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SE1CY15 Cybernetics and Circuits 
Feedback – Part D

Prof Richard Mitchell 

In the final quarter of the course the topics are

Using the Laplace Operator instead for ∫ (or 1/jω )

Simulation of Systems – including ‘animal’ systems

Second order systems – time and frequency responses

This builds on models developed so far

There we form block diagrams and then transfer functions

For simulation, though, we revert back to differential equations
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16 : The Laplace Operator

0.63K

t5*T

K

T 3*T

We have investigated the step response of systems, for instance

Rather than using Diff Eqn, easier to use Laplace operator …

I X
∫ O

K

dO
dt1

T

 
t-
TdO 1= K*I - O     O = K - Ke

dt T


t-
T

K    is steady state response

- Ke   is transient response
T sets the speed of response
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Introducing s – Laplace operator

 
dO 1 dO = K*I O   which can be written  T  + O = K*I
dt T dt

dOWe write as s O, so differential equation becomes
dt

    Ts O + O = K*I        or         (Ts + 1) O = K*I 

Very briefly s is introduced : it will help re block diagrams

It fits neatly with the Freq response we have already met

As an approximation, s means differentiation (1/s means integration)

Let’s apply it to a differential equation we have met …

O KHence,    =  
I Ts + 1

-t/TThen, if I unit step and O = 0 at t = 0: O = K - Ke  
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Why s helps – re block diagrams

Integration is inverse of differentiation, so ∫ = 1/s : as in diagram

I X O
K

dO
dt

∫
1
T

1
s

1 1*O Forward KT s =  = K *  =  1 1I 1-Loop 1 + sT1-- *
T s

K
1 + sT

So can redraw system as

Same as found from Diff Eqn

Consistent with freq response
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Key Point
For frequency response, all signals are sinusoids at ang freq ω

We replace all ∫ by 1/jω – and analyse block diagrams

Strictly, all signals are sinusoids under steady state

For other inputs (eg step), and for finding the transient response, 

We replace all ∫ by 1/s – and analyse block diagrams

For electronic circuits with sinusoids impedances are 

Resistor :   Z = R 1Capacitor :  Z = 
j C

Inductor:  Z = j L

For electronic circuits transients and other signals

Resistor :   Z = R 1Capacitor :  Z = 
sC

Inductor:  Z = sL

Use with circuit theory methods (Ohm, Kirchhoff, Thevenin, etc)
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RC Circuit Example

Vs Vo
1/R

I 1
sC

o
s

1 1*V Forward 1R sCSo  = =  = 1 1V 1-Loop sCR + 11-- *
R sC

-t/RC
s o oThen, if V  unit step and V  = 0 at t = 0: V  = 1 - e  
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Why s helps : Motor Control Example

OI X
MotorController

KC ∫

dO
dt1

T

(I - O)  * C * K  - OdO  = 
dt T

C * K * I - (1 + C * K) * O = 
T

C * K  * I -  * OdO 1 + C * K  = Tdt
1 + C * K

K' * I -  OGet in form  by dividing by 1 + C*K
T'

More difficult if form differential equation :

C * K T K' = ;   T' = 
1 + C * K 1 + C * K
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OI X
MotorController

KC

dO
dt1

T
1
s

K'
1 + sT'So can redraw system as

Where K’ and T’ are as on previous slide

Simpler using Laplace



CKCK
O Forward CK 1 + CKTs =  =  =  = CK 1 TI 1 - Loops sT + CK + 11 - - - - s  + 1

Ts Ts 1 + CK

-t/T'Then, if I unit step and O = 0 at t = 0: O = K' - K'e  
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Lecture 16 - In Class Exercise

Find O/I and hence final value K & time constant T if I is unit step

Final value = 60 / 61 = 0.984

Time Constant = 10 / 61 = 0.164

OI X
MotorController

320

dO
dt1

10
1
s

 

60 60
10s 61

60 101
6110s 10s

O 60 =  =  = 
I 10s 61 1 s1-- --
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Finding the System Response

O K = 
I 1 + sT

If I is a unit step, we know that O = K – K e-t/T

But how do we get this expression for O?

Answer – we analyse the transfer function

Concept applies to more complicated systems too

I X O
K

dO
dt1

T
1
s
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Finding the Step Response

Key point, O has two components

steady state , K and  transient, -K e-t/T 

Can find both from TF 

Steady state found by setting s to 0 (ie no change)

O K = 
I 1 + sT

ss
KO  =  * I = K (if I unit step)

1 + 0

Transient : find ‘value of s’ (root) so that denominator is 0:

sT + 1 = 0 if s = -1/T

Then transient is const * exp(st) = c * exp(–t/T)

So O = K + c exp(-t/T); 

If O = 0 at t = 0; 0 = K + c so c = -K, and hence O = K – K e-t/T
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Example

I X O
2

dO
dt 1

s8

K = 2 T = 1/8

I is unit step

O = 0 at t=0

Steady state is 2/1 = 2; Denominator is 0 when s = -8

Hence O = 2 + c e-t*8

At t = 0, 0 = 0, so 0 = 2 + c e0 = 2 + c; so c = -2

Hence, complete response is

O = 2 – 2 e –t*8

16
s 16

s + 88
s

O 2 =  =  or 
I 1 + s/81 - -
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Relating to Solving Differential Eqn
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I X O
2

dO
dt 1

s8
dO  = 8*(2*I - O)
dt
dO  + 8O  = 16I = 16
dt

Mathematicians find ‘particular integral’, as I is a constant..  

