
IMPROVED LEARNING FOR A SIMPLE MOBILE ROBOT

R.J.Mitchell.

The University of Reading (UK)

ABSTRACT

The Department of Cybernetics has developed over
the last few years some simple mobile robots that can
explore an environment they perceive through simple
ultrasonic sensors. Information from these sensors has
allowed the robots to learn the simple task of moving
around avoiding dynamic obstacles. This paper
reports some new work done to further improve the
learning process for these mobile robots.

Keywords: Learning and Adaptive Systems, Robotics

INTRODUCTION

There is much interest in the development of
intelligent machines which can learn from their
environment. Various machines have been produced
which have many sensors, sometimes including high
resolution video, which require a great deal of
computing power to process the information coming
in to the machine, and still more processing is then
required to determine suitable action in response to
this information.

Researchers in the Department of Cybernetics at the
University of Reading believe that it is best to start
with simpler systems. Also, we believe that there is
much to learn from the behaviour of simple organisms
like insects.

Therefore, a number of simple mobile robotic 'insects'
have been developed which are small and which can
operate rapidly. At Control ‘94 it was reported how
these robots, equipped with two simple ultrasonic
sensors, could learn how to explore its environment
avoiding obstacles [MITCHELL 94a]. The concepts
and the robots are briefly reviewed here.

The simple robots have two ultrasonic sensors, which
enable the robot to detect how far the nearest object is
in front of a sensor; and two motors, each of which
can be set to move forwards or backwards at a given
speed.

The information from the ultrasonic sensors is passed
to suitable processing circuitry whose outputs specify
at any instant the speed of the two motors. A block
diagram of the basic robot is shown in figure 1.

Figure 1. Block Diagram of Basic Robot

Initially the processing circuitry was a simple
EEROM which contained a pre-programmed look-up
table. The information from the sensors was passed to
the address lines of the EEROM and the data at the
specified address were the required motor speeds. The
robot thus responded at any given instant to what its
sensors detected, but its behaviour could not be learnt.

Then an extra Z80 based microprocessor circuit was
added to the robots which implements a learning
strategy based on fuzzy auomata [MITCHELL 94b].
This circuit takes information from the sensors,
processing that information and driving the motors.

The microprocessor allows the robot to learn suitable
behaviour, for example to move around an
environment avoiding obstacles. This is achieved
using a simple strategy, which is described briefly
below.

This strategy involved an arbitrary choice by the
designers of the algorithm, a choice which has been
questioned. This paper reports some further
experiments performed which investigate alternative
choices which, it will be shown, improve the learning
strategy. It is hoped that this work will then lead to
further research which can remove the arbitrary
choice.

This work complements other current research in the
Department to improve learning by the use of many
robots sharing their own experiences [KELLY, 98].

THE LEARNING STRATEGY

This section describes the algorithm which allows the
robot to learn to move around its environment
avoiding obstacles. The learning is achieved by a
suitable program running on the Z80.

The technique used is, like the robots themselves,
inspired by methods used in nature. When a baby is
shown a toy it instinctively wants to grab the toy, but
it does not know how. The baby is able to move its
arms and legs but it is not aware which muscles
control what part of the body. Initially, therefore,
random movements occur. After a time, the baby stops
moving its legs as it realises that the legs are not
allowing the toy to be grabbed. A little later the baby
learns to co-ordinate both hands, and finally is able to
grab the toy. Thus the baby learns the appropriate
action by trial and error: different actions are tried
and the success or failure of the actions is used to
determine the choice of later actions.

The robots require various actions, a means of
choosing the actions, criteria for assessing the actions
and a strategy for reassessing the choosing of the
actions. The technique used to implement these ideas
came originally from the concept of fuzzy automata
[NARENDRA, 1989].

The basic idea is that the device has a number of
possible actions and associated with each action is a
probability of choosing that action. It is usual for the
action with the highest probability to be chosen. Then
the chosen action is performed, its success evaluated
and this evaluation is used to adjust the probabilities:
if the action was good then the probability of the
action is increased and the probabilities of the other
actions are decreased; if the action was poor, then its
probability is decreased. Essentially therefore, good
actions are rewarded and bad actions are penalised.

The robots are allowed various actions specifying how
each of the two motors should move. Also, rather than
always choosing the action with the highest
probability, a ‘weighted roulette wheel’ technique is
used - so the action with the highest probability is
most likely to be chosen. One reason for using this
technique is to try to stop the system getting trapped
in local minima. Indeed, the probabilities can never be
reduced to zero: there is therefore always a chance
that each action is chosen at some stage.

