08/12/15
SE1CY15 - Feedback - Part C
O Prof Richard Mitchell 2015

A Feedback System With Integrator

$\frac{d O}{d t}=A(I+\beta O)$

For standard form, rejig so $\frac{d O}{d t}=\frac{1}{T}\left(K^{\star} I-O\right)$

$$
\frac{d O}{d t}=-A(-I-\beta O)=-A \beta\left(-\frac{I}{\beta}-O\right)
$$

So $K=-1 / \beta$ and $T=-1 / A \beta$;
Feedback gain β sets final value, loop gain $A \beta$ the speed
p94 RJM 08/12/15 SE1CY15-Feedback - Part C © Prof Richard Mitchell 2015

Some Example Responses

I = 1
a) $A=16, \beta=-0.5$
b) $A=8, \beta=-0.5$
c) $A=8, \beta=-1$

Want final value \& t when 63% of it

	\boldsymbol{A}	$\boldsymbol{\beta}$	Final Value	$\boldsymbol{+} \boldsymbol{a}+\mathbf{~} \mathbf{3} \%$	$\mathrm{I} /-\boldsymbol{\beta}$	$\mathbf{1 / - A} \boldsymbol{\beta}$
a	16	-0.5	2	0.125	2	$1 / 8$
b	8	-0.5	2	0.25	2	$1 / 4$
c	8	-1	1	0.125	1	$1 / 8$

> SE1CY15 - Feedback - Part C syenterks

Summary

We have investigated the step response of a first order system Have seen steady state response - being a constant And transient response - being an exponential
The time constant indicates the speed of response : reaches 63% of final value at $\dagger=$ time constant within 1% of final value at 5 * this value
We have seen that putting feedback round such systems, speeds up the response
Next week, we introduce the s-operator to simplify diagrams/analysis .. Be consistent with jw
p96 RJM 08/12/15
SE1CY15-Feedback - Part C

Lecture 11 - After Class Exercise

Find V_{0} if $V_{I}=1 \mathrm{~V}$, OpAmp gain $A=1000, R_{1}=80 \mathrm{k} \Omega$ and $R_{2}=20 \mathrm{k} \Omega$. Note, find the exact value, and compare with the approximate one. By how much does V_{0} change, if A increases by 10% to 1100 ? Does the system have negative feedback?

Lecture 12 - After Class Exercise

If V_{L} is the voltage across the inductor, $I=V_{L} / j \omega L$.
As such, draw a block diagram of the circuit.
Hence work out the circuit transfer function.
What is V_{O} if $L=0.5 H, R=20 \Omega$ and V_{S} is $7 \sin (8 t)$?

Lecture 13-After Class Exercise

The above shows a permanent magnet motor in a control system Use forward / (1-loops) to find the transfer function O / I. What is O if I is $9 \sin (40 t)$?

