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ABSTRACT 
 
The Department of Cybernetics has developed over 
the last few years some simple mobile robots that can 
explore an environment they perceive through simple 
ultrasonic sensors. Information from these sensors has 
allowed the robots to learn the simple task of moving 
around avoiding dynamic obstacles. This paper 
reports some new work done to further improve the 
learning process for these mobile robots. 
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INTRODUCTION 
 

There is much interest in the development of 
intelligent machines which can learn from their 
environment. Various machines have been produced 
which have many sensors, sometimes including high 
resolution video, which require a great deal of 
computing power to process the information coming 
in to the machine, and still more processing is then 
required to determine suitable action in response to 
this information.  
 

Researchers in the Department of Cybernetics at the 
University of Reading believe that it is best to start 
with simpler systems. Also, we believe that there is 
much to learn from the behaviour of simple organisms 
like insects.  
 

Therefore, a number of simple mobile robotic 'insects' 
have been developed which are small and which can 
operate rapidly. At Control ‘94 it was reported how 
these robots, equipped with two simple ultrasonic 
sensors, could learn how to explore its environment 
avoiding obstacles [MITCHELL 94a]. The concepts 
and the robots are briefly reviewed here. 
 

The simple robots have two ultrasonic sensors, which 
enable the robot to detect how far the nearest object is 
in front of a sensor; and two motors, each of which 
can be set to move forwards or backwards at a given 
speed.  

 
The information from the ultrasonic sensors is passed 
to suitable processing circuitry whose outputs specify 
at any instant the speed of the two motors. A block 
diagram of the basic robot is shown in figure 1. 

 

 
 

Figure 1. Block Diagram of Basic Robot 
 

Initially the processing circuitry was a simple 
EEROM which contained a pre-programmed look-up 
table. The information from the sensors was passed to 
the address lines of the EEROM and the data at the 
specified address were the required motor speeds. The 
robot thus responded at any given instant to what its 
sensors detected, but its behaviour could not be learnt. 
 

Then an extra Z80 based microprocessor circuit was 
added to the robots which implements a learning 
strategy based on fuzzy auomata [MITCHELL 94b]. 
This circuit takes information from the sensors, 
processing that information and driving the motors.  
 

The microprocessor allows the robot to learn suitable 
behaviour, for example to move around an 
environment avoiding obstacles. This is achieved 
using a simple strategy, which is described briefly 
below.  
 
This strategy involved an arbitrary choice by the 
designers of the algorithm, a choice which has been 
questioned. This paper reports some further 
experiments performed which investigate alternative 
choices which, it will be shown, improve the learning 
strategy. It is hoped that this work will then lead to 
further research which can remove the arbitrary 
choice. 
 

This work complements other current research in the 
Department to improve learning by the use of many 
robots sharing their own experiences [KELLY, 98]. 



THE LEARNING STRATEGY 
 
This section describes the algorithm which allows the 
robot to learn to move around its environment 
avoiding obstacles. The learning is achieved by a 
suitable program running on the Z80. 
 
The technique used is, like the robots themselves, 
inspired by methods used in nature. When a baby is 
shown a toy it instinctively wants to grab the toy, but 
it does not know how. The baby is able to move its 
arms and legs but it is not aware which muscles 
control what part of the body. Initially, therefore, 
random movements occur. After a time, the baby stops 
moving its legs as it realises that the legs are not 
allowing the toy to be grabbed. A little later the baby 
learns to co-ordinate both hands, and finally is able to 
grab the toy. Thus the baby learns the appropriate 
action by trial and error: different actions are tried 
and the success or failure of the actions is used to 
determine the choice of later actions. 
 
The robots require various actions, a means of 
choosing the actions, criteria for assessing the actions 
and a strategy for reassessing the choosing of the 
actions. The technique used to implement these ideas 
came originally from the concept of fuzzy automata 
[NARENDRA, 1989]. 
 
The basic idea is that the device has a number of 
possible actions and associated with each action is a 
probability of choosing that action. It is usual for the 
action with the highest probability to be chosen. Then 
the chosen action is performed, its success evaluated 
and this evaluation is used to adjust the probabilities: 
if the action was good then the probability of the 
action is increased and the probabilities of the other 
actions are decreased; if the action was poor, then its 
probability is decreased. Essentially therefore, good 
actions are rewarded and  bad actions are penalised. 
 
The robots are allowed various actions specifying how 
each of the two motors should move. Also, rather than 
always choosing the action with the highest 
probability, a ‘weighted roulette wheel’ technique is 
used - so the action with the highest probability is 
most likely to be chosen. One reason for using this 
technique is to try to stop the system getting trapped 
in local minima. Indeed, the probabilities can never be 
reduced to zero: there is therefore always a chance 
that each action is chosen at some stage. 
 
