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The Department of Cybernetics has recently developed 
some simple robot insects which can move around an 
environment which they perceive through simple sensors. 
Suitable behaviour can be programmed into these devices 
by humans so that, for example, the insects can avoid 
obstacles. This paper describes these insects and a novel 
method which has been developed which allows the 
insects to learn their own behaviour. 

1. INTRODUCTION 

There is much interest in the development of intelligent 
machines which can learn from their environment. 
Various machines have been developed which have 
many sensors, sometimes including a video camera, and 
so a great deal of computing power is required to process 
the information coming in to the machine. More 
processing is then required to determine suitable action in 
response to this information. 

Researchers in the Department of Cybernetics at the 
University of Reading believe that it is best to start with 
much simpler systems. Also, we believe that there is 
much to learn from the behaviour of simple organisms 
like insects. Therefore, a number of simple robotic 
`insects' have been developed which are small and which 
can operate rapidly. The first systems built have few 
sensors which the insects use to determine a limited 
(though not trivial) behaviour. However, the insects were 
designed so that extra sensors could be added to allow 
more complex behaviour. The next section describes the 
insects; this is followed by a description of how their 
actions are programmed by humans; the final section 
describes how the insects learn their own behaviour. 

2. MOBILE INSECTS 

So far, eight simple mobile robotic `insects' and two 
larger devices have been produced, and the next 
generation insect has been designed whose sensors have 
been improved. These insects have been used in various 
teaching and research projects. 

Simple mobile insects 

The simple insects have two ultrasonic sensors, which 
enable the insect to detect how far the nearest object is in 
front of a sensor, and two motors, each of which can be set 
to move forwards or backwards at a given speed. Figure 1 
shows a block diagram of the insect. 

 
Figure 1 Block Diagram of Insect 

The actions of the insect are determined using a look-up 
table, which is stored in an EEROM. The data from the 
ultrasonic sensors are passed to the address lines of the 
EEROM, and the value at the addressed location specifies 
the speed and direction of each motor. In fact, the insects 
can be programmed in various modes of operation which 
are selected by switches. The switch settings provide extra 
address lines to the EEROM.  

Figure 2 shows a block diagram of the information paths in 
the insect. The ultrasonic sensors are controlled by a 
programmable logic array, PLA, and associated analog 
electronics. This PLA first causes an ultrasonic signal to be 
emitted by the transmitters for both eyes and then it waits 
for a signal to be reflected back from an obstacle to either 
receiver. The time taken before the reflection comes back 
(assuming one does return) indicates the distance of the 
obstacle away from the nearest eye. The time taken is 
determined by the PLA. The PLA produces a signal 
indicating the eye which is closest to any obstacle and the 
distance of the obstacle from that eye. 

 

Figure 2. Information Paths in Insect 



These values, together with the values set by the mode 
switches, are passed to the address lines of the EEROM 
and specify a location in a look-up table. The look-up 
table contains data specifying the velocity of the motors 
for each wheel for the different modes and sensor data. 
The data at the specified address in the EEROM are 
passed to a second PLA which converts the information 
to PWM signals which are passed to MOSFET bridge 
circuits which drive the motors. 

The insect therefore moves in a manner determined by 
the data from its sensors, and the behaviour specified by 
the values in the look-up table. 

Data format 

Four bits of information are generated by the PLA 
controlling the ultrasonic eyes. One bit indicates the eye 
which is closest to the nearest obstacle. The remaining 
three bits indicate the distance of the object from the eye, 
giving a value in the range 0..7. If the range is 7, this 
indicates that no object is visible, or that any object is too 
far away. If the range is less than 4, then there is an 
obstacle which is very close. This happens because the 
receiver cannot start to look for a return pulse too early, 
or it will pick up the transmit pulse. (Means for acquiring 
a better value for the range are described below). 

Four bits of the data from the specified address in the 
EEROM are passed to each motor. One bit of the four 
specifies the direction of the particular motor, the other 
three bits specify a speed value. The insect can thus, for 
example, go forward or backwards at various speeds, or 
turn, by specifying that one motor goes forwards and the 
other goes backwards. 