OPI found by 8OPI = 16;    OPI = 2

For ‘complementary function’ , find root of auxiliary equation

m + 8  = 0,   so m = -8; OCF = c e-t8

Hence O = 2 + c e-t8

In effect doing same method when using transfer function
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Control System

OI X
MotorController

320

dO
dt1

10
1
s

60
61
10

61

O 0.984 =  = 
I 1 + s0.1641 + s

In exercise found

Set s to 0, Oss = 0.984

Roots of denominator is s = -1/0.164 = -6.1, so Ot = c e-t*6.1

So O = 0.984 + c e-t*6.1

If O = 0, at t = 0, 0 = 0.984 + c

So O = 0.984 – 0.984 e-t*6.1

p15 RJM 12/02/16 SE1CY15 – Feedback – Part D
© Prof Richard Mitchell 2016

OI X
MotorController

KC

dO
dt1

T
1
s

P + I Control of Motor

ss
CKIf I is unit step, O  =  which is close to 1 only if CK big

1 + CK

1 2Make C = C  + C ,  so O at steady state if X is constant
Integrator output constant if its input is 0 : ie O = I

1 2
1 2

sC  + C1Using s,  C = C  + C  = 
s s

CK
1+CK

T
1+CK

O  = 
I 1 + s

We noted last term integral or proportional plus integral control..
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P+I + Feedback Control

Consider :
numerically 
contrived 
example

2

2

6s+23s+1 1
s 3s 3s

3s+1 6s+2 21 1 1
s 3s 3s 3s3s

*2*O 6s+2 = =  = 
I 1 - - *2*  - - 1 +  + 3s  + 6s + 2 + s

2(3s+1) 2 1 =  =  = 
s(3s + 1) + 2(3s + 1) s + 2 s/2 + 1

If I unit step, O = 1 – e-2t reaches 63% of 1 at time 1/2s

I X
MotorController

O
2 1

s3

3s + 1
s

13 + 
s
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What if Input is Sinusoid?

Output = transient 
+ steady state

0 10 20 30 40 50 60
-0.1
-0.05

0
0.05
0.1

0.15
0.2

Transient again 
found by root of 
denominator of 
transfer function

Decays to 0

Steady state : replace s = j in TF, find gain and phase

   


-1
ss 2 2

KO  = sin( t - )    where  = tan ( T)
1+ T

Much easier than finding particular integral
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Example – not examinable (in Feedback)



60
61
10

61

O 0.984 =  = 
I 1 s0.1641 s

Let I = sin(5t) 
and O = 0 at t = 0

O 0.984 0.984=  =  
I 1 j 0.164 1 j0.82 

2
O 0.984 0.984 0.984= =  =  = 0.761 
I 1.2931 0.67241 0.82 

-1O  = 0 - tan 0.82 = -0.687 rad 
I



Oss = 0.761 sin (5t – 0.687) Ot = c e-t*6.1 as before

O = 0.761 sin (5t – 0.687) + c e-t*6.1

At t = 0, 0 = 0.761 sin(-0.687) + c = -0.483 + c , so c = 0.483

So O =  0. 761 sin (5t – 0.687) + 0.483 e-t*6.1
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Summary

We have seen how the s operator can be used to analyse systems

We replace integrators by 1/s, and then use forward/1-loop(s)

From the resultant transfer function we can find step response

Roots of denominator give transient

Setting s to zero gives steady state if input is step

Modulus/Argument gives steady state if input sinsuoid

The analysis has been a little informal : fuller information in Part 2.

Next week look at simulating systems –

Initially first order systems we have met

Then we consider second order systems
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17 : Simulating Systems
We have seen how to use s and jω to analyse first order systems

Form transfer functions/differential equations, and solve.

In the first half of this lecture, see how computer can solve

In the second half, we start to look at second order systems

dOSpecifically  = ( O and others)  : find O
dt

function

We will look at a simple computer simulation

Then how MATLAB has a better method

On Simulation
We find the differential of a variable and numerically integrate it 
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Simulation of First Order System

Our system can be modelled by differential eqn

 
K and T are constants    dO 1 = K*I O       
I = input, O = output      dt T

To simulate, calculate values at regular times : the sampling instants 

Specifically we find dO/dt then ‘integrate’ to get O

Simplest method (Euler’s method) is as follows

initialise O
For each time step

Calculate dO/dt (using O, I, K and T)
new O = current O + sample time * dO/dt

MatLab Implementation
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Have matrix for signals: column 1 = time, col 2 = dO/dt, col 3 = O

Illustrate calculations for K = 2, T = 5, Ts = 0.5, O init = 0

0 0 0
0 0 0
0 0 0
0 0 0

Matrix S to 0, S[1,3]=0 First Iteration
S[2,1] = Ts*1
S[2,2] = dO/dt

= (K*I – S[1,3])/T
S[2,3] = O + dO/dt*Ts

= S[1,3] + S[2,2]*Ts

0 0 0
0.5 0.4 0.2
0 0 0
0 0 0

Next Iteration
S[3,1] = Ts*2
S[3,2] = dO/dt

= (K*I – S[2,3])/T
S[3,3] = O + dO/dt*Ts

= S[2,3] + S[3,2]*Ts

0 0 0
0.5 0.4 0.2
1.0 0.36 0.38
0 0 0

0 0 0
0.5 0.4 0.2
1.0 0.3 0.38
1.5 0.324 0.542

Next
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function sigs = ktsim (K, T, I, Oinit, tsamp, numpts);
% sigs = KTSIM (K, T, I, TSAMP, NUMPT)  
% Simulates system described by dO/dt = (K * I - O) / T
% returns sigs = matrix [t, dO/dt and O] at each calculation step
%    first column has successive t’s, next has dO/dt and last has O
% Prof Richard Mitchell 29/3/11
sigs = zeros (numpts+1, 3);                  % initialise mat to zero
sigs(1,3) = Oinit; % initialise output
for ct = 1:numpts

sigs(ct+1, 1) = ct * tsamp;             % store time in col 1
sigs(ct+1, 2) = (K * I – sigs(ct, 3)) / T;       % dO/dt in col 2
sigs(ct+1, 3) = sigs(ct, 3) + sigs(ct+1, 2) * tsamp; % output, col 3

end

MATLAB Function to do this
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Using that MATLAB function