Careful thought was required as regards determining 
whether the action is successful. The aim was to 
produce simple ‘common sense’ rules which did not 

directly ‘tell’ the robot how to behave. The rules 
chosen are as follows: 
 

If the robot was in the open, then going 
forward fast is good. 
If the robot was close to an obstacle, then 
moving away is good. 
If the robot was quite close, then a combination 
of these rules are used. 
 

These rules are encoded to give a ‘goodness’ factor, α, 
which can be positive (good) or negative (bad). This 
factor is used to adjust the probabilities according to 
the algorithm given below. In this algorithm, m is the 
number of actions, n is the number of the action 
chosen, pn is the probability of the chosen action, and 
pj is the probability of the jth action (where j = 1..m, 
and j <> n). 
 

IF α >= 0 THEN   
       (* action was successful *) 

   pn := pn + α (1 - pn) 
      (* increase probability of chosen action *) 

   pj := pj (1 - α) 
      (* decrease probability of other actions *) 
ELSE 
      (* action was unsuccessful *) 

   pn := pn - α 
      (* decrease probability of chosen action *) 

   pj := pj + α / (m-1) 
      (* increase probability of other actions *) 
END 

 

The possible actions are the state of each motor, each 
of which can be (B)ack, (F)orward or (O)ff. Thus 
there are nine actions: 
 
     FF - both motors forward  
     FO - left motor forward, right motor off 
     FB - left motor forward, right motor backward 
     OF - left motor off, right motor forward 
     OO - both motors off 
     OB - left motor off, right motor backward 
     BF - left motor backward, right motor forward 
     BO - left motor backward, right motor off 
     BB - both motors backward 
 
One action is chosen, based on the probabilities. The 
action with the highest probability is the one most 
likely to be chosen. The chosen action is evaluated 
and if it is good the probability of the action is 
increased, otherwise it is decreased. If the chosen 



action is good, then the association of the action with 
the input is reinforced.  
 
One problem with this technique is that the action 
that is best for moving around when there is no 
obstacle near the robot is likely to be different from 
the action required to move away from the object.  
Therefore five sets of the nine actions are used, each 
with its own set of probabilities, that is there are five 
sets of automata. These are activated under the 
following conditions: no obstacle visible; obstacle 
quite close on the left; obstacle quite close on the 
right; obstacle very close on the left and obstacle very 
close on the right. At any instance the current 
information from the sensors determines the one 
automata chosen. 
 
The learning strategy therefore has two parts. First the 
current information from the sensors determines 
which set of actions and probabilities, that is which 
automata, to use. Then that automata is processed in 
the manner described above. 
 
The success of the learning strategy has to be 
evaluated for useful experimentation to take place. 
This is done by the assignment of a suitable rating, for 
each action for each strategy[Kelly, 1997]. Each 
rating is in the range 4(good) to -4(bad). For instance, 
when the robot is out in the open, the choice FF is 
obviously the best, the choices FO or OF are quite 
good, etc. The following table is used: 
 

Action F
F 

F
O 

F
B 

O
F 

O
O 

O
B 

B
F 

B
O 

B
B 

Rating 4 2 0 2 0 -2 0 -2 -4 

 
These rating values are then multiplied by the actual 
probability values of the actions in the current 
automata, to get a fitness value. Also calculated is the 
maximum possible fitness value (which occurs when 
the best action has the highest probability and all 
others have the lowest probability). The overall fitness 
for the automaton is then the actual fitness value 
divided by the maximum possible value. 
 
Note, this fitness measure is used to evaluate the 
success of the learning strategy, but it is not used in 
the process to update the probabilities. 
 
A criticism of this work is why are five sets of 
automata used? This seems arbitrary. Therefore 
research has begun into a method of automatically 
determining the number of automata. The first stage 
of this work, and that which is recorded here, is to 
investigate different numbers of automata. 

 



CHANGING THE NUMBER OF AUTOMATA 
 
The initial work used five automata, chosen according 
to the information from the sensors as to the distance 
of an obstacle from each eye. These are labelled: 
 
  DD - object distant for both eyes 
  ?F  - nearest object far from right eye 
  F? - nearest object far from left eye 
  ?C - nearest object close to right eye 
  C? - nearest object close to left eye 
 
The ? indicates that the distance of the object from the 
particular eye is not known, but that there is an object 
closer to the other eye. D is deemed to be further away 
than F which is further way from C. D is the 
maximum range of the ultrasonic sensors. 
 