Next generation of insect 

As explained above, the first version of the insect does 
not generate much range information and does not 
provide independent range information for both eyes. 
Therefore a second generation of insect has been 
designed. The requirements for this insect mean that the 
PLA controlling the ultrasonics is insufficient. Therefore 
a suitable field programmable gate array (FPGA) has 
been designed which controls both the ultrasonics and 
generates suitable PWM signals to drive the motors. 

This FPGA has 500 logic gates on one device and has 84 
input/output pins. This is sufficiently large to allow the 
insect to have four ultrasonic sensors; one for each eye, 
one facing straight forward, and one behind. This last 
sensor is useful as insects have been observed reversing 
into objects. 

The new insects have better range information, because it 
is possible to start `looking' for any return pulse whilst 
the output signal is being transmitted. When the signal is 
being transmitted, the receivers detect the output signal 
and any return signal combined, therefore a return signal 
is present when the received value is larger than that 
received from the output signal alone. Thus a returning 

echo is detected by comparing the received signal with a 
variable threshold whose shape is like that of the 
envelope of the transmitted signal, as shown in figure 3. 
The envelope of the transmitted signal is shown, as well 
as the shape of the threshold signal which is compared 
against any received signal.  

Another change in these new insects is that range 
information is determined for each eye separately, rather 
than just indicating the eye closest to an object and the 
distance of that object from the eye. This requires that 
each eye should be tested at different times, otherwise the 
return signal reaching one eye would be detected by the 
next eye a short time later. Thus, a signal is transmitted 
from the first eye and the time for any reflection 
determined, and then the next eye is tested. 

 
Figure 3 Detection of received signal 

Another improvement is the provision of a logarithmic 
measure of range rather than a linear one. This allows for 
greater accuracy when detecting the range of close 
objects, while still being able to detect objects further 
away and still using only three bits of data. The FPGA 
contains circuitry to achieve this. 

Extra sensors 

The sensors on the existing insect are ultrasonic. 
However, it is also possible to add extra sensors, for 
example thermal infra-red sensors. This, for example, 
could allow the insect to follow a `warm' target but avoid 
other obstacles, so that the insect could follow a human 
walking around a room but not hit table legs. This is 
easily achieved by connecting the output from the infra-
red sensor to other address lines on the EEROM; the 
insect can thus switch between two behaviours 
depending upon the information from its sensors. 

Larger insect 

In addition, the Department has produced a larger version 
of the insect which has its own microprocessor and 
various extra sensors (Hole and Kelly, 1). This has been 
programmed to move around avoiding obstacles, but 
which also follows one infra-red source (a possible prey), 
avoids another (a possible predator), and which `docks' 
with a charge unit (food) when it anticipates that its 



battery will soon start to run down. This behaviour has 
been built in to the unit by a specific program. 

3. PROGRAMMING THE INSECT 

This section considers ways in which the actions of the 
insect can be programmed. As the insect does not have a 
microprocessor, the EEROM needs to be programmed 
off-line and then the EEROM inserted into the device. 
However, it is planned that later versions of the insect 
will be programmable on-line; appropriate control 
circuitry has been programmed into the FPGA for this 
purpose. 

Programming the insect - by human 

Determining the behaviour of the insect has been set as a 
laboratory experiment, in which students write four 
procedures determining four modes of behaviour for the 
insect. This is achieved by a program which generates an 
array, whose contents are specified by four procedures 
(Mode0, Mode1, Mode2 or Mode3; one for each mode) 
and which writes the array to a file. The data in this file 
are then programmed into the EEROM. 

The students have to write the procedures Mode0.. 
Mode3, which have the form: 

PROCEDURE Mode0 (Range : INTEGER; 
                                      LeftNotRight : BOOLEAN; 
      VAR LeftSpeed : INTEGER;  
      VAR LeftIsForward : BOOLEAN; 
      VAR RightSpeed : INTEGER; 
      VAR RightIsForward : BOOLEAN); 
BEGIN 
   << students put their code here >> 
END; 
 
The code written by the students determine rules for the 
behaviour of the insect. If the insect is to avoid obstacles, 
say, then the following may be appropriate. 
 
