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ABSTRACT 
Researchers in the Department of Cybernetics are interested in the development of intelligent 
machines which can interact with their environment; they should perceive their surroundings 
and move around them accordingly. To this end, some simple robotic `insects' have been built. 
Initially these machines were programmed with suitable actions, though recently an extra 
microprocessor circuit has been added, containing a neural network, which allows the insect to 
learn these actions. This paper describes the insects, the controller, its implementation, the 
results obtained and an overview of further work.  
 

1. INTRODUCTION 
 
There is much interest in the development of intelligent machines which can learn from their 
environment. Such machines should perceive their surroundings and react accordingly. Many 
workers in the field have used sensors for this purpose which require complicated algorithms 
and sophisticated computers. However, there are many simple organisms which survive using 
very simple sensors. Therefore it was decided to work with simple devices initially, from 
which more complicated systems could be developed. Thus several small mobile robot 
`insects' have been built which can move around an environment which they perceive using 
simple ultrasonic sensors. These are modular devices which have been designed such that 
extra sensors can be added easily. 

Initially, the behaviour of these insects was programmed off-line and installed in a look-up 
table; the data from the sensors specifying the location in the table, and the information there 
determining the actions of the insect.  

Recently, however, a simple microprocessor circuit has been added to the insect which 
contains a controller which allows the insect to learn suitable behaviour. This controller, 
which can be described in terms of a set of fuzzy automata or a modified Hopfield neural 
network, has been implemented on the insect and shown to work appropriately. 

The next section introduces the insects; this is followed by a description of how their actions 
are programmed by humans; the next section outlines how the insects learn their own 
behaviour; and then its implementation on a microprocessor circuit is described. 

 



2. CYBERNETICS' INSECTS 
So far, eight simple mobile robotic `insects' and two larger devices have been produced, and 
the next generation insect has been designed whose sensors have been improved. These insects 
have been used in various teaching and research projects. 

 
Figure 1. Bock Diagram of Robotic Insect 

The simple insects have two ultrasonic sensors, which enable the insect to detect how far the 
nearest object is in front of a sensor, and two motors, each of which can be set to move 
forwards or backwards at a given speed. Figure 1 shows a block diagram of the insect. 

The actions of the insect are determined using a look-up table, which is stored in an EEROM. 
The data from the ultrasonic sensors are passed to the address lines of the EEROM, and the 
value at the addressed location specifies the speed and direction of each motor. In fact, the 
insects can be programmed in various modes of operation which are selected by switches. The 
switch settings provide extra address lines to the EEROM. 

The ultrasonic sensors are controlled by a programmable logic array (PLA) and associated 
analog electronics. This PLA causes an ultrasonic signal to be emitted by the transmitters for 
both eyes and then it waits for a signal to be reflected back from an obstacle to either receiver. 
The time taken before the reflection comes back (assuming one does return), which indicates 
the distance of the obstacle away from the nearest eye, is determined by the PLA. The PLA 
produces a one-bit signal indicating the eye closest to any obstacle and a further three bits 
indicating the distance of the obstacle from that eye. These three bits give a value in the range 
0..7; if the value is 7 this means that no object is visible; due to limitations in the electronics 
controlling the ultrasonics, a value less than 4 means an obstacle is very close. This happens 
because the receiver cannot start to look for a return pulse too early, or it will pick up the 
transmit pulse. 

These values, together with the values set by the mode switches, are passed to the address 
lines of the EEROM so as to specify a location in a look-up table which contains data 
specifying the velocity of the motors for each wheel for the current mode and sensor data. The 
velocity for each motor is specified by four bits, one bit indicates the direction, the other three 
specify a speed. The data at this address in the EEROM are passed to a second PLA which 
converts the information to PWM signals which are passed to MOSFET bridge circuits which 
drive the motors. 

The insect can thus, for example, go forward or backwards at various speeds, or turn, by 
specifying that one motor goes forwards and the other goes backwards; and these movements 
are determined by the data from its sensors and the behaviour specified by the values in the 
look-up table. 



Various improvements are to be made to the insect. A field programmable gate array (FPGA) 
has been designed to replace the two PLAs and provide extra facilities. For example, it will 
allow range values to be provided separately for each eye and it will provide a logarithmic 
measure of range rather than a linear one, thereby allowing greater accuracy when detecting 
close objects while still allowing the detection of distant objects. Improved electronics have 
also been designed to improve the range information of close objects. Also, it will be possible 
to connect the insect to a PC so that its EEROM can be programmed directly. 

