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SE1CY15 Cybernetics and Circuits
Feedback - Part D
Prof Richard Mitchell

In the final quarter of the course the topics are
Using the Laplace Operator instead for J (or 1/jw )
Simulation of Systems - including ‘animal’ systems
Second order systems - time and frequency responses
This builds on models developed so far
There we form block diagrams and then transfer functions
For simulation, though, we revert back to differential equations
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16 : The Laplace Operator

We have investigated the step response of systems, for instance

I X e o
T

t

dO _ 1 wr. SK-Ke T
4 TTKI-0) = O=K-Ke
K K is stead
ly state response
ook |4 | t
-Ke T is transient response
T T pres t T sets the speed of response

Rather than using Diff Eqn, easier to use Laplace operator ...
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Introducing s - Laplace operator

Very briefly s is introduced : it will help re block diagrams
It fits neatly with the Freq response we have already met
As an approximation, s means dif ferentiation (1/s means integration)

Let's apply it to a differential equation we have met ...

Why s helps - re block diagrams

Integration is inverse of differentiation, so J = 1/s : as in diagram

X )
I 1 |dt o]
=L T

?T(T) = %(K*I—O) which can be written Tdd—? +0=KI 1,1
4o O _Forward _ ,. T s . K
We write - =as s 0, so differential equation becomes I tloop 4 117 1+sT
T s
TsO+0=KT  or (Ts+1)0 = K*T

0 K So can redraw system as I — Kk > o
Hence, = = 1+sT

I Ts+1 Same as found from Diff Eqn
Then, if Tunitstepand 0=0att=0:0=K- ke /T Consistent with freq response
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Key Point

For frequency response, all signals are sinusoids at ang freq w
We replace all J by 1/jw - and analyse block diagrams
Strictly, all signals are sinusoids under steady state

For other inputs (eg step), and for finding the transient response,
We replace all J by 1/s - and analyse block diagrams

For electronic circuits with sinusoids impedances are

Resistor: Z=R  Capacitor: Z = J%;C Inductor: Z = jol

For electronic circuits transients and other signals
Resistor: Z=R  Capacitor: Z= i Inductor: Z =sL

Use with circuit theory methods (Ohm, Kirchhoff, Thevenin, etc)
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RC Circuit Example

I R
v, I v,
1/R | c
C S|
fv,
1,1
so Vo _Forward R sc _ 1

Ve lloop g1l ~sCR+1

R sC

Then, if V; unit stepand V, =0 at t=0: \, = 1 - e 7/RC
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Why s helps : Motor Control Example Simpler using Laplace

Controller Motor do

I % ar o Controller Motor do
L« P-4t L@ P T ¢
&~y & Ly

More difficult if form differential equation :

cK cK
o Forward Ts CcK 1+CK
TI- *C*K - C*K*I-(1+C*K)* = = = =
do _(-0)*C*K-0 _C*K*I-(1+C*"K)*O I~ 1-yLoops K1 7 sT+ck+1 T
dt T T 1--2-- 7 s +1
K*T- 0 S s +CK
Get in form — by dividing by 1 + C*K I K 0
c*K Lo . c*K - T So cah redraw system as g EPes Tl g
i—? = % T1eCrKT T 1eC*K Where K’ and T are as on previous slide
1+Cc*K Then, if Tunit stepand 0=0att=0:0=K' - KetT
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Lecture 16 - In Class Exercise Finding the System Response
Controller Motor do do
N X N [Tl T L0 I X [T]dt [T o
& .'W % :
o_ K
Find O/I and hence final value K & time constant T if I is unit step I 1+sT
If Iisa unit step, we know that O = K- Ke™T
But how do we get this expression for O?
Answer - we analyse the transfer function
Concept applies to more complicated systems too
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Finding the Step Response Example
Key point, O has two components % - % " N ch? o K=2T=1/8
i _K et/ 1
steady state , K and transient, -K e/T o?“ n T s unit step
Can find both from TF 0=0at =0
Steady state found by setting s to O (ie no change) o 16 2
VU__s _ 16
Oss = —K *T = K (i T unit step) I 1.8 8% 1.g8
1+0 s
Transient : find 'value of s’ (root) so that denominator is O: Steady state is 2/1 = 2; Denominator is O when s = -8
sT+1=0ifs=-1/T Hence 0=2+ce™®
Then transient is const * exp(st) = ¢ * exp(-t/T) At+=0,0=0,500=2+ce0=2+c;s0cC=-2
S0 0= K+ cexp(-1/T); Hence, complete response is
IfO=0att=0;0=K+csoc=-K and hence O=K-KetT 0=2-2e8
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Relating to Solving Differential Eqn

do
I
X
90 g0 -161-16
dt

Mathematicians find 'particular integral’, as I is a constant..
Op; found by 80p; = 16; Opr = 2

For ‘complementary function’, find root of auxiliary equation
m+8 =0, som=-8; Ocr =ce'®

Hence 0=2+cet®

In effect doing same method when using transfer function
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Control System

ConTr‘olIer‘x Motor do

I dt| 1 (9]
® i T
Inexercise found O _ ®%; _ 0984

T 1+s197 " 1+50.164

Set s to 0, O, = 0.984

Roots of denominator is s = -1/0.164 = -6.1, s0 O, = c e 1"61
S00=0984 +cetel

If0=0,att=0,0=0.984+c

S0 0 =0.984 - 0.984 ¢ 161
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P + I Control of Motor

Controller Motor do
I O X O\ [Tla[T]1:° 0. 1k
S-{ Py + o
. . CcK S . .
If Lis unit step, Ogg = T ¢k which is close to 1 only if CK big

We noted last term integral or proportional plus integral control..

