SE1CY15 Cybernetics and Circuits Feedback - Part D Prof Richard Mitchell

In the final quarter of the course the topics are Using the Laplace Operator instead for \int (or $1 / \mathrm{j} \omega$) Simulation of Systems - including 'animal' systems Second order systems - time and frequency responses

This builds on models developed so far
There we form block diagrams and then transfer functions For simulation, though, we revert back to differential equations
p1 RJM 12/02/16
SE1CY15-Feedback - Part D © Prof Richard Mitchell 2016 \qquad cen

Introducing s-Laplace operator

Very briefly s is introduced : it will help re block diagrams It fits neatly with the Freq response we have already met As an approximation, s means differentiation (1/s means integration) Let's apply it to a differential equation we have met ...
$\frac{\mathrm{d} O}{\mathrm{~d} t}=\frac{1}{\mathrm{~T}}\left(\mathrm{~K}^{\star} \mathrm{I}-O\right)$ which can be written $\mathrm{T} \frac{\mathrm{d} O}{\mathrm{dt}}+O=\mathrm{K}^{\star} \mathrm{I}$
We write $\frac{\mathrm{d} O}{\mathrm{dt}}$ as $s O$, so differential equation becomes
$T s O+O=K^{\star} I \quad$ or $\quad(T s+1) O=K^{\star} I$
Hence, $\frac{O}{I}=\frac{K}{T s+1}$
Then, if I unit step and $O=0$ at $t=0: O=K-\mathrm{Ke}^{-t / T}$ p3 RJM 12/02/16 SE1CY15 - Feedback - Part D © Prof Richard Mitchell 2016

Key Point

For frequency response, all signals are sinusoids at ang freq ω We replace all \int by $1 / j \omega$ - and analyse block diagrams Strictly, all signals are sinusoids under steady state For other inputs (eg step), and for finding the transient response, We replace all \int by $1 / s$ - and analyse block diagrams

For electronic circuits with sinusoids impedances are

$$
\text { Resistor: } Z=R \quad \text { Capacitor: } Z=\frac{1}{j \omega C} \quad \text { Inductor: } Z=j \omega L
$$

For electronic circuits transients and other signals
Resistor: $Z=R \quad$ Capacitor: $Z=\frac{1}{S C} \quad$ Inductor: $Z=S L$
Use with circuit theory methods (Ohm, Kirchhoff, Thevenin, etc) p5 RJM 12/02/16

SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

Why s helps - re block diagrams

Integration is inverse of differentiation, so $\int=1 / s$: as in diagram

K is steady state response - Ke $e^{-\frac{\dagger}{T}}$ is transient response T sets the speed of response

Rather than using Diff Eqn, easier to use Laplace operator ... p2 RJM 12/02/16 SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016
© Prof Richard Mitchell 2016

We have investigated the step response of systems, for instance

$\frac{\mathrm{dO}}{\mathrm{dt}}=\frac{1}{\mathrm{~T}}\left(\mathrm{~K}^{\star} \mathrm{I}-O\right) \Rightarrow O=K-K e^{-\frac{t}{T}}$

Why s helps: Motor Control Example

More difficult if form differential equation :

$$
\frac{d O}{d t}=\frac{(I-O) * C^{*} K-O}{T}=\frac{C^{*} K * I-\left(1+C^{*} K\right) * O}{T}
$$

Get in form $\frac{K^{\prime *} I-O}{T^{\prime}}$ by dividing by $1+C^{\star} K$
p7 RJM 12/02/16

$$
\frac{\mathrm{d} O}{\mathrm{~d} t}=\frac{\frac{C^{\star} \mathrm{K}}{1+C^{\star} \mathrm{K}}{ }^{\star} I-{ }^{\star} O}{\frac{\mathrm{~T}}{1+C^{\star} \mathrm{K}}} \begin{array}{|}
\begin{array}{l}
\text { SE1CY15-Feedback - Part } D \\
\text { Q Prof Richard Mitchell } 2016
\end{array} & \mathrm{C}^{\star} \mathrm{K} \\
1+C^{\star} \mathrm{K}
\end{array} \quad \mathrm{~T}^{\prime}=\frac{\mathrm{T}}{1+C^{\star} \mathrm{K}}
$$

Lecture 16 - In Class Exercise

Find O / I and hence final value K \& time constant T if I is unit step

Finding the System Response

If I is a unit step, we know that $O=K-K e^{-t / T}$
But how do we get this expression for O ?
Answer - we analyse the transfer function
Concept applies to more complicated systems too
p10 RJM 12/02/16
SE1CY15 - Feedback - Part D SE1CY15- Feedback - Part D
© Prof Richard Mitchell 2016

Finding the Step Response

Key point, O has two components
steady state, K and transient, $-\mathrm{K} \mathrm{e}{ }^{-t / T}$
Can find both from TF
Steady state found by setting s to 0 (ie no change)

$$
O_{s s}=\frac{K}{1+0} * I=K \text { (if I unit step) }
$$

Transient : find 'value of s ' (root) so that denominator is 0 :

$$
s T+1=0 \text { if } s=-1 / T
$$

Then transient is const * $\exp (s t)=c^{*} \exp (-t / T)$

$$
\text { So } O=K+c \exp (-t / T)
$$

If $O=0$ at $t=0 ; 0=K+c$ so $c=-K$, and hence $O=K-K e^{-t / T}$

Example

Steady state is $2 / 1=2$; Denominator is 0 when $s=-8$
Hence $O=2+c e^{-t^{\star} 8}$
At $t=0,0=0$, so $0=2+c e^{0}=2+c$; so $c=-2$
Hence, complete response is
$O=2-2 e^{-t^{\star} 8}$
p12 RJM 12/02/16
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

Relating to Solving Differential Eqn

$$
\begin{aligned}
& \frac{\mathrm{d} O}{\mathrm{dt}}=8^{\star}\left(2^{\star} \mathrm{I}-O\right) \\
& \frac{\mathrm{d} O}{\mathrm{dt}}+8 O=16 \mathrm{I}=16
\end{aligned}
$$

Mathematicians find 'particular integral', as I is a constant..
$O_{P I}$ found by $8 O_{P I}=16 ; \quad O_{P I}=2$
For 'complementary function', find root of auxiliary equation

$$
m+8=0, \text { so } m=-8 ; \quad O_{C F}=c e^{-+8}
$$

Hence $O=2+c e^{-+8}$
In effect doing same method when using transfer function
p13 RJM 12/02/16
SE1CY15 - Feedback - Part D
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

What if Input is Sinusoid?