>>  sigs = ktsim (K, T, I, Oinit, tsamp, numpts);
K, T, I are obvious; Oinit is value of O at t=0
numpts iterations are done, at instants tsamp apart

sigs is matrix: col 1 = sigs(:,1) has time; col 2 has dO/dt; col3 has O

>> sigs = ktsim(2, 5, 1, 0, 0.5, 40);
>> ythy = 2 – 2 * exp(-sigs(:,1)/5); % ie 2 – 2 exp(-t/5)
>> plot (sigs(:,1), sigs(:,3)); plot(sigs(:,1), sigs(:,3)-ythy); 

4% max 
error

0 5 10 15 200
0.5
1
1.5
2

O

t 0 10 200
0.01
0.02
0.03
0.04

Er
ro

r

t
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Solving ODEs in MATLAB

Model is an ‘ordinary’ differential equation, ODE.

The Euler numerical solution has a maximum error of 4%

Likely to be higher for more advanced systems

Better to using MATLAB’s ODE45 function

(uses so called 4th order Runge Kutta to solve ODE)

For which you write an m-file which returns do/dt at an instant

function dobydt = firstorder (t, o, flag, I, K, T)
% Function to calculate do/dt for first order system
% t is time, o is current output, flag is dummy variable
% I is input, K and T are final value and time const
dobydt = (I * K - o) / T;
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Then Run ODE45 from>> prompt
>> [t,y] = ode45('firstorder', [0 20], 0,[], 1, 2, 5);

call ode45 with name of do/dt file,  

[0 20] means run from t = 0 to 20,

0 is initial value of O, [] is dummy, 1 2 5 are I, K, T

>> plot(t,y); % to plot how y varies with t

>> plot(t, y – (2 – 2 * exp(-t/5) ) ); % Plot error also

y – ytheory
Much smaller

0 10 200

0.5

1

1.5

2

0 10 20-5

0

5

10
x 10-6

O

t

Er
ro

r

t
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M-file using t – if input is sin(wt)

function dobydt = firstsin (t, o, flag, w, K, T)
% Function to calculate do/dt for first order system
% t is time, o is current output
% w is ang freq of input, K and T are paras of system
% Prof Richard Mitchell, 31/3/11
dobydt = (sin(w*t) * K - o) / T;

0 5 10 15 20-0.2

-0.1
0

0.1
0.2
0.3

>> [t,y]=ode45('firstsin',
[0 20], 0,[], 3, 2, 5);

>> plot(t,y)

NB y of form 
Asin(wt-B) + Ce-t/T
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Lecture 17 – In Class Exercise

Complete the following function so as to simulate the above

function dobydt = firstorder (t, o, flag, I, C, K, T)
% Function to calculate do/dt for motor control system

dobydt = ( (I-O)*C*K – O) / T;

OI X
MotorController

KC

dO
dt1

T ∫

Second Order Systems – 2 integrators
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Velocity 
V

dV
dt1

T
I

K ∫
dV K*I - V = 
dt T

To model output position, O, add integrator – a second order system

A first order system has one integrator ... Eg for motor velocity

Write m file 
return dV/dt

O
Motor

K 1
T

dOV = 
dt

dVA = 
dt

∫∫

dV K*I - V = 
dt T
dO  = V
dt

Control of Motor Position
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I
Controller

C
O

Motor

K 1
T

dOV = 
dt

dVA = 
dt

∫∫

Take motor position model, put in feedback system

dOV =  
dt

dV C*K*(I-O) - V = 
dt T

Describe by two equations
In terms of O and V

Another second order system – one which controls motor position

We simulate by writing an m file to return both dV/dt and dO/dt
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Simulate – again using ode45
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Now have vector for O and V and see how both change …

 
 
 

O
ov = 

V

              

dO V
dov dt =  = CK(I - O) - Vdt dV

Tdt
In MatLab, ov is vector = [O; V] . ov(1) is O, ov(2) is V ... then

function dovbydt = motorpos (t, ov, flag, I, C, K, T)
% Function to calculate do/dt for first order system
% t is time, ov(1) is output O, ov(2) is velocity V;  flag is dummy
% I is input, C  is controller, K and T motor parameters
dovbydt = [ov(2); ( (I – ov(1) ) * C * K – ov(2)) / T];
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Another Example - Mass Spring System

(velocity, v)Spring, k

Object, mass m

Dashpot, F

Output position, xoInput position, xi

This has similarities with a car suspension

Pull one end of spring, object at other end moves, friction exists

Spring extended : force generated is k * (xi – xo)

Friction force opposes this, is F * v v is diff. of xo

Net Force is thus k * (xi – xo) - F * v

This must equal m * acceleration = m dv/dt
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Block Diagram and ODEs

Have xi, assume xo, (xo – xi) * k gives Spring force SF

Assume velocity, get frictional force FF , then net force = SF- FF

Divide by m and integrate to get velocity; integrate again for xo

o i oSpring F - Frictional Fdx k(x - x ) - Fvdv = v;  and   =  = 
dt dt m m

xi xo1
m

F
F v

k

Net force

Frictional force

Spring force

∫ ∫

odxv = 
dt
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MatLab Code

function dxvbydt = massspring (t, xv, flag, xi, k, F, m)
% Function to calculate dxv/dt for first order system
% t is time, xv(1) is output xo, xv(2) is velocity;  flag is dummy
% xi is input, k is spring constant; F is friction; m is mass
dxvbydt = [xv(2); (k * (xi - xv(1)) - F * xv(2)) / m];

o i odx k(x - x ) - Fvdv = v;  and   = 
dt dt m

Now to use m file, call ODE45 at prompt:
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Have defined m file, now use it