Make C = G +C ], so O af steady state if X is constant

P+I + Feedback Control

Controller Motor
Consider : < 1 o
numerically 96‘ 3
contrived u
example
6s+2
O . 355*1*2* 315 - 362 - 6s+2
T 1-3selwpxl 17 9,6s#2, 1 32
1 s 235 3s 1+352 t35 3T rbse2es

_ 2(3s+1) 2 1
Integrator output constant if its inputisO:ie O =1 s(3s+1)+2(3s+1) s+2 s/2+1
. 1_sG+C . o .
Usings, C=C1 +Cp s = s If I unit step, O =1-e?" reaches 63% of 1at time 1/2s
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What if Input is Sinusoid?

Output = transient 0.2
+ steady state 0.15
0.1

Transient again

found by root of O.(())5

denominator of

transfer function -0.05
-0.1

Decays to O

010 20 30 40 50 60
Steady state : replace s = jo in TF, find gain and phase

K
V1+0?T2

Much easier than finding particular integral

Ogs = sin(wt - ¢) where ¢ = ‘ran'l(aﬂ')
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Example - not examinable (in Feedback)

o. %% _ o984 Let I = sin(5t)
I 1+51%1 1+50.164 and0=0at+=0
O _ 0984 0.984 o) 1
- ———— = /Z—=—=0- .82 = -0.
I 1+j00164 1+j082 1 - 0-fan"082=-0687 rad
‘9‘ _ 0984 _ 0984 0984 ..
I ;0822 Vit06724 1293
O, = 0.761 sin (5t - 0.687) O;=ce™®! as before

0= 0.761 sin (5t - 0.687) + ¢ e-'61
At+=0,0=0.761sin(-0.687) + c = -0.483 + ¢ , so ¢ = 0.483
S0 0= 0.761 sin (5t - 0.687) + 0.483 e-"61
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Summary

We have seen how the s operator can be used to analyse systems
We replace integrators by 1/s, and then use forward/1-loop(s)
From the resultant transfer function we can find step response
Roots of denominator give transient
Setting s to zero gives steady state if input is step
Modulus/Argument gives steady state if input sinsuoid
The analysis has been a little informal : fuller information in Part 2.
Next week look at simulating systems -
Initially first order systems we have met
Then we consider second order systems
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17 : Simulating Systems

We have seen how to use s and jw to analyse first order systems
Form transfer functions/differential equations, and solve.
In the first half of this lecture, see how computer can solve

In the second half, we start to look at second order systems

On Simulation

We find the differential of a variable and numerically integrate it

Specifically i—? = function( O and others) : find O

We will look at a simple computer simulation
Then how MATLAB has a better method

p20 RTM 12/02/16 SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016 Cyberfetics

Simulation of First Order System

Our system can be modelled by differential eqn

0 Lwro) oI
To simulate, calculate values at regular times : the sampling instants
Specifically we find dO/dt then ‘integrate’ to get O
Simplest method (Euler's method) is as follows
initialise O
For each time step do

Calculate dO/dt (using O, I, Kand T) dt
new O = current O + sample time * dO/d*t
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MatLab Implementation

Have matrix for signals: column 1 = time, col 2 = dO/dt, col 3= 0
Illustrate calculations for K=2,T=5,Ts=0.5,0init=0
Matrix S 10 0, S[1,31-0  First Iteration

o[ofo S[2,1]= Ts*1 oflo]o
0[o]o 5[2('2*] = dO/dt y 05|04 |02
= (K*T - S[1,31)/T
01010 S[2,3]=0+dO/di*Ts |01 O | O
ojojo = S[1,3] + S[2,2]*Ts ojojo
Next Iteration Next
S[3,1]= Ts*2 oo o oo o
5[3(ij: dg[/z d;]) - 050402 05 | 04 | 02
S[33]= O+ do/di*Ts | 10 [036]038 10 | 03 [038
= S[2,3]+ S[3,2]*Ts 0 0 0 1.5 [0.324|0.542
p22 RIM 12/02/16 SEICY15 - Feedback - Part D
© Prof Richard Mitchell 2016 Cyberfietics

MATLAB Function to do this

function sigs = ktsim (K, T, I, Oinit, tsamp, humpts);
% sigs = KTSIM (K, T, I, TSAMP, NUMPT)
% Simulates system described by dO/dt = (K*I-0)/ T
% returns sigs = matrix [t, dO/dt and O] at each calculation step
%  first column has successive t's, next has dO/dt and last has O
% Prof Richard Mitchell 29/3/11
sigs = zeros (numpts+1, 3);
sigs(1,3) = Qinit;
for ct = Linumpts
sigs(ct+1, 1) = ct * tsamp; % store time in col 1
sigs(ct+1, 2) = (K* I - sigs(ct, 3))/ T; % dO/dt in col 2
sigs(ct+1, 3) = sigs(ct, 3) + sigs(ct+1, 2) * tsamp; % output, col 3
end

% initialise mat to zero
% initialise output
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Using that MATLAB function

> sigs = ktsim (K, T, I, Oinit, tsamp, numpts);
K, T, I are obvious; Oinit is value of O at 1=0
numpts iterations are done, at instants tsamp apart
sigs is matrix: col 1 = sigs(:,1) has time; col 2 has dO/dt; col3 has O

> sigs = ktsim(2, 5, 1,0, 0.5, 40);
> ythy = 2 - 2 * exp(-sigs(:,1)/5); % ie 2 - 2 exp(-t/5)
> plot (sigs(:,1), sigs(:,3)): plot(sigs(:,1), sigs(:,3)-ythy);