Careful thought was required as regards determining
whether the action is successful. The aim was to
produce simple ‘common sense’ rules which did not

directly ‘tell’ the robot how to behave. The rules
chosen are as follows:

If the robot was in the open, then going
forward fast is good.
If the robot was close to an obstacle, then
moving away is good.
If the robot was quite close, then a combination
of these rules are used.

These rules are encoded to give a ‘goodness’ factor, α,
which can be positive (good) or negative (bad). This
factor is used to adjust the probabilities according to
the algorithm given below. In this algorithm, m is the
number of actions, n is the number of the action
chosen, pn is the probability of the chosen action, and
pj is the probability of the jth action (where j = 1..m,
and j <> n).

IF α >= 0 THEN
 (* action was successful *)

 pn := pn + α (1 - pn)
 (* increase probability of chosen action *)

 pj := pj (1 - α)
 (* decrease probability of other actions *)
ELSE
 (* action was unsuccessful *)

 pn := pn - α
 (* decrease probability of chosen action *)

 pj := pj + α / (m-1)
 (* increase probability of other actions *)
END

The possible actions are the state of each motor, each
of which can be (B)ack, (F)orward or (O)ff. Thus
there are nine actions:

 FF - both motors forward
 FO - left motor forward, right motor off
 FB - left motor forward, right motor backward
 OF - left motor off, right motor forward
 OO - both motors off
 OB - left motor off, right motor backward
 BF - left motor backward, right motor forward
 BO - left motor backward, right motor off
 BB - both motors backward

One action is chosen, based on the probabilities. The
action with the highest probability is the one most
likely to be chosen. The chosen action is evaluated
and if it is good the probability of the action is
increased, otherwise it is decreased. If the chosen

action is good, then the association of the action with
the input is reinforced.

One problem with this technique is that the action
that is best for moving around when there is no
obstacle near the robot is likely to be different from
the action required to move away from the object.
Therefore five sets of the nine actions are used, each
with its own set of probabilities, that is there are five
sets of automata. These are activated under the
following conditions: no obstacle visible; obstacle
quite close on the left; obstacle quite close on the
right; obstacle very close on the left and obstacle very
close on the right. At any instance the current
information from the sensors determines the one
automata chosen.

The learning strategy therefore has two parts. First the
current information from the sensors determines
which set of actions and probabilities, that is which
automata, to use. Then that automata is processed in
the manner described above.

The success of the learning strategy has to be
evaluated for useful experimentation to take place.
This is done by the assignment of a suitable rating, for
each action for each strategy[Kelly, 1997]. Each
rating is in the range 4(good) to -4(bad). For instance,
when the robot is out in the open, the choice FF is
obviously the best, the choices FO or OF are quite
good, etc. The following table is used:

Action F
F

F
O

F
B

O
F

O
O

O
B

B
F

B
O

B
B

Rating 4 2 0 2 0 -2 0 -2 -4

These rating values are then multiplied by the actual
probability values of the actions in the current
automata, to get a fitness value. Also calculated is the
maximum possible fitness value (which occurs when
the best action has the highest probability and all
others have the lowest probability). The overall fitness
for the automaton is then the actual fitness value
divided by the maximum possible value.

Note, this fitness measure is used to evaluate the
success of the learning strategy, but it is not used in
the process to update the probabilities.

A criticism of this work is why are five sets of
automata used? This seems arbitrary. Therefore
research has begun into a method of automatically
determining the number of automata. The first stage
of this work, and that which is recorded here, is to
investigate different numbers of automata.

CHANGING THE NUMBER OF AUTOMATA

The initial work used five automata, chosen according
to the information from the sensors as to the distance
of an obstacle from each eye. These are labelled:

 DD - object distant for both eyes
 ?F - nearest object far from right eye
 F? - nearest object far from left eye
 ?C - nearest object close to right eye
 C? - nearest object close to left eye

The ? indicates that the distance of the object from the
particular eye is not known, but that there is an object
closer to the other eye. D is deemed to be further away
than F which is further way from C. D is the
maximum range of the ultrasonic sensors.

Different numbers of automata were then chosen,
again based on the distance of objects from the eye.
These are shown in Figure 2 below. The axes of the
grids refer to the ranges of the (L)eft and (R)ight eyes,
and the areas in which the grid is divided are labelled
suitably. Note these areas include another range
characterisation, I, meaning intermediate, which is
between F and C. In all there are six sets, having
respectively 4, 5, 7, 8, 10 and 16 sets of automata.

Figure 2. Different Sets of Automata

TESTS

Tests were performed, using simulation, on each of
the six configurations. In each case the program ran
for a set of length of time, from the same initial
conditions, at the end of which the states of the
probabilities for each set of actions was recorded,
together with a measure of the success of what had
been learnt, based on the fitness measurements.