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1 o

i o

dx  = v
dt

3(x - x ) - 4vdv  = 
dt 1

As t →∞, v → 0
then

i o

i o

3(x - x ) - 00 = 
1

So x  = x
Looks like xo very close to 1 by t = 6 

>> [t,xv] = ode45('massspring', [0 10], [0;0], [], 1, 3, 4, 1);

>> plot(t, xv); % plots xo v t and v vs t
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Two other results

0 2 4 6 8 10 0

0.2

0.4

0.6

0.8

1

xo very close to 1 at t = 4  : faster 

k now 4 (not 3); F still 4, m still 1 k still 4;  F now 1.12, m still 1

Damped oscillation …

We will explain these different responses next week

0 2 4 6 8 10-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5
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Another example – L C R circuit

VR VL

LR I

C VE

VE E-V VR

VL

I1
R

dL
dt


1
C

dV 1 = I
dt C

 dI 1 = E - V - IR
dt L



LR

L

E - V - VVI =  = 
R R

dIV  = L  = L sI
dt

1 IV = I dt = 
C sC

Again need 2 
variables

Say V and I

R
dIV  = IR = E - V - L
dt
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In MatLab

Again have 2 element vectors
                    

dV
dt
dI
dt

1 * IV CNow variable is vector and m-file finds  = 
I E - V - I*R

L

In MatLab, vi is vector, vi = [V; I] 

function dvibydt = LCRCircuit (t, vi, flag, E, R, C, L)
% Function to calculate dvi/dt for circuit
% t is time, vi(1) is  voltage V, vi(2) is current I;  flag is dummy
% E is input, R, C and L are components
dvibydt = [vi(2) / C; (E – vi(1) – vi(2)*R) / L];
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Some Runs: C = 0.01F; L = 0.25H

V vs t

I vs t

0 0.5 1
0

0.5

1

0 0.5 1
0

0.05

R = 20Ω

0 0.5 1
0

0.5

1

0 0.5 1
0

0.05

0.1

R = 10Ω

0 0.5 1
0

0.5

1

0 0.5 1
-0.2

0

0.2

R = 5Ω
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Summary

We have seen how to simulate systems

Simple Euler integration is ok, but there are errors

The ode45 function is much more accurate

You just need to write a function define dO/dt

We have looked at some second order systems

Different examples have been described 

Shown how ode45 simulates these – as two first orders

Whilst first order step response has same shape, different 
shapes occur for second order

Next week we find out why …
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18 – Second Order Systems vs Time

Last week we  looked at some second order systems, 

We saw different step responses depending on parameter values

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

This week we find out why.

By extending the analysis of first order systems, where

steady state and transient responses found from transfer function
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Reminder – first order

I X O
K

dO
dt1

T
1
s

O K = 
I 1 + sT

Assuming I is a unit step :

Steady state is found by setting s to 0 (ie no change) = K/(0+1)

Transient : find ‘value of s’ (root) where denominator is 0: 

Solve 1 + s T = 0    ie s = -1/T

Then transient is const * exp(st) = c * exp(–t/T)

So O = K + c exp(-t/T); 

If O = 0 at t = 0; 0 = K + c so c = -K, and hence O = K – K e-t/T
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OI X
MotorController

KC

dO
dt1

T

And for this in control system

1
s

1 1CKO CKT s =  = 1 1 1 1I sT + CK + 11 - - CK - -
T s T s

ss
CK CKO  =  = 

0 + CK + 1 1 + CK

CK+1Denominator root where sT + CK + 1 = 0: ie -
T

CK+1- t
TtO  = c exp 

CK+1- t
TCKSo O =  + c exp 

1+CK
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Example Second Order System

Mult by Ts2

1 1 1
s sT

1 1 1 1 1 2
s s sT T

C*K* * *O Forward C*K =  =  = 
I 1- loops 1 - -C*K* * *  - - * Ts  + C*K + s

OI
X MotorController

C K 1
T

dOV = 
dt

dVA = 
dt 1

s
1
s

Consider control system for position of motor

Extra integrator means system second order
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Second Order Unit Step Response

2Three response types, depending on roots of Ts  + s + C*K = 0

If 1 > 4CKT, two real roots, overdamped response

If 1 = 4CKT, two identical roots, critically damped

If 1 < 4CKT, two complex roots, underdamped response

Steady State, set s to 0 (as I step), in transfer function

Transients found by values of s where denominator is 0 (roots)

2
O C*K = 
I Ts  + s + C*K

CKO =  = 1
T*0 + 0 + CKss
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Example Overdamped Response

2If T = 0.01, C = 9, K = 1; (0.01s  + s + 9) = (0.1s + 1)(0.1s + 9)

1 2K KTransfer function can be expressed as  + 
0.1s + 1 0.1s + 9

1 9Roots are  - = -10 and  -  = -90; 
0.1 0.1

Each term contributes an exponential

-10t -90t
1 2So Transient has form K e  + K e

-10t -90t
1 2

Thus complete response is

     O(t) = 1 + K e  + K e

Graph and Full Response
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-10t -90t
1 2O(t) = 1 + K e  + K e

-10t -90t

K's depend on initial conditions, 
dObut if O =  = 0 at t = 0
dt

9 1O(t) = 1 - e  + e
8 8

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

As t  , exponentials decay, O(t)  1

NB, slope of curve = 0 at t = 0

Also, O never exceeds Oss

For interest: Finding Values of Ks
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-10t -90t
1 2O(t) = 1 + K e  + K e

-10t -90t
1 2

dO(t)  = -10 K e  - 90 K e
dt

1 2
dO(t)At t = 0,  = -10 K  - 90 K  = 0

dt

1 2At t = 0, O(t) = 1 + K  + K  = 0

1 2
2 2

2 1

K  = - 9 K
So 1 - 9K  + K  = 0

1 9Hence K  =  and so K  = -  
8 8

dOAssume O =  = 0 at t = 0
dt
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Lecture 18 – In Class Exercise
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2
O C*K =     where T = 0.02, C = 6, K = 2 
I Ts  + s + C*K