2 0.04

15 £0.03 :' r/: $°X
01 £0.02
05 0.01
00 5 1015 20t 04 10 20t
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Solving ODEs in MATLAB

Model is an ‘ordinary’ dif ferential equation, ODE.
The Euler numerical solution has a maximum error of 4%
Likely to be higher for more advanced systems
Better to using MATLAB's ODE45 function
(uses so called 4th order Runge Kutta to solve ODE)

For which you write an m-file which returns do/dt at an instant
function dobydt = firstorder (t, o, flag, I, K, T)
% Function to calculate do/dt for first order system
% t is time, o is current output, flag is dummy variable
% I is input, K and T are final value and time const
dobydt=(I*K-0)/T;
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Then Run ODE45 from>> prompt

>> [ty] = ode45('firstorder', [0 20],0,[1, 1, 2, 5);
call ode45 with name of do/dt file,
[0 20] means run from t = O to 20,
0 is initial value of O, []is dummy,125are I, K, T

> plot(ty): % to plot how y varies with t
>> plot(t,y - (2-2* exp(-1/5) ) ) % Plot error also
x 10
2 10
15 y - ytheory
0 g9 Much smaller
! £
05 o
o t
%10 20" S0 10 20
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M-file using t - if input is sin(wt)

function dobydt = firstsin (t, o, flag, w, K, T)

% Function to calculate do/dt for first order system

% 1 is time, o is current output

% w is ang freq of input, K and T are paras of system

% Prof Richard Mitchell, 31/3/11

dobydt = (sin(w*t) * K-0)/ T;

0.3

> [t,yl=ode45('firstsin', 0.2

[0 20],0,], 3, 2,5); 01

|
» plot(t.y) 0
NB y of form 01
Asin(wt-B) + Ce /T -029 5 10 15 20
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Lecture 17 - In Class Exercise

Controller Motor do

R TR,

(]

Complete the following function so as to simulate the above

function dobydt = firstorder (t, o, flag, I, C, K, T)
% Function to calculate do/dt for motor control system
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Second Order Systems - 2 integrators
A first order system has one integrator ... Eg for motor velocity

Velocity Write m file

dv
I . < 1]dr v return dV/dt
Ty
S T 4V KT-V

dt - T

To model output position, O, add integrator - a second order system

Control of Motor Position

Another second order system - one which controls motor position

Take motor position model, put in feedback system

Controller Motor A= dv V- do

ITdeTf

Motor , _dv , _dO dv _KI-V
N, T 1dt dt o 9t T Describe by two equations _do dv _ C*K*(I-0) -V
. T . J I J do _, Interms of O and V df dt T
dt -
We simulate by writing an m file to return both dV/dt and dO/dt
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Simulate - again using ode45

Now have vector for O and V and see how both change ...

do v
_[o dov _ | dt | _
°V'{v} ar av =|CKET-0)-V
dt T
In MatLab, ov is vector = [O; V]. ov(1) is O, ov(2) is V ... then

function dovbydt = motorpos (t, ov, flag, I, C, K, T)

% Function to calculate do/dt for first order system

% t is time, ov(1) is output O, ov(2) is velocity V; flag is dummy
% L is input, C is controller, K and T motor parameters
dovbydt = [ov(2); ((T-ov(1))*C*K-ov(2))/ TIL
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Another Example - Mass Spring System

Input position, x; Output position, x,
l Spring, k l (velocity, v)

.

Dashpot, F
This has similarities with a car suspension
Pull one end of spring, object at other end moves, friction exists
Spring extended : force generated is k * (x; - X,)
Friction force opposes this, is F * v vis diff. of x,
Net Force is thus k * (x; - x,) - F* v

This must equal m * acceleration = m dv/dt
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Block Diagram and ODEs

Have x;, assume x,, (X, = X;) * k gives Spring force SF
Assume velocity, get frictional force FF , then net force = SF- FF
Divide by m and integrate to get velocity; integrate again for x,

Spring force  Net force v= dx,

Xi K I; j 1 f dt Xo
m :|_' J
Fv
F
Frictional force 1

dx, -v: and dv _ Spring F - Frictional F - k(xi- Xo) - Fv

dt dt m m
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MatlLab Code

X _ . gng GV - KO- %) - Fv

dt dt m

function dxvbydt = massspring (t, xv, flag, xi, k, F, m)

% Function to calculate dxv/dt for first order system

% 1 is time, xv(1) is output xo, xv(2) is velocity; flag is dummy
% xi is input, k is spring constant; F is friction; m is mass
dxvbydt = [xv(2); (k * (xi - xv(1)) - F* xv(2)) / m];

Now to use m file, call ODE45 at prompt:
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Have defined m file, now use it

> [t,xv] = ode45('massspring’, [0 10], [0:0], [1, 1, 3, 4, 1);

> plot(t, xv); % plots xo v tand v vs t
1
08 dt
: dv _ 3(xi- %) - 4v
0.6 dt 1
04 Ast e, v—>0
0.2 then
- 3(xi-%)-0
% 2 4 6 8 10 0"
S0 x; =
Looks like x, very close to 1 by t = 6 ©% =%
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Two other results

k now 4 (not 3); F still 4, m still 1 k still 4; F now 1.12, m still 1

1 15
08 12
0.9
0.4 03
0
0.2
-0.3
% 2 4 6 8 10 %0 2 2 6 8 10

X, very close to 1at t =4 : faster Damped oscillation ...