Output = transient

+ steady state
Transient again
found by root of denominator of transfer function Decays to 0

Steady state : replace $s=j \omega$ in TF, find gain and phase

$$
O_{S S}=\frac{K}{\sqrt{1+\omega^{2} T^{2}}} \sin (\omega t-\phi) \quad \text { where } \phi=\tan ^{-1}(\omega T)
$$

Much easier than finding particular integral p17 RJM 12/02/16

SE1CY15 - Feedback - Part D
@ Prof Richard Mitchell 2016 creat

Example - not examinable (in Feedback)

$$
\begin{aligned}
& \frac{O}{I}=\frac{60 / 61}{1+s^{10} / 61}=\frac{0.984}{1+s 0.164} \quad \begin{array}{l}
\text { Let } I=\sin (5 t) \\
\text { and } O=0 \text { at } t=0
\end{array} \\
& \frac{O}{I}=\frac{0.984}{1+j \omega 0.164}=\frac{0.984}{1+j 0.82} \quad \angle \frac{O}{I}=0-\tan ^{-1} 0.82=-0.687 \mathrm{rad} \\
& \left|\frac{O}{I}\right|=\frac{0.984}{\sqrt{1+0.82^{2}}}=\frac{0.984}{\sqrt{1+0.6724}}=\frac{0.984}{1.293}=0.761 \\
& O_{s s}=0.761 \sin (5 t-0.687) \quad O_{\dagger}=c e^{-t^{\star} 6.1} \text { as before } \\
& O=0.761 \sin (5 t-0.687)+c e^{-t^{\star} 6.1} \\
& A t t=0,0=0.761 \sin (-0.687)+c=-0.483+c \text {, so } c=0.483 \\
& \text { So } O=0.761 \sin (5 t-0.687)+0.483 e^{-t^{\star} 6.1}
\end{aligned}
$$

Summary

We have seen how the s operator can be used to analyse systems We replace integrators by $1 / s$, and then use forward/1-loop(s) From the resultant transfer function we can find step response

Roots of denominator give transient
Setting s to zero gives steady state if input is step
Modulus/Argument gives steady state if input sinsuoid
The analysis has been a little informal : fuller information in Part 2. Next week look at simulating systems -

Initially first order systems we have met
Then we consider second order systems
p19 RJM 12/02/16
SE1CY15 - Feedback - Part D
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

17 : Simulating Systems

We have seen how to use s and $j \omega$ to analyse first order systems Form transfer functions/differential equations, and solve.

In the first half of this lecture, see how computer can solve
In the second half, we start to look at second order systems

On Simulation

We find the differential of a variable and numerically integrate it

$$
\text { Specifically } \frac{\mathrm{d} O}{\mathrm{dt}}=\text { function(} O \text { and others) : find } O
$$

We will look at a simple computer simulation
Then how MATLAB has a better method
p20 RJM 12/02/16
SE1CY15 - Feedback - Part D
O Prof Richard Mitchell 2016 Cren

Simulation of First Order System

Our system can be modelled by differential eqn

$$
\frac{d O}{d t}=\frac{1}{T}\left(K^{\star} I-O\right) \quad \begin{aligned}
& K \text { and } T \text { are constants } \\
& I=\text { input, } O=\text { output }
\end{aligned}
$$

To simulate, calculate values at regular times: the sampling instants Specifically we find dO/dt then 'integrate' to get O

Simplest method (Euler's method) is as follows

initialise O

For each time step

p21 RJM 12/02/16

MATLAB Function to do this

function sigs $=k+s i m(K, T, I$, Oinit, tsamp, numpts);
$\%$ sigs $=$ KTSIM (K, T, I, TSAMP, NUMPT)
\% Simulates system described by dO/dt = (K * I - O) / T
$\%$ returns sigs = matrix $[\mathrm{t}, \mathrm{dO} / \mathrm{dt}$ and O] at each calculation step
\% first column has successive t's, next has dO/dt and last has O
\% Prof Richard Mitchell 29/3/11
sigs $=$ zeros (numpts $+1,3$); \quad \% initialise mat to zero
$\operatorname{sigs}(1,3)=$ Oinit;
\% initialise output
for $c t=1$:numpts
$\operatorname{sigs}(c++1,1)=c \dagger^{*}$ tsamp;
\% store time in col 1
$\operatorname{sigs}(c t+1,2)=\left(K^{*} I-\operatorname{sigs}(c t, 3)\right) / T$;
\% dO/dt in col 2
$\operatorname{sigs}(c t+1,3)=\operatorname{sigs}(c t, 3)+\operatorname{sigs}(c t+1,2) *$ tsamp; \% output, col 3 end

Using that MATLAB function

```
> sigs = ktsim (K, T, I, Oinit, tsamp, numpts);
```

K, T, I are obvious; Oinit is value of O at $t=0$
numpts iterations are done, at instants tsamp apart sigs is matrix: col $1=\operatorname{sigs}(; 1)$ has time; col 2 has dO/dt; col3 has O
\gg sigs $=k+s i m(2,5,1,0,0.5,40)$;
> ythy $=2-2^{*} \exp (-\operatorname{sigs}(:, 1) / 5)$; \quad ie $2-2 \exp (-\dagger / 5)$
> plot (sigs(:, 1$)$, sigs($:, 3)$); $\quad \operatorname{plot}(\operatorname{sigs}(:, 1)$, sigs $(:, 3)$-ythy $)$;

Solving ODEs in MATLAB

Model is an 'ordinary' differential equation, ODE.
The Euler numerical solution has a maximum error of 4\%
Likely to be higher for more advanced systems Better to using MATLAB's ODE45 function
(uses so called 4th order Runge Kutta to solve ODE)
For which you write an m-file which returns $\mathrm{do} / \mathrm{dt}$ at an instant function dobydt $=$ firstorder ($t, 0$, flag, I, K, T)
\% Function to calculate do/dt for first order system
$\%+$ is time, o is current output, flag is dummy variable $\% I$ is input, K and T are final value and time cons \dagger dobydt $=\left(I^{*} K-o\right) / T$;
p25 RJM 12/02/16 SE1CY15 - Feedback - Part D
O Prof Richard Mitchell 2016 © Prof Richard Mitchell 2016