2Denominator is (0.02s  + s + 12) = (0.2s + 4)(0.1s + 3)

Determine O if I is unit step in form x + K1 e-yt + K1 e-zt

NB find x, y and z, but not K’s

12ss2 12
O 12 =     ;   Unit Step O  =  = 1
I 0.02s  + s + 12

2

-20t -30t
t 1 2

4 30.02s  + s + 12 = (0.2s + 4)(0.1s + 3).  Roots  -  = -20 and -  = -30
0.2 0.1

So O  = K  e  + K  e
-20t -30t

1 2So O = 1 + K  e  + K  e
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A Critically Damped Response
2 2If T = 1/36, C = 9, K = 1; (s /36 + s + 9) = (s/6 +3)

1 2
2

-18t -18t
1 2

-18t
1 2

K KTransfer function in form  + 
s/6 + 3 (s/6 + 3)

Repeated root of -18;

Transient of form K e  + K te

So O(t) = 1 + (K  + K t)e

-18t

dOIf O =  = 0 at t = 0 can show
dt

O(t) = 1 - (1 + 18*t) e
0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

O never exceeds Oss  Fastest response without exceeding Oss.

Underdamped Response
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2If T = 1/4, C = 10, K = 1; Denominator s /4 + s + 10
2 2By completing the square this is (s/2 + 1)  + 3

Hence have complex roots -2 ± j6; 

0 0.5 1 1.5 2 2.50

0.5

1

1.5

-2t -2t1
3

K's depend on initial conditions, 
dObut if O =  = 0 at t = 0
dt

O(t) = 1 - e cos(6t) - e sin(6t)

-2t -2t
1 2Hence O(t) = 1 + K e cos(6t) + K e sin(6t)

O exceeds Oss before oscillating back

Faster rise than critically damped

Oscillations decay away – they are damped.

For why
see after 
last slide

Even More Underdamped
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0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2 2 2If T = 1/4, C = 50, K = 1; (s /4 + s + 50) = (s/2 + 1)  + 7

-2t -2t
1 2

-2t -2t
1 2

Has complex roots : -2 ± j14; 

Transient of form K e cos(14t) + K e sin(14t)

So O(t) = 1 + K e cos(14t) + K e sin(14t)

-2t -2t1
7

dOIf O =  = 0 at t = 0
dt

O(t) = 1 - e cos(14t) - e sin(14t)

Higher C gain, faster rise, but 

more oscillatory, longer to settle

How underdamped
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s2/4 + s + 10   has roots  -2 ± j6   slightly underdamped

s2/4 + s + 50   has roots  -2 ± j14   more underdamped

s2T + s + CK   underdamped if 1 < 4CKT

The more 1 <  4CKT, the more underdamped the response

So, for control system, if given K and T, system can be 
made less oscillatory by reducing C.

Let’s consider another example where there are oscillations

And how these are damped ...

Rocking Robot
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When ERIC accelerates, it pivots 
about axis between wheels

A = acceleration B = body angle

Model is in effect motor inertia 
giving velocity, integrated for 
position in a loop

BA
2
4

9s  + s
2

B 4 = 
A 9s  + s + 4

Clearly 1 << 36, so lots of oscillation
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Continued
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BA

Cs

s  9s
4
2 

2

2 2

4
B 9s  + s = 4 CsA 1- - - - 

9s  + s 9s  + s

2
B 4 = 
A 9s  + s + 4+ Cs

Solution is to measure the angle of the board and feedback

Key – feedback change in angle ...  Differentiated angle

If want to stop oscillation ... Make critically damped

(C+1)2 = 4*4*9 ...   C+1 = 12   ... C  = 11.

Summary
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In this lecture : the step response of second order systems.

Again, steady state response is found by setting s to 0.

And transient is determined by the roots of the denominator

Overdamped (does not exceed Oss) if two real roots

Critically damped (fastest for no overshoot) if repeated roots

Underdamped (goes pass Oss, oscillates) if complex roots

Saw also how velocity feedback can dampen oscillations

ss t2
O 40 =   I unit step. What is O  and what form is O ?
I s  + 7s + 10

Next week – formalise damping – and relate to Q factor
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For Interest – why this answer
2 2 2If T = 1/4, C = 10, K = 1; Denominator s /4 + s + 10 = (s/2 + 1)  + 3

 -2  j6Hence have complex roots -2  j6; so transient K e

   ' ' ' '1 11 1 2 2 1 22 2
-2t -2t

1 2

But must be purely real.

Can show (next slide) K  = K  + K  and K  = jK  - jK  

So transient of form K e cos(6t) + K e sin(6t)

(-2  j6)t -2t

' -2t ' -2t
1 2

But e  = e (cos6t  j sin6t)
Suggesting transient is

    K e (cos(6t) +j sin(6t) ) + K e (cos(6t) - j sin(6t))

 

-2t -2t
1 2Hence O(t) = 1 + K e cos(6t) + K e sin(6t)

Why these values of K1 and K2
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' -2t ' -2t
1 2K e (cos(6t) +j sin(6t) ) + K e (cos(6t) - j sin(6t)) must be real

' ' -2t
1 2Assume K  = a+jb and K  = c+jd, ignore common e  term:

(a+jb) (cos(6t) +j sin(6t) ) = a cos(6t) - b sin(6t) + jb cos(6t) +ja sin(6t)

(c+jd) (cos(6t) - j sin(6t) ) = c cos(6t) + d sin(6t) + jd cos(6t) - jc sin(6t)

Add these. Result must be real, so b = -d and a = c, then get  

a cos(6t) - b sin(6t) + c cos(6t) + d sin(6t) = 2a cos (6t) + 2b sin(6t)
' ' ' ' ' '
1 2 1 2 1 2Hence K  = a+jb and K  = a-jb K  + K  = 2a and K  - K  = 2jb

