CONTROL USING MAXIMUM AVAILABLE FEEDBACK

Dr Richard Mitchell

Cybernetics Intelligence Research Group
Department of Cybernetics The University of Reading, UK
R.J.Mitchell@reading.ac.uk

Overview

Maximum Available Feedback is max loop gain over a specified bandwidth for given stability margins, in a single loop feedback system
Developed by Bode for Electronic Amplifiers, using Asymptotic Approximations
But, appropriate for Control to have high loop gain
Also, is a good example of a non-trivial controller
Paper shows how to approach design from a control perspective, using novel analysis of Bode's asymptotes

Frequency Shape for Bode's Design

Uncompensated System: gain $=1 @ \omega_{\mathrm{a}}$; slope is -n

Specify
$\omega_{0}=\mathrm{bw}$
x = Gain
Margin
y = Rel
Phase
Margin
Slope $-2(1-y) \rightarrow$ Phase $=-180+$ PM; 'Bode Step' $\omega_{\mathrm{d}} . . \omega_{\mathrm{c}}$: cancel phase due to - n slope
Gain 'curves up' to double bandwidth
Control Using Maximum Available Feedback - 3
© Dr Richard Mitchell 2004

Loop Transfer Function - 3 Parts

Design produces transfer function round loop
Curved Part : low freq response
Bode's irrational element awkward, so use
Second Order Element, corner freq ω_{0}
In effect slope -2 from ω_{o} to $-2(1-\mathrm{y})$ slope
Lead Lag(s) to approximate slope $-2(1-y)$
from ω_{d} / m to Bode Step (at ω_{d})
Double Lead for Bode Step at ω_{d}
Then n Lags at ω_{c}
Controller in Series with UnComp for Loop TF

Transfer Functions

Loop TF: $\frac{\text { GMax }}{\mathrm{s}^{2} / \omega_{\mathrm{O}}^{2}+\mathrm{s} / \omega_{\mathrm{O}}+1} \frac{1+\mathrm{s} / \omega_{1}}{1+\mathrm{s} / \omega_{2}} \frac{\left(1+\mathrm{s} / \omega_{\mathrm{d}}\right)^{2}}{\left(1+\mathrm{s} / \omega_{\mathrm{C}}\right)^{\mathrm{n}}}$
GMax $($ in dB$)=40(1-\mathrm{y}) \log _{10}\left(\frac{4(1-\mathrm{y})}{\mathrm{n}} 10^{20 \mathrm{n}} \frac{\omega_{\mathrm{a}}}{\omega_{\mathrm{o}}}\right)-\mathrm{x}$
If, over bandwidth, slope to be -1 , so $\mathrm{O}_{\mathrm{ss}}=0$ to step
Loop TF: $\frac{\mathrm{GMax} * \omega_{\mathrm{O}}}{\mathrm{s}\left(1+\mathrm{s} / \omega_{\mathrm{o}}\right)} \frac{1+\mathrm{s} / \omega_{1}}{1+\mathrm{s} / \omega_{2}} \frac{\left(1+\mathrm{s} / \omega_{\mathrm{d}}\right)^{2}}{\left(1+\mathrm{s} / \omega_{\mathrm{C}}\right)^{\mathrm{n}}}$
If $-2(1-y)$ slope over large range, use more LeadLags
Can also cope with sampling and hence Time Delay

Applying to Control

Electronics: large d.c. gain, so ω_{a} at high freq, after most corner freqs, and order, n , is high method needed to stabilise system
Control : d.c. gain may be less than 1: no ω_{a} or small, most corner freqs after ω_{a}
Also, often specify Control in terms of step response BUT, good for Control to have high loop gain (output largely unaffected by disturbance or by changes in parameters of device under control)

Control Using Maximum Available Feedback - 6
© Dr Richard Mitchell 2004

Approach

Loop TF will have high d.c. loop gain
To implement need an amplifier
Thus include in 'uncompensated system' both the device to be controlled AND a 'virtual' amplifier
Gain of the amplifier affects ω_{a}
Also approx relationship exists between TimeToPeak $\left(\mathrm{T}_{\mathrm{pk}}\right)$ to Step and ω_{d} (and hence ω_{a}) in terms of phase margin which is related to \%overshoot (\%os)
So, from $\%$ os and $T_{p k}$, assuming typical gain margin, estimate ω_{a} and gain of virtual amplifier \rightarrow design