We will explain these different responses next week
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Another example - L C R circuit
R L I I= % = 7E “V-M
R R
2 9L
V= Lﬁ =LsI

1 I
V= Z[Idt= =
C! sC

Again need 2
variables

Say Vand T

In MatLab
Again have 2 element vectors
v w|] <
. . S g t | _
Now variable is vector {I}und m-file finds ‘j—I “lE.v-T*R
i g-v- K
L

In MatLab, vi is vector, vi = [V; I]

function dvibydt = LCRCircuit (1, vi, flag, E, R, C, L)
% Function to calculate dvi/dt for circuit
% 1 is time, vi(1) is voltage V, vi(2) is current I; flag is dummy

% E is input, R, C and L are components
dav _ 1 - dI dr _ 1 put, R, p
Gl WTIR=E-V-Lp W D lE-V-IR) dvibydt = [vi(2) / C: (E - vi(1) - vi2)*R) / L]
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Some Runs: € = 0.01F; L = 0.25H Summary

1 1
Vst

05 05 05

° 0 05 1 ° 0 05 1 ° 0 05 1
0.05 0.1 0.2

Ivst 0.05 0 L
0 -0.2

0 05 1 0 05 1 0 05 1

R=200 R=100 R=50
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We have seen how to simulate systems
Simple Euler integration is ok, but there are errors
The ode45 function is much more accurate
You just need to write a function define dO/dt
We have looked at some second order systems
Different examples have been described
Shown how ode45 simulates these - as two first orders

Whilst first order step response has same shape, different
shapes occur for second order

Next week we find out why ...
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18 - Second Order Systems vs Time

Last week we looked at some second order systems,

We saw different step responses depending on parameter values

1 1 1
05 05 05
0 0 05 1 ° 0 05 1 0 0 05 1

This week we find out why.
By extending the analysis of first order systems, where

steady state and transient responses found from transfer function
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Reminder - first order

« 0
I <O 1 |dt 1 o o_ K
&) g i

Assuming I is a unit step :
Steady state is found by setting s to O (ie no change) = K/(0+1)

Transient : find 'value of s’ (root) where denominator is O:
Solve1+sT=0 ie s=-1/T
Then fransient is const * exp(st) = ¢ * exp(-t/T)
So O = K+ cexp(-t/T)
IfO=0att=0;0=K+csoc=-K and hence O=K-Ke'T
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And for this in control system

Controller Motor do
I X > [T]d[T] !0
& ...T
11
CK==
o . Ts - cK Ogs = _ K K
I 11 117 sT+CK+1 0+CK+1 1+CK
1--CK==--==
Ts Ts
CK+1
Denominator root where sT+ CK+1=0: ie —g Ot = cexp T 4
K kel
= T
So O TocK +cexp
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Example Second Order System

Consider control system for position of motor

Extra integrator means system second order

Controller Motor AV oy do

X
LNV Dol 14T 1T ]ie
QAL FL L

O _ Forward _ C*K*%*%*% c*K
I 1-Xloops 1..(:*;(*%*% %.-%*% T2 + C*K+ s
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Second Order Unit Step Response

o. Cc*K
I T2 4s+CK
Steady State, set s to O (as I step), in transfer function

CcK
== -1
Oss T0+ 0+ cK
Transients found by values of s where denominator is O (roots)
Three response types, depending on roots of Ts? +5+C*K=0

If 1>4CKT, two real roots,
If 1=4CKT, two identical roots, critically damped

overdamped response

If 1< 4CKT, two complex roots, underdamped response
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Example Overdamped Response

If T=001,C=9,K= 1 (0.01s% +s+9) = (0.1s +1)(0.1s + 9)

K1 Ka

T ti b das ——
ransfer function can be expressed as Ots+1  01s+9

1_ 9 _ 4on
Roots are o 10 and o1° 90;

Each term contributes an exponential

So Transient has form Kle'loT + Kze—90‘r

Thus complete response is
O(t) = 1+ ke 10F + ke 901
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Graph and Full Response

O() = 1+ Kge 10t + Ky 90t

As t — =, exponentials decay, O(t) —» 1

K's depend on initial conditions,

. do
b =—=0 =0
ut if O ar at t 1
9 _-tot , 1 _-90t 08
o)=1-2 z
()=1-ge™ +ge 06
NB, slope of curve =0 at +=0 0.4
0.2

Also, O never exceeds O,

00 01 02z 03 04 05
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For interest: Finding Values of Ks

O(f) = 1+ Kye 10T 4 kpe 90t o
Assume O= — =0att=0
dog) _ dt

10 Kee-10T _ -90t
at 0 Kie 90 Koe
Att=0,0(1)=1+K +K2 =0

ATT:O,%:—IOKI—QOKZ:O

K =-9K
So1-9K +Kp = 0

Hence Kp = % and so K = —g
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Lecture 18 - In Class Exercise

o__ ok

I Ts2+s5+C*K
Denominator is (0.02s2 + s + 12) = (0.2s + 4)(0.1s + 3)

Determine O if I is unit step in form x + K; e¥" + K; e#t
NB find x, y and z, but not K's

where T=0.02,C=6,K=2

P49 RIM 12/02/16 SEICY15 - Feedback - Part D
© Prof Richard Mitchell 2016 Cyperffetics

A Critically Damped Response

If T=1/36,C= 9, K=1;(s2/36 + s+ 9) = (s/6 +3)?

K2

I K1
Transfer function in form —*— + ——%
s/6+3 (/6 +3)

Repeated root of -18;

Transient of form Kle'wf + Kg‘re'lsf 1
S0 0(t) = 1+ (K + Kot)e 18Y 08
0.6
If0=i—?:OaTT:0canshow 0.4
18t 0.2
O(t)=1-(1+18*t)e” 0

0 01 02 03 04 05
O never exceeds O,, Fastest response without exceeding O,,.