Then Run ODE45 from>> prompt

>> [t,y] = ode45('firstorder', [0 20], 0,[], 1, 2, 5);
call ode 45 with name of do/dt file,
[020] means run from $t=0$ to 20,
0 is initial value of $O,[]$ is dummy, 125 are I, K, T
> plot(\dagger, y): $\quad \%$ to plot how y varies with \dagger
> plot(t,y-(2-2* $\exp (-+/ 5))$); \% Plot error also

p26 RJM 12/02/16
SE1CY15-Feedback - Part D

M-file using t - if input is $\sin (w t)$

function dobydt $=$ firstsin $(t, 0, f l a g, w, K, T)$
\% Function to calculate do/dt for first order system
$\%+$ is time, 0 is current output
$\% w$ is ang freq of input, K and T are paras of system
\% Prof Richard Mitchell, 31/3/11
dobyd $\dagger=\left(\sin \left(w^{\star} \dagger\right) * K-o\right) / T$;
> [\dagger, y]=ode45('firstsin', [0 20], 0,[], 3, 2, 5);
$\gg \operatorname{plot}(t, y)$
NB y of form
$A \sin (w t-B)+C e^{-t / T}$
p27 RJM 12/02/16

SE1CY15 - Feedback - Part D
Q Prof
SE1CY15 - Feedback - Part D
O Prof Richard Mitchell 2016

Lecture 17 - In Class Exercise

Complete the following function so as to simulate the above
function dobydt $=$ firstorder (\dagger, o, flag, I, C, K, T)
\% Function to calculate do/dt for motor control system
p28 RJM 12/02/16 SE1CY15 - Feedback - Part D SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016 very

Second Order Systems - 2 integrators

A first order system has one integrator ... Eg for motor velocity

To model output position, O, add integrator - a second order system

$\frac{d V}{d t}=\frac{K^{\star} I-V}{T}$
$\frac{d O}{d t}=V$

Control of Motor Position

Another second order system - one which controls motor position
Take motor position model, put in feedback system

Describe by two equations In terms of O and V
$V=\frac{d O}{d t}$
$\frac{d V}{d t}=\frac{C^{\star} K^{\star}(I-O)-V}{T}$

We simulate by writing an m file to return both $d V / d t$ and $d O / d t$
© Prof Richard Mitchell 2016

Simulate - again using ode45

Now have vector for O and V and see how both change ...

$$
o v=\left[\begin{array}{l}
O \\
V
\end{array}\right] \quad \frac{d o v}{d t}=\left[\begin{array}{l}
\frac{d O}{d t} \\
\frac{d V}{d t}
\end{array}\right]=\left[\begin{array}{c}
V \\
\frac{C K(I-O)-v}{T}
\end{array}\right]
$$

In MatLab, ov is vector $=[0 ; \mathrm{V}] . \mathrm{ov}(1)$ is $\mathrm{O}, \mathrm{ov}(2)$ is $\mathrm{V} .$. then
function dovbydt $=$ motorpos (\dagger, ov, flag, I, C, K, T)
$\%$ Function to calculate do/dt for first order system
$\%+$ is time, ov(1) is output O, ov (2) is velocity V ; flag is dummy $\% I$ is input, C is controller, K and T motor parameters dovbydt $=\left[\operatorname{ov}(2) ;\left((I-\operatorname{ov}(1)){ }^{*} C^{*} K-\operatorname{ov}(2)\right) / T\right] ;$
p31 RJM 12/02/16
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016 © Prof Richard Mitchell 2016

Another Example - Mass Spring System

This has similarities with a car suspension
Pull one end of spring, object at other end moves, friction exists
Spring extended : force generated is k * $\left(x_{i}-x_{0}\right)$
Friction force opposes this, is $F^{*} v \quad v$ is diff. of x_{0}
Net Force is thus $k^{*}\left(x_{i}-x_{0}\right)-F^{*} v$
This must equal m * acceleration $=m d v / d t$
p32 RJM 12/02/16
SE1CY15-Feedback - Part D
© Prof Richard Mitchell 2016

Block Diagram and ODEs

Have x_{i}, assume $x_{0},\left(x_{0}-x_{i}\right)^{*} k$ gives Spring force SF
Assume velocity, get frictional force FF , then net force $=$ SF- FF Divide by m and integrate to get velocity; integrate again for x_{0}

$\frac{d x_{0}}{d t}=v$; and $\frac{d v}{d t}=\frac{\text { Spring } F-\text { Frictional } F}{m}=\frac{k\left(x_{i}-x_{0}\right)-F v}{m}$
p33 RJM 12/02/16
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

MatLab Code

$$
\frac{d x_{0}}{d t}=v ; \text { and } \frac{d v}{d t}=\frac{k\left(x_{i}-x_{0}\right)-F v}{m}
$$

$$
\text { function } d x v b y d t=\text { massspring }(t, x v, f l a g, x i, k, F, m)
$$

\% Function to calculate $\mathrm{dxv} / \mathrm{d} t$ for first order system $\%+$ is time $x v(1)$ is output $x o, x v(2)$ is velocity; flag is dummy $\% x i$ is input, k is spring constant; F is friction; m is mass $d x v b y d t=\left[x v(2) ;\left(k^{*}(x i-x v(1))-F^{*} x v(2)\right) / m\right]$;

Now to use m file, call ODE45 at prompt:
p34 RJM 12/02/16
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

Have defined m file, now use it

>> [$\dagger, x v$] = ode45('massspring' , [0 10], [0;0], [], 1, 3, 4, 1);
$\gg \operatorname{plot}(t, x v)$;
$\%$ plots xo $v+$ and v vs \dagger

Looks like x_{0} very close to 1 by $t=6$
p35 RJM 12/02/16
SE1CY15-Feedback - Part D SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

Syentics

Two other results

$$
\text { k now } 4 \text { (not 3); F still 4, m still } 1
$$

k still 4; F now 1.12 , m still 1

x_{0} very close to 1 at $t=4$: faster
We will explain these different responses next week p36 RJM 12/02/16

SE1CY15 - Feedback - Part D
@ Prof Richard Mitchell 2016
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

Another example - LCR circuit

In MatLab

Again have 2 element vectors
Now variable is vector $\left[\begin{array}{l}V \\ I\end{array}\right]$ and m-file finds $\left[\begin{array}{l}\frac{d V}{d t} \\ \frac{d I}{d t}\end{array}\right]=\left[\begin{array}{c}\frac{1}{C} * I \\ \frac{E-V-I^{*} R}{L}\end{array}\right]$
In MatLab, vi is vector, vi = [V; I]
function dvibyd $t=$ LCRCircuit (t, vi, flag, E, R, C, L)
\% Function to calculate $\mathrm{dvi} / \mathrm{d} t$ for circuit
$\% \dagger$ is time, $\mathrm{vi}(1)$ is voltage $\mathrm{V}, \mathrm{vi}(2)$ is current I ; flag is dummy
$\% E$ is input, R, C and L are components
dvibydt $=[v i(2) / C ;(E-v i(1)-v i(2) \star R) / L] ;$
p38 RJM 12/02/16
SE1CY15 - Feedback - Part D SE1CY - Feedback - Part D Cen

