Forecasting and Clustering

Dr Richard Mitchell

Cybernetics Intelligence Research Group
Department of Cybernetics
The University of Reading, UK
– R.J.Mitchell@reading.ac.uk

Work done on Sabbatical at National Grid
Overview

- Main work on sabbatical has concerned clustering data and forecasting, using clusters.
- Presentation will describe a new hybrid cluster algorithm, how to forecast using clusters, a systematic method to select factors, and success on Electricity Demand.

The University of Reading

Cybernetics

National Grid
Clustering

- Data are n points in d dimensions
 - e.g. Electricity Demand depends on Temperature, Time, Day of Week, etc.
- Clustering is process of grouping together similar data points
 - Similar means ‘close together’
- Numerous algorithms exist
 - k-Means is most popular
 - But there are problems
k-Means Algorithm

- Assume K and K initial cluster centres

REPEAT

 Allocate each point to nearest centre

 Centres := Mean(points in cluster)

UNTIL Centres don’t move

QError := Mean(distances from centre)

- **BUT** What is K?
 - It is sensitive to initial positions
 - Uses (slow) distance calculations
Solutions

- Sensitivity to search position
 - run many times
 - use answer with smallest \(QError \)
- To find \(K \)
 - run with \(K = 1, 2, 3, \ldots \)
 - until \(QError \) just better
- But, slow to do once,
 - slower to do many times,
 - even slower to do for many \(Ks \)
Enter Mean-Tracking

- Developed for High Speed Machinery:
 - Operators set controls differently
 - Various measurements can be made
 - Some combinations good, some bad
 - Need to identify different states

- Also used to find centres of Radial Basis Function Networks
- Finds number of states, and where
 - Just what is needed for k-means
- so MT is pre-processor for k-means
Basic Mean-Tracking

Rectangular window

REPEAT

find data in window
(by comparisons)

centre := mean(data)

UNTIL small move

Window at dense area

Here, have found one
area, but are others ...
So have many windows

 Initialise each window suitably

 REPEAT

 Move each window (as above)
 IF n windows identical, discard $n-1$
 IF n windows close, combine using weighted average of points in window

 UNTIL movement of all windows is small

 ◆ Start with many windows
 ◆ End with fewer windows, at dense areas
Merging Close Windows

- Find each pair of windows to merge
- Find all groups of such window pairs
 - group is where each window is to be merged with each of the others
 - i.e. find Maximal Cliques
- NP complete problem
- Classic Bron-Kerbosch algorithm converted from obscure Algol 60 implementation into efficient MATLAB

- Merge all cliques
Parameters for Mean Tracking

- **Window size**
 - \(f \times \text{std (of each dimension)} \)
 - \(f \) say 0.5, but needs further work

- **Number of Initial Windows**
 - 1/3 data set chosen randomly
 - different results each time
 - Linearly spaced overlapping
 - all points covered
 - repeatable result USE
Experimentation

Simulated Data
240 points values of temperature illumination

Shows data and initial positions found for MT windows
Results of clustering

- **MT+K-Means**
- **Best Auto K-Means**

Solid lines round clusters, dotted are MT windows.
If rotate using PCA, then cluster

\[f = 0.5 \]

\[f = 0.75 \]

So Clustering successful, let’s use it ...
Using Clusters to Forecast

- Have ‘training’ data and ‘unseen’ data (only training data has var to be forecast)
- Cluster training data using algorithm
- For each cluster form linear model
- For each item in unseen data
 - Find clusters of n nearest points
 - Find forecasts of each point
 - Return average of n forecasts
 (Use n nearest points as unseen point may be between training set clusters)
Use, \(D = c_0 + c_1 V_1 \) Clearly better if 2 models
East Slovakian Data

- Need suitable (publishable) data
- East Slovakian Demand Competition
 For EUNITE 2001 conference
 To forecast maximum demand Jan 1999
 given data in Jan 1996 and all 1997-1998

Best 3 Methods SVM ALN Average
MAPE * 1.98% 2.15% 2.5%
MaxAE † 51MW 40MW 61MW

*Mean Abs Percentage Error †Max Abs Error
Data Provided and Added

- **Given:** Half hourly demand and average daily temperature for all 1997/8 and January 1996
- **Add:** date and time information + sin/cos(time) and sin/cos(day) (conditions around midnight similar) day of week; weekend/weekday daily/ half hourly max illumination
- 16 variables - daily or half hourly
- Jan 99 temp: average of Jan96..98
Factors to decide - I

- What is the training set?
- Better Jan & Feb; or Dec, Jan & Feb

- Data has half hourly or daily information
- Aim is to forecast max daily demand
- So train only on records where demand at maximum

 time when this occurs varies
 can have two maximums in one day
Factors to decide - II

- When forecasting January 1999
- Have 48 forecasts per day; use which?
 - Choose Maximum
 - Choose First
 - Choose Forecast for record closest to training set
- Ignore any time of day variables, so only one forecast per day
- Handle Weekdays and Weekends separately or together
Factors to Decide - III

- Which variables to use for clustering and how many?
 - Use variables most correlated with maximum demand
 - Use Principle Component Analysis
 use first few principle components
 useful as PCA aligns data with axes
 as are the Mean-Tracking windows

- For unseen data: find n nearest points in training set, but what is n?
Factors to decide - IV

- How many forecast variables to use?