   ' ' ' '1 11 1 2 2 1 22 2
-2t -2t

1 2

So indeed K  = K  + K  and K  = jK  - jK  

So transient is K e cos(6t) + K e sin(6t)

19 : Damping and Second Order Freq

From the transfer function we can

easily assess the steady state output : CK/CK = 1

the transient response varies depending on the TF denominator

two real roots, one repeated root or complex roots

This week we assess these responses using ‘damping ratio’

This in fact relates to the Q factor used in electronics

Which naturally leads to second order frequency response
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2
O C*K = 
I Ts  + s + C*K

We saw last week the step response of second order system, eg
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Transfer Function and Damping

2
O C*K = 
I Ts  + s + C*K

ζ is 1 when 4CKT = 1,  system critically damped : denom (s + ωn)2

If ζ > 1, system is overdamped : denom has form (s + a)(s + b)

If ζ < 1, system is underdamped : roots of denom are complex

As we shall see, this relates to Q factor in electronics

'
2 22 n n

CK
O KT =  = 1 CKI s  + 2 s + s  + s + 

T T
 

 n
CK 1 = ;    = 
T 4CKT

Control Engineers express systems in terms of ‘damping’ ratio ζ

We have had over-, critically- and 
under- damped systems.
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Damping Ratio For Last Week’s Examples

0 0.1 0.2 0.3 0.4 0.50
0.2
0.4
0.6
0.8
1

0 0.1 0.2 0.3 0.4 0.50
0.2
0.4
0.6
0.8
1

No oscillations, Slowest to Rise
Approach Steady State at 0.5s

Fastest with no oscillations
Approach SS at 0.4s

2

n

T = 0.01, C = 9, K = 1;
900

s  + 100s + 900
1 1 5 =  =  = ;  

0.6 34*9*1*0.01
 = 900 = 30





2

n

T = 1/36, C = 9, K = 1;
324

s  + 36s + 324
1 =  = 1; 

4*9*1/36
 = 324 = 18




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Faster,  more oscillatory

2

n

T = 1/4, C = 50, K = 1;
200

s  + 4s + 200
1 1 =  =  = 0.14

504*50*1*1/4
 = 200 = 14.1 rad/s





0 0.5 1 1.5 2 2.50

0.5

1

1.5

Faster to rise, but oscillates

2

n

T = 1/4, C = 10, K = 1;
40

s  + 4s + 40
1 1=  = = 0.316

104*10*1*1/4
 = 40  = 6.32 rad/s





UnderDamped Examples

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

LCR Circuit
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VR VL

LR I

C VE

VE E-V VR

VL

I1
R

Ls

1
sC

o
2s

1 1*V Forward 1R sCSo  = =  = 1 1 1V 1-Loops sCR + 1 + s LC1 - - *  - - sL
R sC R

In Class Exercise
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o
2 2s

1V 1 LCLCR   =   = 
R 1V s LC + sCR + 1 s  + s  +  L LC













n
1 R CL C R ω =  = Status

2 LLC
400mH 2.5 F 200 1000 rad/s 0.25 under
400mH 2.5 F 800 1000 rad/s 1 critically
400mH 2.5 F 40 1000 rad/s 0.05 very under
400mH 2.5 F 3200 1000 rad/s 4 over

  2
n n n

n

1 1 R R R Cω  = ; so  =  ;  2 ω  = ;  so =  = 
LC LC L 2Lω 2 L

For the following, calculate ωn and ζ and state if overdamped, etc

Frequency Response of RC Circuit
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o
s

V 1 = 
V 1 + jωCR

0 0.3 0.6-0.6

-0.4

-0.2

0

1

For Bode, plot log(gain) vs log(ω) and phase vs log(ω)

Saw asymptotic approximations before/after corner freq 1/CR

At Corner Freq, phase half way between 0 and -90… 1 = ωCR

10-1 10 0 10 1 10 2
0.01

0.1

1

10 -1 10 0 10 1 10 2
-90

-45

0

Freq Resp : how varies with ω, polar/Bode plot 
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Second Order Frequency Response

Vs VoI 1
jωC

1
R

jωLVL



 


o
2 2 2s

1 1*
R j CV 1 1 =  =  = 1 1 1V j CR + 1 + j LC  1 - ω LC +jωCR1 -- *  -- jωL

R j C R

Now consider LCR circuit: earlier diagram but  or 1/s = 1/jω

   o o
2 2 2s s

V V1 1 1At low ,  =  = 1 0;  At high   =  = 180
V 1 V j ω LC ω LC
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Corner Frequency and Q
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o
2s

V 1 = 
V 1 - LC +j CR 


O1 1 1 LSpecifically ω = ,  Gain =  =  = Q;   Phase = -90

CR R CLC

This is angular frequency ωo, when gain is Q (quality factor)

0o
s

V 1 1 =  so Gain =   Phase = -90
V jωCR ωCR

Phase half way between 0 and -180 … so this is corner freq
(first order system, corner freq where phase half way 0..-90)

2 1Consider what happens when 1 - ω LC = 0 or ω =
LC
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Polar Plot

Plot varies 1  0O .. 0  -180O

Q is gain when phase -90O

NB plot shape changes with Q

>> tf = 1./(-L*C*w.^2 + w*C*R+1);

>> plot(real(tf),imag(tf)) ;

-6 -4 -2 0 2 4 6
-10

-8

-6
-4
-2

0

Q 
0.125   
0.5  
2     
10 











n
1 1 LL C R ω =  = 

R CLC
400mH 2.5 F 200 1000 rad/s 2
400mH 2.5 F 800 1000 rad/s 0.5
400mH 2.5 F 40 1000 rad/s 10
400mH 2.5 F 3200 1000 rad/s 0.125

Q
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2nd Order Asymptotic Analysis

 
o

2s

V 1 = 
V 1 - LC +j CR

o
s

VAt very low ,   1, so Gain = 1. Phase = 0.
V

 