P50 RIM 12/02/16 SE1CY15 - Feedback - Part D
© Prof Richard Mitchell 2016 Cyberfetics

Underdamped Response
If T=1/4, C= 10, K= 1; Denominator s2/4 + s + 10
By completing the square this is (s/2 + 1)2 + 32

Hence have complex roots -2 + j6; For why
see after
Hence O(t) = 1 + Kie 2 cos(6t) + Koe21sin(61) last slide
K's depend on initial conditions, 15
butif 0= 90 =0att=0 N\
dt 1
0()=1- e cos(6t) - Le ¥ sin(6t)
0.5
O exceeds O, before oscillating back
Faster rise than critically damped 00 05 1 15 2 25
Oscillations decay away - they are damped.
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Even More Underdamped

If T=1/4,C=50,K= 1 (s>/4 +5+50) = (s/2 + 1)? + 72
Has complex roots : -2 + j14;

Transient of form K1e’2Tcos(14f) + Kze'ZTsin(MT)

S0 O(t) = 1+ Kge 2 cos(141) + Kpe 2tsin(141)

2
do
IfO=—"=0att=0
fO= 5 15 /\
- -2t 1 -2t ...
O(t)=1-e™“" cos(14t) - 7€ sin(14t) . /\ A
\/ \Y%
Higher C gain, faster rise, but 05
more oscillatory, longer to settle
% 05 1 15 2 25
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How underdamped

s2/4+s+10 hasroots -2+ j6 slightly underdamped
s2/4 +s+50 has roots -2+ j14 more underdamped

s2T+s+CK underdamped if 1< 4CKT
The more 1< 4CKT, the more underdamped the response

So, for control system, if given K and T, system can be
made less oscillatory by reducing C.

Let's consider another example where there are oscillations

And how these are damped ...
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Rocking Robot

When ERIC accelerates, it pivots
about axis between wheels

A = acceleration B = body angle

Model is in effect motor inertia
giving velocity, integrated for
position in a loop

B__ 4
A 9s%+s+4

Clearly 1< 36, so lots of oscillation
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Continued

Solution is to measure the angle of the board and feedback

Key - feedback change in angle ... Differentiated angle

_4
. 9%+s
L4 G
9s° +s 952 +s
B_.__ 4
A~ 952 +5+4+Cs

If want to stop oscillation ... Make critically damped
(C+1)2=4*4*9 . C+1=12 ..C =11

p55 RIM 12/02/16 SE1CY15 - Feedback - Part D

© Prof Richard Mitchell 2016 Cyperfetics

Summary

In this lecture : the step response of second order systems.

Again, steady state response is found by setting s to O.

And transient is determined by the roots of the denominator
Overdamped (does not exceed Oss) if two real roots
Critically damped (fastest for no overshoot) if repeated roots
Underdamped (goes pass Oss, oscillates) if complex roots

Saw also how velocity feedback can dampen oscillations

9. 40 it step. What is Ogg and what form is Oy?

I s2 +75+10

Next week - formalise damping - and relate to Q factor

SE1CY15 - Feedback - Part D
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For Interest - why this answer

If T=1/4,C= 10, K = 1; Denominator s2/4 + s + 10 = (s/2 + 1)? + 32

Hence have complex roots -2 + j6: so transient K e2%16

But (2 +I0) = o2t (s 6t + j sinbt)
Suggesting transient is

Kie 2t (cos(6t) +j sin(61) ) + Koe 2t (cos(6t) - j sin(6t))
But must be purely real.
Can show (next slide) K; = %(Ki . K'g) and Kp = %(jK]I_ »J‘K'g)
So transient of form Kle'chos(é‘r) + Kze'ZTsin(éf)
Hence O(t) = 1+ Kje 2 cos(61) + Koe ZTsin(6t)
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Why these values of K; and K,

Kie 2T (cos(6t) +j sin(61) ) + Kae 2t (cos(6t) - ] sin(61)) must be real
Assume Ki = a+jb and Klz = c+jd, ignore common e?! term:
(a+jb) (cos(61) +j sin(61) ) = a cos(6t) - b sin(6t) + jb cos(6t) +ja sin(6t)
(c+jd) (cos(6t) - j sin(6t) ) = c cos(61) + d sin(6t) + jd cos(6t) - jc sin(6t)
Add these. Result must be real, so b = -d and a = ¢, then get
a cos(6t) - b sin(6t) + ¢ cos(6t) + d sin(61) = 2a cos (6t) + 2b sin(61)
Hence Ki = a+jb and K2 =a-jb = Ki + Klz = 2aand Ki - K2 =2jb
So indeed K; = %(Ki +Kz) and K = %(jKi -J'K'z)
So transient is Kle'ZTcos(é‘r) + Kze'z*sin(é‘r)
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19 : Damping and Second Order Freq

We saw last week the step response of second order system, eg
0. ok
I Ts?+s+CrK
From the transfer function we can
easily assess the steady state output : CK/CK =1
the transient response varies depending on the TF denominator
two real roots, one repeated root or complex roots
This week we assess these responses using ‘damping ratio’
This in fact relates to the Q factor used in electronics
Which naturally leads to second order frequency response
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Transfer Function and Damping

We have had over-, critically- and

o K
I under- damped systems.