 Having decided,

 which variables to use can be found by exhaustive search
 can do as standard matrix method finds model coefficients quickly
 can run on all combinations of up to 3 variables

 Matrix method takes fraction of second
 Clustering takes a few seconds
How to determine these factors

- Train on (part of) 1997 and 1998 data
- Treat Jan 1996 as ‘unseen set’
 making forecasts of max demand
 for each combination of factors
- Determine combination whose forecasts have minimum error (MAPE)
- Then, using this combination,
 make forecasts for Jan 1999
- Effectively, Jan 1996 is a validation set
Implementation

- Matthew Roberts (National Grid) and I developed many MATLAB functions
- Data storage and handling, Statistics, Clustering, Visualisation, etc. + Demos
- Thus for this project, few simplish MATLAB scripts written which called this library
Results: Times Taken to Cluster

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Min</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated Data (2 variables)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT+KM</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT+KM (PCA) $f=0.5$</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT+KM (PCA) $f=0.75$</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto K-Means</td>
<td>1.0</td>
<td>1.6</td>
<td>2.9</td>
</tr>
<tr>
<td>East Slovakia Data (3 variables)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT+KM</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto K-Means</td>
<td>1.3</td>
<td>2.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Extract Method</td>
<td>Corr / PCA</td>
<td>Jan 96 MAPE</td>
<td>MaxAE</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>First Corr</td>
<td>1.73%</td>
<td>36MW</td>
<td>2.62%</td>
</tr>
<tr>
<td>First PCA</td>
<td>1.73%</td>
<td>49MW</td>
<td>2.35%</td>
</tr>
<tr>
<td>Nearest Corr</td>
<td>1.73%</td>
<td>36MW</td>
<td>2.62%</td>
</tr>
<tr>
<td>Nearest PCA</td>
<td>2.09%</td>
<td>63MW</td>
<td>2.56%</td>
</tr>
<tr>
<td>Max Corr</td>
<td>1.73%</td>
<td>36MW</td>
<td>2.62%</td>
</tr>
<tr>
<td>Max PCA</td>
<td>3.50%</td>
<td>103MW</td>
<td>5.11%</td>
</tr>
<tr>
<td>NoTime Corr</td>
<td>1.73%</td>
<td>36MW</td>
<td>2.62%</td>
</tr>
<tr>
<td>NoTime PCA</td>
<td>1.90%</td>
<td>47MW</td>
<td>2.99%</td>
</tr>
</tbody>
</table>
Results: Separate Weekend/day

<table>
<thead>
<tr>
<th>Extract Method</th>
<th>Corr / PCA</th>
<th>Jan 96</th>
<th>Jan 99</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAPE</td>
<td>MaxAE</td>
<td>MAPE</td>
</tr>
<tr>
<td>First Corr</td>
<td>1.70%</td>
<td>55MW</td>
<td>2.42%</td>
</tr>
<tr>
<td>First PCA</td>
<td>1.56%</td>
<td>54MW</td>
<td>1.93%</td>
</tr>
<tr>
<td>Nearest Corr</td>
<td>1.60%</td>
<td>45MW</td>
<td>4.07%</td>
</tr>
<tr>
<td>Nearest PCA</td>
<td>1.44%</td>
<td>58MW</td>
<td>2.06%</td>
</tr>
<tr>
<td>Max Corr</td>
<td>1.82%</td>
<td>39MW</td>
<td>3.21%</td>
</tr>
<tr>
<td>Max PCA</td>
<td>2.00%</td>
<td>52MW</td>
<td>3.38%</td>
</tr>
<tr>
<td>NoTime Corr</td>
<td>1.66%</td>
<td>33MW</td>
<td>3.06%</td>
</tr>
<tr>
<td>NoTime PCA</td>
<td>1.43%</td>
<td>57MW</td>
<td>1.86%</td>
</tr>
</tbody>
</table>
The University of Reading

Comments

- If not separate, Extract method no effect if correlate (time vars not used)
- Extract ‘first’ or ‘no time’ : same MAPE
 But ‘no time’ smaller MaxAE
- Separate Weekends / Weekdays better
- PCA generally better than correlation
- Best result on Jan 96 does indeed give best (MAPE) result for Jan 99
 so validation set has worked
Details of Best Result

- **Weekdays**
 - Train on Jan, Feb and Dec 1997/8
 - Use first 5 principal components
 - Use cluster mean
 - Use 10 nearest points

- **Weekends**
 - Train on all of 1997/1998
 - Use first 4 principal components
 - Use model with 3 variables
 - Use 15 nearest points
Detailed Performance

<table>
<thead>
<tr>
<th></th>
<th>Jan 96</th>
<th>Jan 99</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAPE</td>
<td>MaxAE</td>
</tr>
<tr>
<td>Weekday</td>
<td>1.39%</td>
<td>55MW</td>
</tr>
<tr>
<td>Weekend</td>
<td>1.55%</td>
<td>57MW</td>
</tr>
<tr>
<td>Overall</td>
<td>1.43%</td>
<td>47MW</td>
</tr>
<tr>
<td>Winner</td>
<td>1.98%</td>
<td>51MW</td>
</tr>
</tbody>
</table>

The University of Reading

Cybernetics

National Grid
Conclusion

- The hybrid Mean-Tracking k-Means algorithm is repeatable, successful and more computationally efficient than the popular k-Means algorithm.
- A systematic methodology has allowed forecasts of maximum demand to be made more accurately than any entrants in the competition.
- Used Principal Component Analysis, Correlation, Clustering, Linear Models.
- It could be (and has been) applied to other (confidential) problems.
Acknowledgement

The author would like to thank

- The Uni for allowing the sabbatical,
- National Grid for supporting the sabbatical,
- David Esp and Matthew Roberts of National Grid for useful comments and assistance
References

East Slovakian Demand Forecasting Competition

http://neuron.tuke.sk/competition/