 2
2
1 1 1plot log  = log * = log  - 2log

LC LCLC
 


     

         

So Gain asymptote is straight line, slope -2

2 1Asymptotes meet when 1 - ω LC = 0 :   = 
LC

Oo
2 2 2s

V 1 1At very high ,    ;    Gain  and Phase = -180
V j LC LC


 



So Gain asymptote is straight line, slope 0
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Bode Plot Asymptotes plus actual

101 102 103 104 10510-4

10-2

100101

101 102 103 104 105
-180

-90

0

Suppose 

L = 400mH, 

R = 200Ω and 

C = 2.5 μF ; (Q=2) 



-3 -6

3

Asymptotes meet when 
1 =  

LC
1=  

400*10 *2.5*10
= 10

NB, here gain rises from initial value, as Q = 2.     (earlier slide) 
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How Q affect Bode Plots
Q affects how gain/phase move between asymptotes

Plots below for same LCR examples given earlier

NB 
Gain 
= Q 
at ωo

NB 
Peak 
gain 
before 
ωo

Higher Q – higher peak ... Faster change of phase.
101 103 105

-180

-90

0

101 103 10510
-3

10
-2

10
-1

10
0

10
1

Q 
0.125   
0.5  
2     
10 

On Bode Peaking and Underdamped
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When 1 - ω2 LC = 0, 
o

2s

V 1 = 
V 1 - LC +j CR 

To test if a system is underdamped we solve s2LC + sCR + 1 = 0

o
2

s

V 1 LC 1 L =  =  = 
V jωCR jCR j CR

peak a to 1 from rises 
V
V ,1

CR
L If

s
o

2 

dunderdampe be will V ,1
CR

L if So o2 

dunderdampe more the peak, the bigger the 
CR

L bigger The 2

 1
CR

L2 or 1
CR

L4  or 4LCRC if roots Complex 22
22 
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Q factor and Damping Ratio
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In Electronics, Q factor is used. In Control Damping ratio ...  

0
1 1 Lω  =  = 

R CLC
Q

2 2
0 01 + j /  - /Q   In electronics, TF denominator of form 

In control, express TF denominator as 2 2
n n1 + j2 ω/ω  - ω /ω

n
n

1 2 R Cω =  = 2 LC = CR so  = 
ω 2 LLC
  

n o
1ω = ω  =    is damping ratio

2Q
 

Underdamped if ζ< 1.   Note factor of 2.

For  LCR

For  LCR
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Band Pass Filter Example

C

VoVs

L

R

I

Vs VoI
j C R

jωLVL

o
L

s o L

V  = I*R
V  = j L * I
I = jωC*(V  - V  - V )



o
2 2s

jωC*R jωC*RV ForwardSo  = =  = 
V 1-Loops 1 -- jωC*R -- jωL*jωL 1 + j CR + j LC 
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Asymptotes

o
s

VAt very low ,   j CR.   Gain asymptote slope +1
V

 

o
R 1Asymptotes meet when ωCR = :   =  = 
ωL LC

 

o
2s

j CRVSo  = 
V 1 + j CR - LC



 

R C 1Then asymptotically gain = * LC = R *  = 
L L Q

Actual gain at ωo = 1

o
2 2s

j CRV RAt very high ,     = . Gain asymptote slope -1
V j Lj LC






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Plots : same set of Q values

L = 400mH
C = 2.5μF
R = 800, 200 
or 40Ω

Separate 
Gain plots + 
asymptotes

Combined 
gain, phase 
plots + polar

10
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0

10
1

0 1
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0.5
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0
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Frequency Model of Motor Position
2

2
d O
dt1

T
1

jω
I X
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dt
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Bode and Polar Plots  K = 5, T = 0.4
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As ω → 0, Gain → ∞, polar plot → ∞ on imaginary axis
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Summary

We have looked more at second order systems

The step response has different forms

Which can be defined in terms of damping ratio

The frequency response also has different forms

Which can be defined in terms of Q factor

They are related : Q = 1/2ζ

We have reaffirmed the asymptotic approximations

Used to plot the band pass filter

And motor position …

Next week we tidy up the course : modelling of animal systems
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20 : Modelling Animal Systems

Consider a Population model, if P is the population size:

Change of Pop is a function of P : more P, more kiddies

dP  = P * (b - d)    b and d are birth and death rates
dt

If b > d, P increases without limit. 

If b < d, P decreases to zero.

Population model is a feedback system 
with integrator. P

∫

b-d

dP
dt

Cybernetics, control and communication in animal and machine…
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Using ODE45

As before, need function, say in file pop.m, to generate derivative

function dpbydt = pop (t, p, flag, b, d);

dpbydt = (b - d)*p;       % compute change in P

[flag is dummy value here, time t here not used]

Then invoke ode45 with m file, init p, max t and b and d:

>> [t1,p1] = ode45('pop', [0,5],20,[], 0.6, 0.4); % b > d

>> [t2,p2] = ode45('pop', [0,5],20,[], 0.3, 0.5); % b < d

>> plot(t1,p1,t2,p2);              

If do so, get graph as shown 

either P → 0 or P → ∞

1 3 50

50

100

Po
p
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More Complicated But Realistic Model

1 11 1 2 2
2 2

Population stablises when above = 0,  ie when P = 0 (boring)
b  - dor b - d  - (b d )P = 0   i.e. when P =  
b d




The above is very simple & unrealistic. Need better model

So define birth rate as b1 - b2 * P 

And death rate as d1 + d2 * P.