T T2 v s+ CK

Control Engineers express systems in terms of ‘damping’ ratio {

cK .
9 = ? = K wp = \/LT( é‘ = !
I 2, %S* CTF % + 20 + o T JacKT

T is 1 when 4CKT =1, system critically damped : denom (s + w,)?
If 7> 1, system is overdamped : denom has form (s + a)(s + b)
If <1, system is underdamped : roots of denom are complex

As we shall see, this relates to Q factor in electronics
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T=001,¢=9,K=1;
900 324
% +100s + 900 % + 36s + 324

T=1/36,C=9,K=1

No oscillations, Slowest to Rise
Approach Steady State at 0.5s
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¢ = ; = L = § ¢ = 71 =1
4*9*1*0,01 6 37 J4*9*1/36
@p =900 = 30 o =324 =18
1 1
038 08
06 06
04 04
0.2 02
00 0102030405 00 0102030405

Damping Ratio For Last Week's Examples

Fastest with no oscillations
Approach SS at 0.4s

UnderDamped Examples

T=1/4,C=10,K=1; T=1/4,€=50,K=1;
40 200
s% +4s+40 s% + 45+ 200

et -1 _omn
J4*50*1*1/4 50
op, = ~200 = 14.1 rad/s

1 1
= = ——=0316
¢ N4*10*1*1/4 V10

@y = 40 =6.32 rad/s

15 2
a
1 RTAW
v \v4
05 05
00 051 152 25 % 051 152 25

Faster to rise, but oscillates Faster, more oscillatory
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LCR Circuit In Class Exercise
R L I LR Vo - , 1 : %c
Vs sPLC+sCR+1 s +sR/+ 1
—
EtOve v =tV B+ He
e Lisoans [T 2cun s Bisoge B B
Yn TS e et T 2Lw, 2L
For the following, calculate w, and { and state if overdamped, etc
1 R |C
L [4 R — = 7\ﬁ Status
e T2\t
400mH 25u4F 200Q
1,1 400mH 2.5uF 800Q
S0 Yo _ Forward _ R sC . 1 400mH 25.F 40Q
Vo o lloops g _Lil 417 scret+siLc 400mH 25,F 32000
R sC R
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Yoo 1
Vs 1+ jwCR

For Bode, plot log(gain) vs log(w) and phase vs log(w)

Frequency Response of RC Circuit

Saw asymptotic approximations before/after corner freq 1/CR
At Corner Freq, phase half way between 0 and -90... 1 = wCR

Freq Resp : how varies with w, polar/Bode plot

1
0 01 ~—
02 0.01
0 o0 -1 109 10! 102
-0.4
-45
-0.6
00306 1 %0
101 109 10! 102
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Second Order Frequency Response

Now consider LCR circuit: earlier diagram but | or 1/s = 1/jw

S A .
=] = T juc
Vi jwl

1,1

Vo R jaC ) 1 ) 1

Ve g Ial 17 R+ 14 elle T 1-wPle +jweR
R Juc by i i
Vo Vo 1 1

1 .
At low o, 22 = - =1/0; At high » = = ——~/-180
Vs 1 Ve Pullc uwlLlc
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Corner Frequency and Q
Vo _ 1

Vs " 1- wPLC +jwCR
. 1
Consider what happens when 1- w2L.C = 0 or w =——
PP ic

v, . 1 ) 1 0
Yoo - = P = -90'

v T juer so Gain weR hase = -9

Phase half way between O and -180 ... so this is corner freq
(first order system, corner freq where phase half way 0..-90)

Specifically w = ﬁ Gain = ﬁ = é\/% = Q Phase = -90°

This is angular frequency w,, when gain is Q (quality factor)

p67 RIM 12/02/16 SEICY15 - Feedback - Part D

© Prof Richard Mitchell 2016 Cyperfetics

Polar Plot

1 1L
L c R Wn= I Q= iy \/g
400mH 25u4F 200Q 1000 rad/s 2
400mH 25u4F 800Q 1000 rad/s 05
400mH 25u4F 40Q 1000 rad/s 10
400mH 25u4F 3200Q 1000 rad/s  0.125

> +f = 1./(-L*C*w.”2 + w*C*R+1);
» plot(real(tf),imag(tf) ; -2
-4
Plot varies 1 £ 0° .. 0 £ -180° %
Q is gain when phase -90°
NB plot shape changes with Q
-10

6 -4 -2 0 2 4 6

SE1CY15 - Feedback - Part D
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2nd Order Asymptotic Analysis
v, 1

Vs 1- 0PLC +joCR
At very low o, ¥—° ~ 1,50 Gain = 1. Phase = 0.
s

So Gain asymptote is straight line, slope O

. Ve 1
At very high v, 2 =~ :
YN T Ratle

L g L#p2): (L) -
plot log [a)ZLCJ = log(LC © ) log L 2log(w)

So Gain asymptote is straight line, slope -2

Gain 21 and Phase = -180°
wLC

1
Asymptotes meet when 1 - WlC=0: o= ic
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Bode Plot Asymptotes plus actual

Suppose 10(1]
L = 400mH, 10

R = 2001 and 107
C=25yF; (Q=2) 10°

Asymptotes meet when 0

s wl )
e : -

= -180

V400*10-3%2 5107 0 18 100 100 10
=103

NB, here gain rises from initial value, as Q = 2.  (earlier slide)
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How Q affect Bode Plots

Q affects how gain/phase move between asymptotes

Plots below for same LCR examples given earlier

0 NB
Gain
N ar
at w,
-90 NB
Peak
\\ gain
bef
o 180 we ore
1 3 5 1 3 5 °
10 10 10 10 10 10
Higher Q - higher peak ... Faster change of phase.
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On Bode Peaking and Underdamped
When1-w?LC=0,