Details

Uses second order correlations; ζ = damping ratio

$$
\mathrm{PM} \sim 100 \zeta \quad \mathrm{~T}_{\mathrm{pk}}=\frac{\pi}{\omega_{\mathrm{rf}} \sqrt{1-\zeta^{2}}} \quad \% \mathrm{os}=100 * \mathrm{e}^{-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}}
$$

ω_{rf} where closed loop gain max; when slope is $-2(1-y)$
Assume Loop TF is $\frac{\mathrm{K}}{(j \omega)^{2(1-y)}} \quad \mathrm{K}=10^{-\frac{x}{20}} * \omega_{d}^{2(1-y)}$
$\omega_{\mathrm{rf}} \approx \omega_{\mathrm{d}}\left(10^{-\frac{\mathrm{x}}{20}} \cos (\pi \mathrm{y})\right)^{\frac{1}{2(1-\mathrm{y})}}:$ typically $\approx 0.2 \omega_{\mathrm{d}}$
Choose suitable ω_{o} best if m, freq range of $-2(1-y),>50$

Examples

Speed Control of Motor and associated Power Amp

$$
\mathrm{H}(\mathrm{~s})=\frac{2}{(1+\mathrm{s} / 6)(1+\mathrm{s} / 40)(1+\mathrm{s} / 80)}
$$

$\mathrm{GM}=15 \mathrm{~dB}, \mathrm{PM}=45^{\circ}(\sim 20 \% \mathrm{o} / \mathrm{s}) \mathrm{T}_{\mathrm{pk}}=0.1 \mathrm{~s}$.
$\omega_{\mathrm{rf}} \sim 35 \mathrm{rad} / \mathrm{s} \omega_{\mathrm{d}} \sim 140 \mathrm{rad} / \mathrm{s} \omega_{\mathrm{c}} \sim 280 \mathrm{rad} / \mathrm{s} \omega_{\mathrm{a}} \sim 158 \mathrm{rad} / \mathrm{s}$
Virtual amplifier: gain = 122 corner freq $=600 \mathrm{rad} / \mathrm{s}$.
If $\omega_{\mathrm{o}}=0.3 \mathrm{rad} / \mathrm{s},-2(1-\mathrm{y})$ over freq range $58=2^{1-1 / \mathrm{y}} \frac{\omega_{\mathrm{d}}}{\omega_{\mathrm{o}}}$
Do design, PM low (asymptotic approx), so redesign; \%os tends to be high, so design again

Results

Also did Position Control (H(s) extra 1/s term) [d..f], and Computer Control hence with time delay $[\mathrm{g}]$)

	GMax	GM	PM	ω_{rf}	T_{pk}	$\mathrm{O}_{\text {ss }}$	$\%$ os	Tset
a	330.7	17.8	36.8	37.12	0.061	0.997	42.1	0.23
b	263.4	15.0	44.6	43.22	0.053	0.996	31.1	0.18
c	168.8	15.4	53.1	32.21	0.055	0.994	20.3	0.25
d	346.7	15.6	36.9	43.54	0.058	1.000	41.9	0.18
e	249.7	15.7	45.0	31.75	0.060	1.000	31.1	0.14
f	189.8	12.6	52.1	32.06	0.048	1.000	19.5	0.24
g	110.0	15.6	56.7	19.79	0.093	0.991	20.2	0.26

Pos $_{3}$ Ctrl: Bode Gain/Phase; Step, CLDist

Control Using Maximum Available Feedback - 11
© Dr Richard Mitchell 2004

Conclusion

Maximum Available Feedback is a good example of a non trivial design method
Although developed for Electronic Amplifiers, have shown how it can be applied for Control
It thus could fit into a Control Engineering syllabus
Other work: better ways of achieving PM (adjusting asymptotes), and selecting number of LeadLags: can exceed Maximum Available Feedback!
Future Work : more detailed comparison with other design methods