Some Runs: $C=0.01 \mathrm{~F} ; L=0.25 \mathrm{H}$
V vs \dagger

I vs \dagger

p39 RJM 12/02/16
SE1CY15 - Feedback - Part D
O Prof Richard Mitchell 2016
© Prof Richard Mitchell 2016

\qquad

18 - Second Order Systems vs Time

Last week we looked at some second order systems,
We saw different step responses depending on parameter values

This week we find out why
By extending the analysis of first order systems, where steady state and transient responses found from transfer function
p41 RJM 12/02/16
SE1CY15-Feedback - Part D
© Prof Richard Mitchell 2016 Cyelpetis
\longrightarrow

Summary

We have seen how to simulate systems
Simple Euler integration is ok, but there are errors
The ode45 function is much more accurate
You just need to write a function define $\mathrm{dO} / \mathrm{d} \dagger$
We have looked at some second order systems
Different examples have been described
Shown how ode45 simulates these - as two first orders
Whilst first order step response has same shape, different shapes occur for second order

Next week we find out why ...

Second Order Unit Step Response

$$
\frac{O}{I}=\frac{C^{\star} K}{T s^{2}+s+C^{\star} K}
$$

Steady State, set sto (as I step), in transfer function

$$
O_{s s}=\frac{C K}{T^{\star} 0+0+C K}=1
$$

Transients found by values of s where denominator is 0 (roots)
Three response types, depending on roots of $T s^{2}+s+C^{\star} K=0$

If $1>4 C K T$, two real roots,	overdamped response
If $1=4 C K T$, two identical roots,	critically damped
If $1<4 C K T$, two complex roots,	underdamped response
P45 RJM 12/02/16	SE1CY15 - Feedback- Part D © Prof Richard Mitchell 2016

Example Overdamped Response

If $T=0.01, C=9, K=1 ;\left(0.01 s^{2}+s+9\right)=(0.1 s+1)(0.1 s+9)$
Transfer function can be expressed as $\frac{K_{1}}{0.1 s+1}+\frac{K_{2}}{0.1 s+9}$
Roots are $-\frac{1}{0.1}=-10$ and $-\frac{9}{0.1}=-90$;
Each term contributes an exponential
So Transient has form $\mathrm{K}_{1} \mathrm{e}^{-10 t}+\mathrm{K}_{2} e^{-90 \dagger}$
Thus complete response is

$$
O(t)=1+K_{1} e^{-10 t}+K_{2} e^{-90 t}
$$

$\begin{array}{ll}\text { p46 RJM 12/02/16 } & \begin{array}{l}\text { SE1CY15 - Feedback - Part D } \\ \text { OProf Richard Mitchell 2016 }\end{array} \\ \end{array}$

Graph and Full Response

For interest: Finding Values of Ks

Lecture 18 - In Class Exercise

$$
\frac{O}{I}=\frac{C^{\star} K}{T s^{2}+s+C^{\star} K} \quad \text { where } T=0.02, C=6, K=2
$$

Denominator is $\left(0.02 s^{2}+s+12\right)=(0.2 s+4)(0.1 s+3)$
Determine O if I is unit step in form $x+K_{1} e^{-y t}+K_{1} e^{-z t}$
NB find x, y and z, but not K 's

A Critically Damped Response

If $T=1 / 36, C=9, K=1 ;\left(s^{2} / 36+s+9\right)=(s / 6+3)^{2}$
Transfer function in form $\frac{K_{1}}{s / 6+3}+\frac{K_{2}}{(s / 6+3)^{2}}$
Repeated root of -18 ;
Transient of form $K_{1} e^{-18 t}+K_{2} t e^{-18 t} \quad 1$
So $O(t)=1+\left(K_{1}+K_{2} \dagger\right) e^{-18 t}$
If $O=\frac{d O}{d t}=0$ at $t=0$ can show
$O(t)=1-\left(1+18^{\star} \dagger\right) e^{-18 \dagger}$

O never exceeds $O_{s s}$ Fastest response without exceeding $O_{s s}$. P50 RJM 12/02/16 SE1CY15-Feedback - Part D © Prof Richard Mitchell 2016

Even More Underdamped

If $T=1 / 4, C=50, K=1 ;\left(s^{2} / 4+s+50\right)=(s / 2+1)^{2}+7^{2}$
Has complex roots: $-2 \pm j 14$;
Transient of form $K_{1} e^{-2 t} \cos (14 t)+K_{2} e^{-2 t} \sin (14 t)$
So $O(t)=1+K_{1} e^{-2 t} \cos (14 t)+K_{2} e^{-2 t} \sin (14 t)$
If $O=\frac{\mathrm{d} O}{\mathrm{~d} t}=0$ at $t=0$
$O(t)=1-e^{-2 t} \cos (14 t)-\frac{1}{7} e^{-2 t} \sin (14 t)$

| Higher C gain, faster rise, but |
| :--- | :--- |

| more oscillatory, longer to settle |
| :--- | :--- |

P52 RJM 12/02/16

SE1CY15 - Feedback - Part
OProf Richard Mitchell 2016

If $T=1 / 4, C=10, K=1$; Denominator $s^{2} / 4+s+10$
By completing the square this is $(s / 2+1)^{2}+3^{2}$

Hence have complex roots $-2 \pm \mathrm{j} 6$;
Hence $O(t)=1+K_{1} e^{-2 t} \cos (6 t)+\mathrm{K}_{2} e^{-2 t} \sin (6 t)$
For why see after last slide
K 's depend on initial conditions,
but if $O=\frac{d O}{d t}=0$ at $t=0$
$O(t)=1-e^{-2 t} \cos (6 t)-\frac{1}{3} e^{-2 t} \sin (6 t)$
O exceeds $O_{s s}$ before oscillating back Faster rise than critically damped

How underdamped

$s^{2} / 4+s+10$ has roots $-2 \pm j 6$ slightly underdamped $s^{2} / 4+s+50$ has roots $-2 \pm j 14$ more underdamped
$s^{2} T+s+C K$ underdamped if $1<4 C K T$
The more $1<4 C K T$, the more underdamped the response
So, for control system, if given K and T, system can be made less oscillatory by reducing C.
Let's consider another example where there are oscillations And how these are damped ...