Vo 1
e 1 c_1
Vs 1-0PLC +joCR Yoo L e 1fL

V., jweR T jeR  jVeR?
L
If |—5>1,
\cr2

To test if a system is underdamped we solve s?LC + sCR+1=0

rises from1 to a peak

Vo,
Vs

Complex roots if C2R% < 4L.C or 4% >1lor2 % >1
CR CR
. L .
Soif |[—5 >1,V, will be underdamped
Y o p

The bigger % the bigger the peak, the more underdamped
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Q factor and Damping Ratio
In Electronics, Q factor is used. In Control Damping ratio ...
1+jo/opQ - wz/wg

In electronics, TF denominator of form

- L 1L
For LCR wo_ﬂ Q_R\E

Band Pass Filter Example

v, I v,
i joC ,
In control, express TF denominator as 1+ j2¢w/w, - wP/wh ! :|_' R
1 2c R [C jwl
= —2 =2¢{JLC =CR s = =
For LR wh=pz - ¢Le 0= o0
) R ) )
Wn= Wo ¢= Q ¢ is damping ratio S0 Vo _ Forward _ JwC*R _ JwC*R
14 T 1D wC*R — wl i - 0 2 2
Underdamped if Z< 1. Note factor of 2. Vs Tloops 1--JwCR--juljwl 1+ jocR + "0fLC
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Asymptotes Plots : same set of Q values
so Yoo JoR 10’ 10' 10!
Vs 1+ jocR - oPLC 10° 10° ) L = 400mH
v /\ C=25uF
At very low o, -2 ~ jwCR. Gain asymptote slope +1 \ R = 800, 200
Ylow o, (= jo in asymp p ; or 400
; Vo _ JeCR _ R .. B 10° 10° 10° Separate
At very high o, Vs jPafLe T jel’ Gain asymptote slope -1 ' 10° 10° o' 10° 10° 10" 10° 10° Gainplots+
N : 10! % o5 asymptotes
o )
Asymptotes meet when wCR = W—L: ®= = \/; 10 /\ Combined
0 gain, phase
lots + polar
Then asymptotically gain = %*\/E =R *\/g = é o 0 05 u P P
1 3 5 1 3 5 0 1
Actual gain at w, = 1 0 10 10 o 10 10
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Frequency Model of Motor Position

&0 do
dt? dar

K*l*i*i
O _Forward . ™ T jo jo _ K
I 1-loop 1“%*# ()T +jo
Small @ : o. £ Large o : o. LZ Gain asyms meet
I je I (o@T K
Gain slope -1; i -2, -
in slop a Gain slope -2; LT o
Phase is -90 Phase is -180° ie 0=1/T
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Bode and Polar Plots K =5, T = 0.4

10 o o
-45 -
10° °
-90 -10
2
10
-135 15
4 -180
Vor 25 100 01 25 0 2 1 o
As w — 0, Gaih — o, polar plot — < on imaginary axis
p78 RIM 12/02/16 SE1CY15 - Feedback - Part D

© Prof Richard Mitchell 2016 Cyberfetics

© Prof Richard Mitchell, 2016

13



SE1CY15 - Feedback - Part D

Summary

We have looked more at second order systems
The step response has different forms
Which can be defined in terms of damping ratio
The frequency response also has different forms
Which can be defined in terms of Q factor
They are related : Q = 1/27

20 : Modelling Animal Systems

Cybernetics, control and communication in animal and machine...
Consider a Population model, if P is the population size:

Change of Pop is a function of P : more P, more kiddies

% =P*(b-d) bandd arebirth and death rates

Population model is a feedback system dp P

We have reaffirmed the asymptotic approximations with integrator. dr I

Used to plot the band pass filter ) ) o

- If b > d, P increases without limit.
And motor position ...
) . . If b < d, P decreases to zero. b-d
Next week we tidy up the course : modelling of animal systems
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Using ODE45

As before, need function, say in file pop.m, to generate derivative
function dpbydt = pop (t, p, flag, b, d):
dpbydt = (b - d)*p;

[flag is dummy value here, time t here not used]

% compute change in P

Then invoke ode45 with m file, init p, max t and b and d:

> [11,p1] = ode45('pop’, [0,51,20,[1, 0.6, 0.4); %b>d
> [12,p2] = ode45('pop’, [0,5],20,[], 0.3, 0.5); %b<d
> plot(t1,p1,t2,p2); 100
If do so, get graph as shown a
' get grap 50
either P> 0orP — o
1T 3 >
p81RIM 12/02/16 SE1CY15 - Feedback - Part D
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More Complicated But Realistic Model

The above is very simple & unrealistic. Need better model
So define birth rate as by - b, * P
And death rate as d; + d, * P.

Then model becomes % =(by-dy - (bp+cp)*P) * P

Population stablises when above = O, ie when P = O (boring)

orby - - (bp+ )P = 0 i.e.whenP=%

function dpbydt = pop (t, p, flag, vals) % m file
% vals has [bl,d1,b2,d2]
dpbydt = (vals(1) - vals(2) - (vals(3) + vals(4))*p) * p:
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MATLAB Session + Results

»v=[10,9,0.15,0.05]; % define rates
> [t1,p1]=0de45(pop’, [0,5],20, v); % run from 20
> [+2,p2]=0de45(pop’, [0,5],3, v): % run from 3
> plot(t1,p1, 12,p2);
As expected, P stabilises at
20 (10 - 9)/(0.15 + 0.05) = 5
If start above 5,

Classic Foxes and Rabbits Example

Now consider multiple interacting species:

can be mutualistic, competitive or predator prey.
Here do classic predator prey example - foxes & rabbits
Let F be humber of foxes and R be humber of rabbits.