Different numbers of automata were then chosen, 
again based on the distance of objects from the eye. 
These are shown in Figure 2 below. The axes of the 
grids refer to the ranges of the (L)eft and (R)ight eyes, 
and the areas in which the grid is divided are labelled 
suitably. Note these areas include another range 
characterisation, I, meaning intermediate, which is 
between F and C. In all there are six sets, having 
respectively 4, 5, 7, 8, 10 and 16 sets of automata. 
 

 
Figure 2.  Different Sets of Automata 

 

TESTS 
 
Tests were performed, using simulation, on each of 
the six configurations. In each case the program ran 
for a set of length of time, from the same initial 
conditions, at the end of which the states of the 
probabilities for each set of actions was recorded, 
together with a measure of the success of what had 
been learnt, based on the fitness measurements. 
 
A further test was then performed to see if the 
learning speed could be increased. The idea for this 
came from the learning strategy used in Kohonen 
networks [KOHONEN, 1984], where one node is 
adjusted by a certain amount, and then adjacent nodes 
are adjusted by a smaller amount. For the robot 
learning strategy, the normal algorithm was used to 
determine any changes to the probabilities of the 
chosen set of automata. In addition, those automata at 
ranges adjacent to the chosen set were also increased, 
but by half that amount. For instance, in the 8 
probability case, when the chosen set was FF, then ?F 
and F? might be changed by the smaller amount. This 
concept can be justified easily, in that an action 
chosen when objects are at a certain distance will 
often be similar to the action chosen when the objects 
are only slightly further away. This is termed in the 
paper as ‘neighbourhood learning’. 
 
Note: these tests have as yet been done in simulation 
only. The author intends that the program should be 
implemented on the Department’s robots, when time 
is available. However, in mitigation, it should be 
noted that the software used in the simulation 
contains the same code which was used to develop the 
work described in the Control 94 paper, and which 
was subsequently successfully transferred to the 
robots. 
 

RESULTS 
 
Two sets of results are here presented, first running 
the simulation for the six different sets of automata, 
and second, for eight probabilities, introducing the 
‘neighbourhood learning’.  
 
In each case the results are shown by a series of 
graphs depicting the probabilities for the particular 
automata. The graph is labelled by the ‘name’ of the 
set, below which is the fitness value and the number 
of times that set was chosen. The graphs show the 
values of the probabilities for each action at the end of 
the simulation. 
 



For the neighbourhood learning test, below the sets of 
graphs is also shown the variation of fitness over time. 
This has two lines on it: one showing the fitness of the 
chosen action, one the overall fitness. 

 
Figure 3 shows the state of the probabilities for each 
set of automata after the simulation has run. Figure 4 
shows, for eight automata, the results of the 
simulation with and without neighbourhood learning. 
The graphs at the bottom of figure 4 show how the 
fitness values change with time. These graphs have 
two plots superimposed, one being the fitness of the 
action chosen at that time, the other being the fitness 
of  all actions combined. 
 

DISCUSSION 
 
Looking at the graphs in figure 3, the overall fitnesses 
for the six conditions are as follows: 
 

No. Automata 4 5 7 8 10 16 

%Fitness 77 59 55 56 51 53 

 
From this it might be concluded that the fewer the 
automata, the higher the fitness. However, in general, 
the automata with poor fitness values were those 
reflecting situations which were encountered 
infrequently. Referring to figure 3d) as an example, 
the lowest percentages were for states ?C, C? and CC, 
and these were encountered 33, 28 and 7 times, 
respectively: very little learning took place for those 
situations; whereas the DD state was encountered 
1273 times. Also, in general, these automata were 
those in which the robot was close to an obstacle. 
Being close to an obstacle is not good given that the 
aim of the strategy is for obstacle avoidance. 
Therefore, having more automata seems to help the 
robot to avoid obstacles. 
 
As regards figure 4, having ‘neighbourhood learning’ 
seems to improve the overall fitness (it is 40% in 
figure 4b and only 30% in figure 4a). In addition, as 
might be expected, neighbourhood learning means 
that the fitness curves rise more quickly. 
Neighbourhood learning, therefore, seems to improve 
the speed and performance of the learning strategy. 
 

CONCLUSION 
 
This paper describes some improvements to the 
learning strategy devised for the mobile robots. The 
extra sets of automata seem to keep the robots away 
from obstacles, and the use of neighbourhood learning 
speed the response of the learning. Future work 

includes further tests using the robots themselves, 
rather than simulation. 



 
a) Four sets of automata 

 
b) Five sets of automata 

 

 
c) Seven sets of automata 

 
d) Eight sets of automata 

 
e) Ten sets of automata 

 

 
f) Sixteen sets of automata 

 
Figure 3.  Testing different number of automata 

 



 

 
a) Without neighbourhood learning 

 

 
b) With neighbourhood learning 

 
Figure 4. Testing neighbourhood learning 
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