Rocking Robot

When ERIC accelerates, it pivots about axis between wheels
$A=$ acceleration $B=$ body angle
Model is in effect motor inertia
giving velocity, integrated for position in a loop

$$
\frac{B}{A}=\frac{4}{9 s^{2}+s+4}
$$

Clearly $1<36$, so lots of oscillation

Continued

Solution is to measure the angle of the board and feedback
Key - feedback change in angle ... Differentiated angle

If want to stop oscillation ... Make critically damped

$$
(C+1)^{2}=4^{\star} 4^{\star} 9 \ldots \quad C+1=12 \quad \ldots C=11 .
$$

p55 RJM 12/02/16
SE1CY15-Feedback - Part D © Prof Richard Mitchell 2016

Summary

In this lecture : the step response of second order systems. Again, steady state response is found by setting s to 0 . And transient is determined by the roots of the denominator Overdamped (does not exceed Oss) if two real roots Critically damped (fastest for no overshoot) if repeated roots Underdamped (goes pass Oss, oscillates) if complex roots Saw also how velocity feedback can dampen oscillations $\frac{O}{I}=\frac{40}{s^{2}+7 s+10}$ I unit step. What is $O_{s s}$ and what form is O_{+}?

Next week - formalise damping - and relate to Q factor
p56 RJM 12/02/16 SE1CY15-Feedback - Part D
EE1CK Piceed Mack - Part

For Interest - why this answer

If $T=1 / 4, c=10, K=1$; Denominator $s^{2} / 4+s+10=(s / 2+1)^{2}+3^{2}$ Hence have complex roots $-2 \pm j 6$; so transient $K e^{-2 \pm j 6}$

But $e^{(-2+j 6) t}=e^{-2 \dagger}(\cos 6 t+j \sin 6 t)$
Suggesting transient is

$$
K_{1}^{\prime} e^{-2 t}(\cos (6 t)+j \sin (6 t))+K_{2}^{\prime} e^{-2 t}(\cos (6 t)-j \sin (6 t))
$$

But must be purely real.
Can show (next slide) $K_{1}=\frac{1}{2}\left(K_{1}^{\prime}+K_{2}^{\prime}\right)$ and $K_{2}=\frac{1}{2}\left(j K_{1}^{\prime}-j K_{2}^{\prime}\right)$
So transient of form $K_{1} e^{-2 t} \cos (6 t)+K_{2} e^{-2 t} \sin (6 t)$
Hence $O(t)=1+K_{1} e^{-2 t} \cos (6 t)+K_{2} e^{-2 t} \sin (6 t)$
p57 RJM 12/02/16
SE1CY15-Feedback - Part D
© Prof Richard Mitchell 2016

Why these values of K_{1} and K_{2}

$K_{1}^{\prime} e^{-2 t}(\cos (6 t)+j \sin (6 t))+K_{2}^{\prime} e^{-2 t}(\cos (6 t)-j \sin (6 t))$ must be real Assume $K_{1}^{\prime}=a+j b$ and $K_{2}^{\prime}=c+j d$, ignore common $e^{-2 \dagger}$ term:
$(a+j b)(\cos (6 t)+j \sin (6 t))=a \cos (6 t)-b \sin (6 t)+j b \cos (6 t)+j a \sin (6 t)$
$(c+j d)(\cos (6 t)-j \sin (6 t))=c \cos (6 t)+d \sin (6 t)+j d \cos (6 t)-j c \sin (6 t)$
Add these. Result must be real, so $b=-d$ and $a=c$, then get $a \cos (6 t)-b \sin (6 t)+c \cos (6 t)+d \sin (6 t)=2 a \cos (6 t)+2 b \sin (6 t)$
Hence $K_{1}^{\prime}=a+j b$ and $K_{2}^{\prime}=a-j b \Rightarrow K_{1}^{\prime}+K_{2}^{\prime}=2 a$ and $K_{1}^{\prime}-K_{2}^{\prime}=2 j b$
So indeed $K_{1}=\frac{1}{2}\left(K_{1}^{\prime}+K_{2}^{\prime}\right)$ and $K_{2}=\frac{1}{2}\left(j K_{1}^{\prime}-j K_{2}^{\prime}\right)$
So transient is $K_{1} e^{-2 \dagger} \cos (6 t)+K_{2} e^{-2 \dagger} \sin (6 t)$
p58 RJM 12/02/16 SE1CY15 - Feedback - Part D
SE1CY15 - Feedback - Part D
O Prof Richard Mitchell 2016

19 : Damping and Second Order Freq

We saw last week the step response of second order system, eg

$$
\frac{O}{I}=\frac{C^{\star} K}{T s^{2}+s+C^{\star} K}
$$

From the transfer function we can
easily assess the steady state output: $C K / C K=1$
the transient response varies depending on the TF denominator two real roots, one repeated root or complex roots This week we assess these responses using 'damping ratio' This in fact relates to the Q factor used in electronics Which naturally leads to second order frequency response

Transfer Function and Damping

$$
\frac{O}{I}=\frac{C^{\star} K}{T s^{2}+s+C^{\star} K}
$$

We have had over-, critically- and under- damped systems.

Control Engineers express systems in terms of 'damping' ratio ζ

$$
\frac{O}{I}=\frac{\frac{C K}{T}}{s^{2}+\frac{1}{T} s+\frac{C K}{T}}=\frac{K^{\prime}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \quad \omega_{n}=\sqrt{\frac{C K}{T}} ; \quad \zeta=\frac{1}{\sqrt{4 C K T}}
$$

ζ is 1 when 4CKT $=1$, system critically damped : denom $\left(s+w_{n}\right)^{2}$ If $\zeta>1$, system is overdamped : denom has form $(s+a)(s+b)$ If $\zeta<1$, system is underdamped : roots of denom are complex As we shall see, this relates to Q factor in electronics
p60 RJM 12/02/16
SE1CY15 - Feedback - Part D
O Prof Richard Mitchell 2016

Damping Ratio For Last Week's Examples

SE1CY15 - Feedback - Part D
O Prof Richard Mitchell 2016
© Prof Richard Mitchell 2016