  IF Range = 7 THEN BEGIN 
           (* nothing visible, max speed forward *) 
      LeftSpeed := 7;   LeftIsForward := TRUE; 
      RightSpeed := 7;   RightIsForward := TRUE; 
  END 
  ELSE IF Range <= 4 THEN BEGIN 
               (* something close, go backwards *) 
      LeftSpeed := 7; LeftIsForward := FALSE; 
      RightSpeed := 7; RightIsForward := FALSE; 
  END 
  ELSE IF LeftNotRight THEN BEGIN 
             (* turn to the right *) 
      LeftSpeed := 7; LeftIsForward := TRUE; 
      RightSpeed := 7; RightIsForward := FALSE; 
  END 
  ELSE BEGIN  (* turn to the left *) 
      LeftSpeed := 7; LeftIsForward := FALSE; 
      RightSpeed := 7; RightIsForward := TRUE; 
  END 

 
Other behaviours can be set, for example the insect can 
be programmed to follow objects; if it sees nothing it 
stays still, otherwise it moves towards the object but 
stops when it gets too close. 

The above has been successfully used in laboratory 
classes. Students have produced various strategies to 
enable the insect to avoid obstacles, with varying degrees 
of success, but also with much ingenuity; there are many 
solutions to the problem. The insects have also been 
programmed to follow objects, and six insects have 
`waddled' in line, just like ducklings following their 
mother. `Puppy' mode has also been programmed, where 
the insect approaches the object, but backs away when it 
is too close to the object. 

Programming the insect - by neural network 

If a learning scheme is to program the insect, then a 
suitable system must be trained and the result placed in 
the EEROM. Various methods could be used here. First 
the insect could be trained using a simulation and the 
results used in place of the Mode procedures above.  

This would be appropriate if a neural network was used. 
For example, a multi-layer perceptron (MLP) could be 
trained using the back-propagation algorithm. The inputs 
to this network could be the Range and LeftNotRight 
parameters passed to the Mode procedure and its outputs 
would be the variable parameters passed to the 
procedure. The trained network would then be called 
from the Mode procedure when the data file was 
generated. 

There are problems with this, the main one being the 
training of the network. The back-propagation algorithm 
requires that the outputs of the network are known for 
each input combination, and the differences between the 
calculated outputs and the known outputs produce the 
error signals which are propagated back through the 
network. Although suitable outputs of the network are 
known (they have been programmed into the Mode 
procedures) which could be used to generate the error to 
be back-propagated, it was felt that the system should be 
able to generate its own values. 

One solution to this problem is to use a technique like 
that described by Nguyen and Widrow(2) for their `Truck 
Backer-upper' where the system learns to reverse a truck 
and trailer to a specific point on a wall. This has two 
networks, one which was first trained to model the truck 
and trailer, and another which was then trained to control 
them. When training the controller, the truck was allowed 
to reverse until it hit the wall (in a simulation!), and the 
distance between the position of impact and the desired 
position generated an error. This error was then 
propagated through the first network so as to generate the 
errors at the output of the controller which were then 
used to train the controller. This, however, is a 
complicated solution to the problem. Also, the back-



propagation algorithm has many defects, not the least 
being the long time it takes to learn. 

An alternative approach is to use a neural network which 
uses an unsupervised learning algorithm, such as a 
Kohonen network. Davidov and Smele (3), two students 
in the Cybernetics Department, applied such a network to 
their models of the insect. This successfully identified 
different circumstances where suitable strategies were 
required. For example, when the insect is to avoid 
obstacles, the insect should have one action when there is 
an obstacle to the left and a different action when there is 
an obstacle to the right. Suitable actions were then 
applied in these circumstances and the insects 
successfully avoided obstacles. 

The other major work done in the Department which is 
relevant to this problem was done by Ball (4). This 
produced a hybrid classifier system using Kohonen 
networks and genetic algorithms with the aim of 
choosing suitable activities to achieve a desired goal. 
This system, however, is far too complex for the insects. 

Programming the insect - the requirements 

One problem with the above methods is that a relatively 
powerful processor is needed, whereas the actual insects 
have no microprocessor. Therefore it was felt that a 
simpler, less processor-intensive strategy was required 
which could be applied directly to the insect. This would 
allow the existing insect to be enhanced by an extra 
FPGA, or a simple single-chip microprocessor, which 
directed the learning strategy. In this way, the concept of 
a simple insect would be maintained; a single organism 
would start off having no in-built behaviour, but would 
subsequently move around its environment learning 
suitable actions.  