Then model becomes

function dpbydt = pop (t, p, flag, vals)    % m file

% vals has [b1,d1,b2,d2]

dpbydt = (vals(1) - vals(2) - (vals(3) + vals(4))*p) * p;

1 1 2 2
dP = (b d   (b d ) * P)  *  P
dt

  
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MATLAB Session + Results

As expected, P stabilises at 
(10 - 9)/(0.15 + 0.05) = 5

If start above 5, 

decay down to 5, 

Else

rise up to 5.1 3 5
0

10

20

Po
p

>> v = [10, 9, 0.15, 0.05]; % define rates

>> [t1,p1]=ode45(‘pop’, [0,5],20, v); % run from 20

>> [t2,p2]=ode45(‘pop’, [0,5],3, v); % run from 3

>> plot(t1,p1, t2,p2);
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Classic Foxes and Rabbits Example

Now consider multiple interacting species:

can be mutualistic, competitive or predator prey.

Here do classic predator prey example – foxes & rabbits

Let F be number of foxes and R be number of rabbits.

System model, as follows, where a, b, c, d are constants:

Note positive and negative feedback in dR/dt expression

First term +ve fb: more R, dR/dt +ve, so more R

Second term -ve fb: more F, so dR/dt -ve, so less R.

dR = a*R-b*R*F
dt

dF  = c*R*F-d*F
dt
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Stable Foxes and Rabbits?

Population stable when change of both populations 0:

a * R - b * R * F = 0 i.e R = 0 (boring) or F = a/b

and c * R * F - d * F = 0 i.e. F = 0 or R = d/c

In fact populations cycle round these values.

We can show this in MATLAB

Again need function to return change in population

Now have two species, so P is column vector  as is dP/dt

dR  = a*R-b*R*F
dt

dF  = c*R*F-d*F
dt
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MATLAB Simulation
function dpbydt = pop (t, p, flag, vals);    

% vals is [a b c d], p(1) = R; p(2) = F

dpbydt = [vals(1)*p(1) - vals(2)*p(1)*p(2); ...

vals(3)*p(1)*p(2) - vals(4)*p(2)];

For  a = 20, b = 4, c = 3 & d = 27; plot R v F; R and F v time

Note cyclic response: populations rise and fall

R v F is 
‘phase 
plane’
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Foxes, Rabbits and Triffids

Novel extension of method (thanks to Dave Keating)

Classic: Rabbits eat grass, Foxes eat Rabbits

Extension: Rabbits eat Triffids (plant), Triffids eat Foxes

dR  = 0.001*R*T-0.06*R*F
dt

dF  = 0.0001*R*F-0.00005*F*T
dt

dT  = 0.025*T 0.00015*F*T-0.00003*R*T
dt



In graph over vs time, Foxes scaled by 20 so can see
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Lecture 20 - In Class Exercise

Suppose b1 = 10, d1 = 6, b2 = 0.7 and d2 = 0.3

At what population will P stabilise?

Sketch 2 graphs of P vs time superimposed on same axes: first 
has P = 10 initially (at time 0); second has P = 2 then.

1 1 2 2
dPPopulation P model:   = (b  -  d    -   (b  + d )*P)   *   P
dt
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Mutualistic Species

Where species assist each other - mutualists

x affects y in a positive manner, and y affects x similarly

e.g. Hippo and Bird which eats weed round Hippo’s teeth

Flowers and pollinating insects …

As both help each other, have run away positive feedback

So, need 'negative' feedback to limit x & y – eg food/land



SE1CY15 – Feedback – Part D

© Prof Richard Mitchell, 2016 16

p91 RJM 12/02/16 SE1CY15 – Feedback – Part D
© Prof Richard Mitchell 2016

Simple Mutualistic System
2dx =(-13-2x +21y)*x

dt
2dy =(-13+8x-3y )*y

dt

Formal analysis is tricky, but can estimate response.
Find values of x and y where x and y constant : diffs = 0
We then plot these on graphs of y vs x

2dx =0 where -13-2x +21y = 0 and where x = 0
dt

2dy =0  where -13+8x-3y =0 and where y = 0
dt

dydxStable where a  = 0 line intersects with a  = 0 line
dt dt
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Simple Mutualistic System

For dx/dt, one line is x = 0

In MATLAB for other dx/dt line, as has x2 term, use

>> x = [2 : 6]; y = (13 + 2 * x .^ 2) / 21;

Do something similar for dy/dt
x 2 3 4 5 6 y 1 2 3 4 5
y 1 1.9 2.5 3 3.4 x 2 3.8 5 6 6.8

NB dx/dt and dy/dt both zero when x,y = 2,1 and 5,3

Both functions also zero when x,y = 0,0.

We plot these ‘isoclines’ on phase plane plot (x vs y)

2dx =(-13-2x +21y)*x
dt

2dy =(-13+8x-3y )*y
dt
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Plot Zero Isoclines on Phase Plane
Populations stable 
at x = 2, y = 1 and
at x = 5, y = 3 and
at x = 0, y = 0

The iscolines for dx/dt are x = 0 and -13 - 2x2 + 21y = 0
Those for dy/dt are y = 0 and -12 + 8x - 3y2 =0
Eq points: where a dx/dt isocline and a dy/dt isocline meet
Main iso’s meet at 2,1 and 5,3; x = 0 and y = 0 meet at 0,0

dx/dt = 0

dy/dt = 0

dx/dt = x( -13 - 2x + 21y)
dy/dt = y(-13 + 8x - 3y2
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Arguing Stability

But, one point not stable - if move from there don’t return.
To argue this, label each region with sign of dx/dt & dy/dt
e.g. ++ = dx/dt > 0 & dy/dt > 0 -+ = dx/dt < 0 & dy/dt > 0

Now add 
trajectories from 
initial x,y

dy/dt = 0

+ 21y)

dx/dt = 0

dx/dt = x( -13 - 2x
dy/dt = y(-13 + 8x - 3y

Go to 5,3 or 0,0 – stable points
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MATLAB Graphs: Phase Plane + Time
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Summary

We have looked at modelling feedback systems

control systems

population models of single or multiple species

Now course ends, 

an introduction has been given to feedback systems

showing variety and application

There will be revision lecture in Summer

You are recommended to do the following exercise