No oscillations, Slowest to Rise Approach Steady State at 0.5s
p61 RJM 12/02/16
$\mathrm{T}=1 / 36, C=9, \mathrm{~K}=1$
$\frac{324}{s^{2}+36 s+324}$
$\zeta=\frac{1}{\sqrt{4^{\star} 9^{\star} 1 / 36}}=1$;
$\omega_{n}=\sqrt{324}=18$

astest with no oscillations Fastest with no oscilla
Approach SS at 0.4 s
\qquad

UnderDamped Examples

$$
\begin{array}{ll}
\mathrm{T}=1 / 4, C=10, \mathrm{~K}=1 ; & \mathrm{T}=1 / 4, C=50, \mathrm{~K}=1 ; \\
\frac{40}{\mathrm{~s}^{2}+4 \mathrm{~s}+40} & \frac{200}{\mathrm{~s}^{2}+4 \mathrm{~s}+200} \\
\zeta=\frac{1}{\sqrt{4^{\star} 10^{\star} 1^{\star} 1 / 4}}=\frac{1}{\sqrt{10}}=0.316 & \zeta=\frac{1}{\sqrt{4^{\star} 50^{\star} 1^{\star} 1 / 4}}=\frac{1}{\sqrt{50}}=0.14 \\
\omega_{n}=\sqrt{40}=6.32 \mathrm{rad} / \mathrm{s} & \omega_{n}=\sqrt{200}=14.1 \mathrm{rad} / \mathrm{s} \\
1.5 \\
1 \\
0.5 & 2.5 \\
0 & 1.5 \\
\text { Faster to rise, but oscillates } & \text { Faster, more oscillatory }
\end{array}
$$

p62 RJM 12/02/16
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016
© Prof Richard Mitchell 2016

In Class Exercise

$\operatorname{LCR} \frac{V_{0}}{V_{s}}=\frac{1}{s^{2} L C+s C R+1}=\frac{1 / L C}{s^{2}+s^{R} / L+1 / L C}$
$\omega_{n}^{2}=\frac{1}{L C} ;$ so $\omega_{n}=\sqrt{\frac{1}{L C}} ; 2 \zeta \omega_{n}=\frac{R}{L}$; so $\zeta=\frac{R}{2 L \omega_{n}}=\frac{R}{2} \sqrt{\frac{C}{L}}$
For the following, calculate ω_{n} and ζ and state if overdamped, etc
$\mathrm{L} \quad C \quad \mathrm{R} \quad \omega_{n}=\frac{1}{\sqrt{L C}} \quad \zeta=\frac{R}{2} \sqrt{\frac{C}{L}} \quad$ Status
$400 \mathrm{mH} \quad 2.5 \mu \mathrm{~F} \quad 200 \Omega$
$400 \mathrm{mH} \quad 2.5 \mu \mathrm{~F} \quad 800 \Omega$
$400 \mathrm{mH} \quad 2.5 \mu \mathrm{~F} \quad 40 \Omega$
$400 \mathrm{mH} \quad 2.5 \mu \mathrm{~F} \quad 3200 \Omega$
p64 RJM 12/02/16 SE1CY15-Feedback - Part D © Prof Richard Mitchell 2016

Frequency Response of RC Circuit

$\frac{V_{0}}{V_{s}}=\frac{1}{1+j \omega C R} \quad$ Freq Resp : how varies with ω, polar/Bode plot
For Bode, plot \log (gain) vs $\log (\omega)$ and phase vs $\log (\omega)$
Saw asymptotic approximations before/after corner freq 1/CR
At Corner Freq, phase half way between 0 and $-90 . . .1=\omega C R$

Second Order Frequency Response

Now consider LCR circuit: earlier diagram but \int or $1 / s=1 / j \omega$

$\frac{V_{0}}{V_{S}}=\frac{\frac{1}{R} \star \frac{1}{j \omega C}}{1--\frac{1}{R} \star \frac{1}{j \omega C}--j \omega L \frac{1}{R}}=\frac{1}{j \omega C R+1+j^{2} \omega^{2} L C}=\frac{1}{1-\omega^{2} L C+j \omega C R}$
At low $\omega, \frac{V_{0}}{V_{S}}=\frac{1}{1}=1 \angle 0 ;$ At high $\omega \frac{V_{0}}{V_{S}}=\frac{1}{j^{2} \omega^{2} L C}=\frac{1}{\omega^{2} L C} \angle-180$
p66 RJM 12/02/16
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

Corner Frequency and \mathbf{Q}

$$
\frac{V_{0}}{V_{s}}=\frac{1}{1-\omega^{2} L C+j \omega C R}
$$

Consider what happens when $1-\omega^{2} L C=0$ or $\omega=\frac{1}{\sqrt{L C}}$

$$
\frac{V_{0}}{V_{s}}=\frac{1}{j \omega C R} \text { so Gain }=\frac{1}{\omega C R} \text { Phase }=-90^{\circ}
$$

Phase half way between 0 and $-180 \ldots$ so this is corner freq (first order system, corner freq where phase half way $0 . .-90$)
Specifically $\omega=\frac{1}{\sqrt{L C}}$, Gain $=\frac{1}{\omega C R}=\frac{1}{R} \sqrt{\frac{L}{C}}=$ Q; Phase $=-90^{\circ}$
This is angular frequency ω_{0}, when gain is Q (quality factor)
p67 RJM 12/02/16
SE1CY15 - Feedback - Part D SE1CY15 - Feedback - Part D
@ Prof Richard Mitchell 2016虎

Polar Plot

L	C	R	$\omega_{n}=\frac{1}{\sqrt{L C}}$	$Q=\frac{1}{R} \sqrt{\frac{L}{C}}$
400 mH	$2.5 \mu \mathrm{~F}$	200Ω	$1000 \mathrm{rad} / \mathrm{s}$	2
400 mH	$2.5 \mu \mathrm{~F}$	800Ω	$1000 \mathrm{rad} / \mathrm{s}$	0.5
400 mH	$2.5 \mu \mathrm{~F}$	40Ω	$1000 \mathrm{rad} / \mathrm{s}$	10
400 mH	$2.5 \mu \mathrm{~F}$	3200Ω	$1000 \mathrm{rad} / \mathrm{s}$	0.125