It should be noted that it is not the aim of the insect to 
learn the position of each obstacle in its environment and 
hence to devise a path to move around the obstacles. 
Rather, the aim is for the insect to learn more general 
rules which allow it to investigate any environment 
without bumping into obstacles; the instincts of the insect 
are to keep moving and avoid obstacles, and the insect 
learns the actions needed to achieve these. When extra 
sensors are added to the insect, like the provision of 
`food', the instincts will also include the desire to find the 
food and the insect will learn the appropriate actions. 

4. LEARNING STRATEGY 

The strategy chosen to achieve these aims is based on a 
fuzzy automaton algorithm, though it has been modified 
suitably. The basic idea, which is described in Narendra 
and Thathachar (5), and which has been used by Oomen 
et al (6) and Tsoularis et al (7), is as follows. 

There are m possible actions, a1..am, associated with 
which are probabilities of taking these actions, p1..pm. 
The action which has the largest probability is then used 
and its performance is then evaluated as a success or a 

failure. As a result, the probabilities are changed 
according to the rules given below, where a is a value 
between 0 and 1, n is the number of the action with the 
highest probability, and j is all values 1..m except for n. 

IF action successful THEN 
  pn = pn + a (1 - pn) 
  pj = (1 - a) pj 
ELSE 
  pn = (1 - a) pn 
  pj = a / (m-1) + (1 - a) pj 

 

If an action is successful, its probability is increased and 
that of the others is decreased; but if the action is 
unsuccessful its probability is decreased and the others 
adjusted (if pj < 1/m-1, pj is increased, otherwise it is 
decreased). 

The above is not directly appropriate to the insect, as 
different strategies are required depending upon the 
position of obstacles relative to the insect. Therefore it 
was decided that one automaton would be used for each 
of the following five circumstances;  

Case 1: no obstacle in front of an eye 
Case 2: an obstacle relatively near the left eye 
Case 3: an obstacle relatively near the right eye 
Case 4: an obstacle in front of the left eye 
Case 5: an obstacle in front of the right eye 

These cases correspond to the circumstances identified 
by the Kohonen network. The final system, therefore, is 
hierarchical; simple range information is used to choose 
one of five automata, the chosen one being used to select 
a suitable action and to learn from the results of that 
action. 

Nine possible actions were chosen, where each motor 
could go forwards, stop, or backwards (each motor is 
given a velocity of 4, 0 or -4); thus both motors could go 
forwards, one forward and one stopped, one forward and 
one backwards, etc. 

The next problem was to decide whether a particular 
strategy was successful. This required careful thought. 
The aim was to produce simple `common sense' ways of 
evaluating the performance of an action, but ways which 
did not explicitly tell the insect what to do. It was 
decided that each action should be given an overall 
rating, here called a, which is used to update the 
probabilities, and which could be positive or negative. In 
general terms the rules to set a were as follows. 

If no obstacle was visible then speed is important, the 
faster forward the higher the value of a. If an obstacle 
was very close to the insect, a is high if the action caused 
the insect to move away from the obstacle. If an obstacle 
is relatively close, then both factors are taken into 
consideration. 



These rules were encoded so as to generate a suitable a 
value, which could be positive or negative, with which 
the probabilities are updated. The algorithm to do this 
which was described above has a fixed positive a value; 
this had to be changed to allow negative values. 

Also, in the above rules, during an unsuccessful action, 
the probabilities of other rules could be reduced, which 
was felt to be wrong.  

Therefore the following rules were used to update the 
probabilities, for a given a rating: 

IF a >= 0 THEN (* if successful *) 
  pn = pn + a (1 - pn) 
  pj = pj (1 - a) 
ELSE 
  pn = pn - a 
  pj = pj + a / (m-1) 

One final change to the strategy is that the action chosen 
is selected randomly using a weighted roulette wheel 
technique, as is used in genetic algorithms (Goldberg, 8), 
so that the action with the highest probability is more 
likely to be chosen than one with a low probability. This 
change enables the system to escape from local maxima. 

