ernetics

In the final quarter of the course the topics are Using the Laplace Operator instead for ∫ (or 1/jw) Simulation of Systems - including 'animal' systems Second order systems - time and frequency responses This builds on models developed so far There we form block diagrams and then transfer functions For simulation, though, we revert back to differential equations

p1 RJM 12/02/16

SE1CY15 - Feedback - Part D © Prof Richard Mitchell 2016

SE1CY15 - Feedback - Part D

MatLab Code			
$\frac{dx_o}{dt} = v$; and $\frac{dv}{dt} = \frac{k(x_i - x_o) - Fv}{m}$		
function dxvbydt = massspring (t, xv, flag, xi, k, F, m) % Function to calculate dxv/dt for first order system % t is time, xv(1) is output xo, xv(2) is velocity; flag is dummy % xi is input, k is spring constant; F is friction; m is mass dxvbydt = [xv(2); (k * (xi - xv(1)) - F * xv(2)) / m];			
Now to use m file, call ODE45 at prompt:			
p34 RJM 12/02/16	SEICV15 - Feedback - Part D © Prof Richard Mitchell 2016 <u>Cytos feics</u>		

	Summary		
We have seen how to simulate systems			
Simple Euler integration is ok, but there are errors			
The ode45 function is much more accurate			
You just need to write a function define dO/dt			
We have looked at some second order systems			
Different examples have been described			
Shown how o	de45 simulates these - as two first ord	lers	
Whilst first order step response has same shape, different shapes occur for second order			
Next week we find out why			
p40 RJM 12/02/16	SE1CY15 - Feedback - Part D © Prof Richard Mitchell 2016	Cybernetics	

SE1CY15 - Feedback - Part D

SE1CY15 - Feedback - Part D