$\gg+f=1 . /\left(-L^{\star} C^{\star} w^{\wedge} 2+w^{\star} C^{\star} R+1\right)$;
\gg plot(real(tf),imag(tf)) :
Plot varies $1 \angle 0^{\circ}$.. $0<-180^{\circ}$
Q is gain when phase -90°
NB plot shape changes with Q

p68 RJM 12/02/16
SE1CY15 - Feedback - Part D © Prof Richard Mitchell 2016

2nd Order Asymptotic Analysis

$$
\frac{V_{0}}{V_{s}}=\frac{1}{1-\omega^{2} L C+j \omega C R}
$$

At very low $\omega, \frac{V_{0}}{V_{s}} \approx 1$, so Gain $=1$. Phase $=0$.
So Gain asymptote is straight line, slope 0
At very high $\omega, \frac{V_{0}}{V_{S}} \approx \frac{1}{j^{2} \omega^{2} L C} ;$ Gain $\frac{1}{\omega^{2} L C}$ and Phase $=-180^{\circ}$
plot $\log \left(\frac{1}{\omega^{2} L C}\right)=\log \left(\frac{1}{L C} * \omega^{-2}\right)=\log \left(\frac{1}{L C}\right)-2 \log (\omega)$
So Gain asymptote is straight line, slope -2
Asymptotes meet when $1-\omega^{2} L C=0: \omega=\sqrt{\frac{1}{L C}}$
p69 RJM 12/02/16 $\begin{array}{ll} & \begin{array}{l}\text { SE1CY15 - Feedback - Part D } \\ \text { OProf Richard Mitchell } 2016\end{array}\end{array}$ \qquad yen vetics

Bode Plot Asymptotes plus actual

Suppose
$\mathrm{L}=400 \mathrm{mH}$,
$R=200 \Omega$ and
$C=2.5 \mu \mathrm{~F}:(\mathrm{Q}=2)$
Asymptotes meet when
$\omega=\sqrt{\frac{1}{L C}}$
$=\frac{1}{\sqrt{400^{*} 10^{-3 *} * 2.5^{\star} 10^{-6}}}$

$=10^{3}$
$N B$, here gain rises from initial value, as $Q=2$. (earlier slide)

P70 RJM 12/02/16	SE1CY15 - Feedback - Part D O Prof Richard Mitchell 2016

How Q affect Bode Plots

Q affects how gain/phase move between asymptotes
Plots below for same LCR examples given earlier

Higher Q - higher peak ... Faster change of phase.
p71 RJM 12/02/16
SE1CY15-Feedback - Part D SE1CY15-Feedback - Part D
OProf Richard Mitchell 2016

On Bode Peaking and Underdamped

$$
\begin{array}{lr}
\frac{V_{0}}{V_{s}}=\frac{1}{1-\omega^{2} L C+j \omega C R} & \text { When } 1-\omega^{2} L C=0, \\
\frac{V_{0}}{V_{s}}=\frac{1}{j \omega C R}=\frac{\sqrt{L C}}{j C R}=\frac{1}{j} \sqrt{\frac{L}{C R^{2}}}
\end{array}
$$

If $\sqrt{\frac{L}{C R^{2}}}>1,\left|\frac{V_{0}}{V_{S}}\right|$ rises from 1 to a peak
To test if a system is underdamped we solve $s^{2} L C+s C R+1=0$

$$
\text { Complex roots if } C^{2} R^{2}<4 L C \text { or } 4 \frac{L}{C R^{2}}>1 \text { or } 2 \sqrt{\frac{L}{C R^{2}}}>1
$$

$$
\text { So if } \sqrt{\frac{L}{C R^{2}}}>1, V_{0} \text { will be underdamped }
$$

The bigger $\sqrt{\frac{L}{C R^{2}}}$ the bigger the peak, the more underdamped
P72 RJM 12/02/16 SE1CY15-Feedback - Part D
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

Q factor and Damping Ratio

In Electronics, Q factor is used. In Control Damping ratio ..
In electronics, TF denominator of form $\quad 1+j \omega / \omega_{0} Q-\omega^{2} / \omega_{0}^{2}$
For $L C R \quad \omega_{0}=\frac{1}{\sqrt{L C}} \quad Q=\frac{1}{R} \sqrt{\frac{L}{C}}$
In control, express TF denominator as $1+j 2 \zeta \omega / \omega_{n}-\omega^{2} / \omega_{n}^{2}$
For $L C R \quad \omega_{n}=\frac{1}{\sqrt{L C}} \quad \frac{2 \zeta}{\omega_{n}}=2 \zeta \sqrt{L C}=C R$ so $\zeta=\frac{R}{2} \sqrt{\frac{C}{L}}$
$\omega_{n}=\omega_{0} \quad \zeta=\frac{1}{2 Q} \quad \zeta$ is damping ratio
Underdamped if $\zeta<1$. Note factor of 2 .
p73 RJM 12/02/16
SE1CY15 - Feedback - Part D SE1CY15 - Feedback - Part D
〇 Prof Richard Mitchell 2016

Summary

We have looked more at second order systems
The step response has different forms
Which can be defined in terms of damping ratio
The frequency response also has different forms Which can be defined in terms of Q factor
They are related : $Q=1 / 2 \zeta$
We have reaffirmed the asymptotic approximations
Used to plot the band pass filter
And motor position ...
Next week we tidy up the course : modelling of animal systems
p79 RJM 12/02/16
SE1CY15 - Feedback - Part D © Prof Richard Mitchell 2016

20: Modelling Animal Systems

Cybernetics, control and communication in animal and machine...
Consider a Population model, if P is the population size:
Change of Pop is a function of P : more P, more kiddies $\frac{d P}{d t}=P *(b-d) \quad b$ and d are birth and death rates

Population model is a feedback system with integrator.

If $b>d, P$ increases without limit.
If $b<d, P$ decreases to zero.

p80 RJM 12/02/16
SE1CY15 - Feedback - Part D © Prof Richard Mitchell 2016

More Complicated But Realistic Model

The above is very simple \& unrealistic. Need better model
So define birth rate as $b_{1}-b_{2}^{*} p$
And death rate as $d_{1}+d_{2} * P$.
Then model becomes $\quad \frac{d P}{d t}=\left(b_{1}-d_{1}-\left(b_{2}+d_{2}\right) * P\right) * P$
Population stablises when above $=0$, ie when $P=0$ (boring)

$$
\text { or } b_{1}-d_{1}-\left(b_{2}+d_{2}\right) P=0 \text { i.e. when } P=\frac{b_{1}-d_{1}}{b_{2}+d_{2}}
$$

function dpbydt $=\operatorname{pop}(t, p$, flag, vals $) \% m$ file
\% vals has [b1,d1,b2,d2]
$d p b y d t=\left(\operatorname{vals}(1)-\operatorname{vals}(2)-(\operatorname{vals}(3)+\operatorname{vals}(4))^{\star} p\right)^{\star} p ;$
p82 RJM 12/02/16 SE1CY15 - Feedback - Part D © Prof Richard Mitchell 2016