A further test was then performed to see if the
learning speed could be increased. The idea for this
came from the learning strategy used in Kohonen
networks [KOHONEN, 1984], where one node is
adjusted by a certain amount, and then adjacent nodes
are adjusted by a smaller amount. For the robot
learning strategy, the normal algorithm was used to
determine any changes to the probabilities of the
chosen set of automata. In addition, those automata at
ranges adjacent to the chosen set were also increased,
but by half that amount. For instance, in the 8
probability case, when the chosen set was FF, then ?F
and F? might be changed by the smaller amount. This
concept can be justified easily, in that an action
chosen when objects are at a certain distance will
often be similar to the action chosen when the objects
are only slightly further away. This is termed in the
paper as ‘neighbourhood learning’.

Note: these tests have as yet been done in simulation
only. The author intends that the program should be
implemented on the Department’s robots, when time
is available. However, in mitigation, it should be
noted that the software used in the simulation
contains the same code which was used to develop the
work described in the Control 94 paper, and which
was subsequently successfully transferred to the
robots.

RESULTS

Two sets of results are here presented, first running
the simulation for the six different sets of automata,
and second, for eight probabilities, introducing the
‘neighbourhood learning’.

In each case the results are shown by a series of
graphs depicting the probabilities for the particular
automata. The graph is labelled by the ‘name’ of the
set, below which is the fitness value and the number
of times that set was chosen. The graphs show the
values of the probabilities for each action at the end of
the simulation.

For the neighbourhood learning test, below the sets of
graphs is also shown the variation of fitness over time.
This has two lines on it: one showing the fitness of the
chosen action, one the overall fitness.

Figure 3 shows the state of the probabilities for each
set of automata after the simulation has run. Figure 4
shows, for eight automata, the results of the
simulation with and without neighbourhood learning.
The graphs at the bottom of figure 4 show how the
fitness values change with time. These graphs have
two plots superimposed, one being the fitness of the
action chosen at that time, the other being the fitness
of all actions combined.

DISCUSSION

Looking at the graphs in figure 3, the overall fitnesses
for the six conditions are as follows:

No. Automata 4 5 7 8 10 16

%Fitness 77 59 55 56 51 53

From this it might be concluded that the fewer the
automata, the higher the fitness. However, in general,
the automata with poor fitness values were those
reflecting situations which were encountered
infrequently. Referring to figure 3d) as an example,
the lowest percentages were for states ?C, C? and CC,
and these were encountered 33, 28 and 7 times,
respectively: very little learning took place for those
situations; whereas the DD state was encountered
1273 times. Also, in general, these automata were
those in which the robot was close to an obstacle.
Being close to an obstacle is not good given that the
aim of the strategy is for obstacle avoidance.
Therefore, having more automata seems to help the
robot to avoid obstacles.

As regards figure 4, having ‘neighbourhood learning’
seems to improve the overall fitness (it is 40% in
figure 4b and only 30% in figure 4a). In addition, as
might be expected, neighbourhood learning means
that the fitness curves rise more quickly.
Neighbourhood learning, therefore, seems to improve
the speed and performance of the learning strategy.

CONCLUSION

This paper describes some improvements to the
learning strategy devised for the mobile robots. The
extra sets of automata seem to keep the robots away
from obstacles, and the use of neighbourhood learning
speed the response of the learning. Future work

includes further tests using the robots themselves,
rather than simulation.

a) Four sets of automata

b) Five sets of automata

c) Seven sets of automata

d) Eight sets of automata

e) Ten sets of automata

f) Sixteen sets of automata

Figure 3. Testing different number of automata

a) Without neighbourhood learning

b) With neighbourhood learning

Figure 4. Testing neighbourhood learning

REFERENCES

[KELLY 97] I.D. Kelly, The Development of Shared
Experience Learning in a Group of Mobile Robots, PhD
Thesis, The University of Reading.

[KELLY 98] I.D. Kelly and D.A. Keating, Increased
learning rates through the sharing of experiences of
multiple autonomous mobile robot agents, accepted for
1988 IEEE Int. Conf. of Fuzzy Systems, Alaska.

[KOHONEN, 1984] T. Kohonen, Self Organisation and
Associative Memory’, Springer Verlag.

[MITCHELL 94a] R.J. Mitchell, D.A. Keating and C.
Kambhampati, (1994), Learning System for a Simple
Robot Insect, Proc. Control '94, pp: 492-497.

[MITCHELL 94b] R.J. Mitchell, D.A. Keating and C.
Kambhampati, 1994, Neural Network Controller for
Mobile Robot Insect, Proc. EURISCON '94, pp: 78-85.

[NARENDRA, 1989] K. Narendra and M.A.L
Thathacha, Learning Automata: an introduction,
Prentice Hall, 1989.