It should be noted that, as one aim of this work is to 
implement the strategy on an actual robot insect in either 
an FPGA or a single-chip microprocessor, the 
probabilities are implemented as 8-bit positive integers 
rather than as fractions. 

The main adaptive loop is thus as follows. 

Choose One Probability Set (Automaton) 
Choose Action, an, of this Automaton 
Move Insect for I iterations 
Evaluate Action and Update Probabilities 

The a factor is calculated by considering the speeds of 
the two motors, lspeed and rspeed, the ranges of 
obstacles from each eye, lrange and rrange, the previous 
values of these ranges, lrangewas and rrangewas, and the 
current automaton, case 1,.. case 5. The algorithm is: 

IF case 1 THEN 
  a = (lspeed + rspeed) / 4; 
ELSE IF case 2 OR case 3 THEN 
  a = (lspeed + rspeed) / 4 +  
      (lrange - lrangewas) + (rrange - rrangewas) 
ELSE 
  a = (lrange - lrangewas) + (rrange - rrangewas) 
 

5. EXPERIMENTS AND RESULTS 

A simulation was written of an insect in a room with 
obstacles. This was used to test the algorithm before it 
could be implemented directly on the insect. The room is 
shown in figure 4; it has three obstacles on its walls and 
one in the middle. The figure shows the relative sizes of 
the insect, the ultrasonic beams it emits and the room. 

 

Figure 4 Room in which the inset moves 

The simulation allows various factors to be set. For 
example, the insect can use one set of probabilities or the 
five sets described above; also, it is possible to specify 
the number of times the insect is moved before the action 
is evaluated (I); also the value of a (which is first 
calculated in the range -3..3) is then transformed either 
linearly to values in the range -3ar, -2ar, -ar, 0, ar, 2ar, 
3ar (for some constant ar), or more emphasis is given to 
very good and very bad actions, the values being -9ar, -
4ar, -ar, 0, ar, 4ar, 9ar. It is also possible to `freeze' the 
probabilities after the simulation has been run for 
sometime, and to fix the choice of action to the one with 
the highest associated probability. The most probable 
actions can then be encoded in a Mode procedure so as to 
verify that the insect has in fact learnt suitable actions. 

The simulation was run many times, with the random 
number generator starting with different values. The 
insect was initially placed in the middle of an 
environment where there were no near obstacles. In 
general it very quickly learnt to move with both motors 
forward or one forward and one stopped, but always it 
eventually learnt that both motors forward was the best 
strategy to adopt in open space. The insects also 
successfully learnt to turn away from obstacles to the left 
or to the right by turning one motor more than another. 

One interesting result from the simulation is that the 
insect learnt different strategies depending upon its 
experience. Sometimes, for example, it learnt to turn 
away from obstacles which were relatively near, whereas 
at other times the insect would learn to turn only when it 
got very close to an obstacle. When avoiding an obstacle 
on the left, the insect sometimes learnt to turn the left 
motor forward and the right backward, or to turn the left 
forward and the right off, or even the left motor off and 
the right backwards; sometimes two or more of these 
options had a high probability, so the insect would use a 
combination of both actions. 

The insect can also move successfully when only one 
probability set is used, but here, for example, it has to 



relearn how to avoid an obstacle on the left when it has 
not encountered one on the left for sometime. 

Once the simulation has run for sometime and the 
updating of the probabilities is stopped, the insect 
successfully moves around its environment if the five 
sets of probabilities are used. 

Further work is required, to get the insect to learn other 
tasks, and this could require the addition of new sensors. 
The next important stage, however, is to transfer the 
learning strategy from the simulation to an actual insect. 
This should be relatively straightforward, as care has 
been taken to make the simulation a good model of the 
actual insects. 

CONCLUSION 

A strategy has been developed which allows simple robot 
insects to learn to move around an environment avoiding 
obstacles. This, however, is just the beginning: further 
work is required to enable the insects to learn other tasks 
like following objects; then other sensors need to be 
added to the insect; and finally the learning strategy has 
to be implemented in hardware on the actual insects. 
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