Classic Foxes and Rabbits Example

Now consider multiple interacting species:
can be mutualistic, competitive or predator prey.
Here do classic predator prey example - foxes \& rabbits Let F be number of foxes and R be number of rabbits. System model, as follows, where a, b, c, d are constants:

$$
\frac{d R}{d t}=a^{\star} R-b^{\star} R^{\star} F \quad \frac{d F}{d t}=c^{\star} R^{\star} F-d^{\star} F
$$

Note positive and negative feedback in $d R / d t$ expression
First term +ve fb : more $\mathrm{R}, \mathrm{dR} / \mathrm{dt}+\mathrm{ve}$, so more R
Second term -ve fb: more F, so $d R / d t-v e$, so less R.
p84 RJM 12/02/16
SE1CY15 - Feedback - Part D

Stable Foxes and Rabbits?

$$
\frac{d R}{d t}=a^{\star} R-b^{\star} R^{\star} F \quad \frac{d F}{d t}=c^{\star} R^{\star} F-d^{\star} F
$$

Population stable when change of both populations 0

$$
a * R-b * R * F=0 \text { i.e } R=0 \text { (boring) or } F=a / b
$$

$$
\text { and } \quad c^{*} R * F-d^{*} F=0 \quad \text { i.e. } F=0 \text { or } R=d / c
$$

In fact populations cycle round these values.
We can show this in MATLAB
Again need function to return change in population Now have two species, so P is column vector as is $d P / d t$

Foxes, Rabbits and Triffids

Novel extension of method (thanks to Dave Keating)
Classic: Rabbits eat grass, Foxes eat Rabbits
Extension: Rabbits eat Triffids (plant), Triffids eat Foxes

$$
\begin{aligned}
& \frac{d R}{d t}=0.001^{\star} R^{\star} T-0.06^{*} R^{\star} F \\
& \frac{d F}{d t}=0.0001^{\star} R^{\star} F-0.00005^{\star} F^{\star} T \\
& \frac{d T}{d t}=0.025^{\star} T+0.00015^{\star} F^{\star} T-0.00003^{\star} R^{\star} T
\end{aligned}
$$

In graph over vs time, Foxes scaled by 20 so can see
p87 RJM 12/02/16 SE1CY15-Feedback - Part D
© Prof Richard Mitchell 2016

Lecture 20 - In Class Exercise

Population P model: $\frac{d P}{d t}=\left(b_{1}-d_{1}-\left(b_{2}+d_{2}\right) \star P\right) * P$
Suppose $b_{1}=10, d_{1}=6, b_{2}=0.7$ and $d_{2}=0.3$
At what population will P stabilise?
Sketch 2 graphs of P vs time superimposed on same axes: first has $P=10$ initially (at time 0); second has $P=2$ then.

Mutualistic Species

Where species assist each other - mutualists
x affects y in a positive manner, and y affects x similarly
e.g. Hippo and Bird which eats weed round Hippo's teeth Flowers and pollinating insects ...
As both help each other, have run away positive feedback So, need 'negative' feedback to limit $x \& y$ - eg food/land

Simple Mutualistic System

$$
\frac{d x}{d t}=\left(-13-2 x^{2}+21 y\right)^{\star} x \quad \frac{d y}{d t}=\left(-13+8 x-3 y^{2}\right)^{\star} y
$$

Formal analysis is tricky, but can estimate response.
Find values of x and y where x and y constant : diffs $=0$ We then plot these on graphs of y vs x
$\frac{d x}{d t}=0$ where $-13-2 x^{2}+21 y=0$ and where $x=0$
$\frac{d y}{d t}=0$ where $-13+8 x-3 y^{2}=0$ and where $y=0$
Stable where $a \frac{d x}{d t}=0$ line intersects with $a \frac{d y}{d t}=0$ line
p91 RJM 12/02/16 SE1CY15 - Feedback - Part D
O Prof Richard Mitchell 2016 © Prof Richard Mitchell 2016

Simple Mutualistic System

$\frac{d x}{d t}=\left(-13-2 x^{2}+21 y\right)^{\star} x$

$$
\frac{d y}{d t}=\left(-13+8 x-3 y^{2}\right)^{\star} y
$$

For $\mathrm{d} x / \mathrm{dt}$, one line is $\mathrm{x}=0$
In MATLAB for other $\mathrm{d} x / \mathrm{d} \dagger$ line, as has x^{2} term, use

$$
\gg x=[2: 6] ; y=\left(13+2 * x .^{\wedge} 2\right) / 21 ;
$$

Do something similar for $d y / d t$
$\begin{array}{llllllllllll}x & 2 & 3 & 4 & 5 & 6 & y & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllllllllll}y & 1 & 1.9 & 2.5 & 3 & 3.4 & x & 2 & 3.8 & 5 & 6 & 6.8\end{array}$
NB $\mathrm{d} x / \mathrm{d}+$ and $\mathrm{dy} / \mathrm{dt}$ both zero when $x, y=2,1$ and 5,3
Both functions also zero when $x, y=0,0$.
We plot these 'isoclines' on phase plane plot (x vs y)
p92 RJM 12/02/16
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

Plot Zero Isoclines on Phase Plane

The iscolines for $\mathrm{d} x / \mathrm{dt}$ are $\mathrm{x}=0$ and $-13-2 x^{2}+21 y=0$
Those for dy/dt are $y=0$ and $-12+8 x-3 y^{2}=0$
Eq points: where $a d x / d t$ isocline and a $d y / d t$ isocline meet
Main iso's meet at 2,1 and 5,3; $x=0$ and $y=0$ meet at 0,0
p93 RJM 12/02/16
SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016

Arguing Stability

But, one point not stable - if move from there don't return. To argue this, label each region with sign of $d x / d t \& d y / d t$ e.g. ${ }^{++}=d x / d t>0 \& d y / d t>0 \quad-+=d x / d t<0 \& d y / d t>0$

Go to 5,3 or 0,0 - stable points
p94 RJM 12/02/16 SE1CY15-Feedback - Part D
© Prof Richard Mitchell 2016

Summary

We have looked at modelling feedback systems control systems
population models of single or multiple species
Now course ends,
an introduction has been given to feedback systems
showing variety and application
There will be revision lecture in Summer
You are recommended to do the following exercise