System model, as follows, where a, b, ¢, d are constants:

dR dF

AR _ *R_b*R* = ¢*R*F-d*
ar a*R-b*R*F prral F-d*F

810 d
& ecay down to 5,
Else Note positive and negative feedback in dR/dt expression
0 . First term +ve fb: more R, dR/dt +ve, so more R
1 3 5 rise up to 5.
Second term -ve fb: more F, so dR/dt -ve, so less R.
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Stable Foxes and Rabbits? MATLAB Simulation
function dpbydt = pop (*, p, flag, vals):;
% - *RBRF % = C*R*F-d*F % vals is [a b ¢ d], p(1) = R; p(2) = F
dpbydt = [vals(1)*p(1) - vals(2)*p(1)*p(2): ...
Population stable when change of both populations O: vals(3)*p(1)*p(2) - vals(4)*p(2)];
a*R-b*R*F=0 ie R:O(bor‘ing)or‘F:a/b For a=20,b=4,c=3&d=27;ploTRvF;RandFv’rime
and  c*R*F-d*F=0 ie F=0OorR=d/c 10 20
In fact populations cycle round these values. RvFis x %
- ‘phase e 5 - 510
We can show this in MATLAB plane’ -
Again need function to return change in population 0 . § 0
. . . 5 10 5 « 0 05 1
Now have two species, so P is column vector as is dP/dt Rabbit Time
Note cyclic response: populations rise and fall
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Foxes, Rabbits and Triffids 2000 40
l—‘ /
w
Novel extension of method (thanks to Dave Keating) "8 1000 MA X 20 .§
Classic: Rabbits eat grass, Foxes eat Rabbits o 0 “ 0
Extension: Rabbits eat Triffids (plant), Triffids eat Foxes 0 50 100 0 1K 2K
dr Time Rabbit
i 0.001*R*T-0.06*R*F
2000 2000
g = 0.0001*R*F-0.00005*F*T ;9_ -
4 £ 1500 2 1500
(. “
ar . 0.025*T +0.00015*F*T-0.00003*R*T a 2
dt ’ ’ ’ 1000 1000
0 1K 2K 0 20 40
In graph over vs time, Foxes scaled by 20 so can see Rabbit Fox
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Lecture 20 - In Class Exercise Mutualistic Species
Population P model: dP _ br-d - (bp+dp)P) * P Where species assist each other - mutualists
dt x affects y in a positive manner, and y affects x similarly
Suppose b, = 10,d; = 6,b, =07 and d, = 0.3 e.g. Hippo and Bird which eats weed round Hippo's teeth
At what population will P stabilise? Flowers and pollinating insects ...
Sketch 2 graphs of P vs time superimposed on same axes: first As both help each other, have run away positive feedback

has P = 10 initially (at time 0); second has P = 2 then.
“ initially (at fime 0); second ha en So, need 'negative’ feedback to limit x & y - eg food/land

+
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Simple Mutualistic System

dx dy _ 2
E:(—B—sz +2ly)*x gy (1383 Py
Formal analysis is tricky, but can estimate response.

Find values of x and y where x and y constant : diffs = 0

We then plot these on graphs of y vs x

%:O where —13—2x2+21y =0and where x =0
3—:::0 where —13+8x—3y2=0 and wherey = 0

Stable where a j—: = 0 line intersects with a % =0 line
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Simple Mutualistic System

3—’;:(-13-2x2+21y)*x %:(-13*8x-3y2 Yy

For dx/dt, one line is x = 0
In MATLAB for other dx/dt line, as has x2 term, use
»x=[2:6]y=(13+2*x."2)/ 21,

Do something similar for dy/dt
x 2 3 4 5 6 y 1 2 3 4 5
y 1 19 25 3 34 x 2 385 6 68

NB dx/dt and dy/dt both zero when x,y = 2,1 and 5,3
Both functions also zero when x,y = 0,0.

We plot these ‘isoclines’ on phase plane plot (x vs y)

SE1CY15 - Feedback - Part D
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Plot Zero Isoclines on Phase Plane

dx/dt =0 Populations stable
atx=2,y=1and

dy/dt=0  atx=5,y=3and
atx=0,y=0

dx/dt = x(-13 - 2x? + 21y)
(2.1) dy/dt = y(-13 + 8x - 3y?)
X

The iscolines for dx/dt are x = 0 and -13 - 2x2+ 21y = 0
Those for dy/dt are y = 0 and -12 + 8x - 3y?=0

Eq points: where a dx/dt isocline and a dy/dt isocline meet
Main iso’s meet at 2,1 and 5,3; x = 0 and y = O meet at 0,0
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Arguing Stability

But, one point not stable - if move from there don't return.
To argue this, label each region with sign of dx/dt & dy/dt
eg. ++=dx/dt >0 &dy/dt >0 -+=dx/dt<0&dy/dt>0

y dx/dt =0
ydy/df -0 Now add

trajectories from
initial X,y

dx/dt = x(-13 - 2x2+ 21y)
dy/dt = y(-13 + 8x - 3y?)
X

6o t0 5,3 or 0,0 - stable points
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MATLAB Graphs: Phase Plane + Time

Phase plane
I 5 ploty v x
Q
O
Q.
()
0
0 1 2 3 4 5 6 7
> Specie x
T Time ploty
S5 vtand xv
3 '
Q
9 <
Q.
oo
0 0.1 02 _ 03 0.4 05 0.6
Time
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Summary

We have looked at modelling feedback systems
control systems
population models of single or multiple species

Now course ends,
an introduction has been given to feedback systems
showing variety and application
There will be revision lecture in Summer

You are recommended to do the following exercise
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