The insects are modular devices: it is easy to add extra sensors, for example, thermal infra-red 
sensors could be provided allowing the insects to follow a warm object like a human while 
avoiding cold objects like table legs. 

The Department has also produced a larger version of the insect which has its own 
microprocessor and various extra sensors [1]. This has been programmed to move around 
avoiding obstacles, but it can also follow one infra-red source (a possible prey), avoid another 
(a possible predator), and `dock' with a charge unit (food) when it anticipates that its battery 
will soon start to run down. This behaviour has been built in to the unit by a specific program. 
 

3. OFF-LINE PROGRAMMING OF THE INSECT 
 

This section considers how the actions of the insect are programmed. As the insect does not 
have a microprocessor, the EEROM needs to be programmed off-line and then the EEROM 
inserted into the device. However, later versions of the insect will be programmable on-line as 
appropriate control circuitry has been programmed into the FPGA for this purpose. 

Determining the behaviour of the insect has been set as a laboratory experiment in which 
students write four Modula-2 procedures determining four modes of behaviour for the insect. 
This is achieved by a program which generates an array, whose contents are specified by four 
procedures (Mode0, Mode1, Mode2 or Mode3; one for each mode) and which writes the array 
to a file. The data in this file are then programmed into the EEROM. The students write the 
procedures Mode0...Mode3; the following shows one such procedure which endeavours to 
make the insect move around avoiding obstacles. 
 

 PROCEDURE Mode0 (Range : INTEGER; LeftNotRight : BOOLEAN; 
                                    VAR LeftSpeed : INTEGER;  VAR RightSpeed : INTEGER); 
 (* Range is the distance of the closest object (0..7) from the eye specified by the 
      boolean LeftNotRight; These values are used to set the speeds of the two motors  
     in the range -4 (full backwards) to +4 (full forwards) *) 
 BEGIN 
  IF Range = 7 THEN                         (* nothing visible *) 
   LeftSpeed := 4;    RightSpeed := 4;            (* so maximum speed forwards *) 
  ELSIF Range <= 4 THEN               (* something too close *) 
   LeftSpeed := -4;    RightSpeed := -4;           (* so go backwards *) 
  ELSIF LeftNotRight THEN             (* something near left eye *) 
   LeftSpeed := 4;    RightSpeed := -4;           (* so turn to the right *) 
  ELSE                                                (* something near right eye *) 
   LeftSpeed := -4;    RightSpeed := 4;            (* so turn to the left *) 
  END 
 END Mode0; 
 



Other behaviours can be set by providing different rules, for example the insect can be 
programmed to follow objects; if it sees nothing it stays still, otherwise it moves towards the 
object but stops when it gets too close. 

The above has been successfully used in laboratory classes. Students have produced various 
strategies to enable the insect to avoid obstacles, with varying degrees of success, but also 
with much ingenuity; there are many solutions to the problem. The insects have also been 
programmed to follow objects, and many insects have `waddled' in line, just like ducklings 
following their mother. `Puppy' mode has also been programmed, where the insect approaches 
the object, but backs away when it is too close to the object. 
 

4. LEARNING STRATEGY 
A strategy is required whereby the insect could learn these rules itself from its own 
experience. This strategy should be sufficiently simple that it could be incorporated in a 
dedicated FPGA or on a simple microprocessor. In this way the concept of a simple insect 
would be maintained; a single organism would start off having no in-built behaviour, but 
would subsequently move around its environment learning suitable actions.  

It should be noted that it is not intended that the insect should learn the position of each 
obstacle in its environment and hence devise a path to move around the obstacles. Rather, the 
aim is for the insect to learn more general rules which allow it to investigate any environment 
without bumping into obstacles; the instincts of the insect are to keep moving and avoid 
obstacles, and the insect learns the actions needed to achieve these. When extra sensors are 
added to the insect, like the provision of `food', the instincts will also include the desire to find 
the food and the insect will learn the appropriate actions. 

The strategy chosen to achieve these aims is based on a fuzzy automaton algorithm, though it 
has been modified suitably. As will be explained later, the strategy can also be considered as a 
modified Hopfield network. The basic idea, which is described in [2], and which has been 
used by [3 and 4], is as follows. 

There are m possible actions, a1..am, associated with which are probabilities of taking these 
actions, p1..pm. The action which has the largest probability is usually used, but for the insect 
a weighted roulette wheel technique is used, whereby the action is chosen randomly with the 
action with the highest probability most likely to be chosen; this technique is used in genetic 
algorithms[5]. The performance of the chosen action is then evaluated as a success or a failure. 
As a result, the probabilities are changed according to the rules given below, where a is a 
performance value (positive meaning successful, negative meaning unsuccessful), n is the 
number of the action with the highest probability, and j is all values 1..m except for n. 
 

 IF  a >= 0 THEN  (*action successful *) 
    pn = pn + a (1 - pn)        (* update probability of chosen action thus *) 

    pj = pj (1 - a)                  (* update all the other probabilities thus *) 
 ELSE 
    pn = pn - a 
    pj = pj + a / (m-1) 
 END 
 

If an action is successful, its probability is increased and that of the others is decreased; but if 
the action is unsuccessful its probability is decreased and the others adjusted suitably. It 



should be noted that, as one aim of this work is to implement the strategy on an actual robot 
insect in either an FPGA or a simple microprocessor, the probabilities are implemented as 8-
bit positive integers rather than as fractions. 

The above is not directly appropriate to the insect, as different strategies are required 
depending upon the position of obstacles relative to the insect. Therefore it was decided that 
one automaton would be used for each of the following five circumstances;  

 Case 1: no obstacle in front of an eye 

 Case 2: an obstacle relatively near the left eye 

 Case 3: an obstacle relatively near the right eye 

 Case 4: an obstacle in front of the left eye 

 Case 5: an obstacle in front of the right eye 

The final system, therefore, is hierarchical; simple range information is used to choose one of 
five automata, the chosen one being used to select a suitable action and to learn from the 
results of that action. 

Nine possible actions were chosen, where each motor could go forwards, stop, or go 
backwards (each motor is given a velocity of 4, 0 or -4); thus both motors could go forwards, 
one forward and one stopped, one forward and one backwards, etc. 

The next problem was to decide whether a particular strategy was successful. This required 
careful thought. The aim was to produce simple `common sense' ways of evaluating the 
performance of an action, but ways which did not explicitly tell the insect what to do. These 
generate the performance value, a, which is used to update the probabilities, and which could 
be positive or negative. In general terms the rules to set a were as follows. 

If no obstacle was visible then speed is important, the faster forward the higher the value of a. 
If an obstacle was very close to the insect, a is high if the action caused the insect to move 
away from the obstacle. If an obstacle is relatively close, then both factors are taken into 
consideration. These rules were encoded so as to generate a suitable a value, which could be 
positive or negative, with which the probabilities are updated. 

The a factor is calculated by considering the speeds of the two motors, lspeed and rspeed, the 
ranges of obstacles from each eye, lrange and rrange, the previous values of these ranges, 
lrangewas and rrangewas, and the current automaton, case 1,.. case 5. The algorithm is: 
 

 IF case 1 THEN 
    a = (lspeed + rspeed) / 4; 
 ELSE IF case 2 OR case 3 THEN 
    a = (lspeed + rspeed) / 4 +  (lrange - lrangewas) + (rrange - rrangewas); 
 ELSE 
    a = (lrange - lrangewas) + (rrange - rrangewas); 
 

The main adaptive loop is thus as follows. 
 

 Choose One Probability Set (Automaton) 
 Choose Action, an, of this Automaton 
 Move Insect for I iterations 
 Evaluate Action and Update Probabilities 
 



The strategy can be considered to be a modified Hopfield network[6] with modified Hebbian 
learning[7]. Figure 2a shows a Hopfield network with various inputs and outputs connected in 
a matrix with the junction between each input and output being a weight. Values are presented 
to the inputs and each output is the sum of the products of each weight on this line and its 
corresponding input. The largest output is the winner and if this is successful, the weights on 
its line are increased. 

 
Figure 2. Strategy as a Hopfield Network 

For the insect, there are five inputs (the five cases) and nine outputs (the nine actions); the 
inputs are binary and only one is a logic 1, corresponding to the current case, as is shown in 
figure 2b. The weights are the probabilities of the actions. The outputs are thus just the values 
of the probabilities of the current case. Rather than the highest output being chosen, the 
weighted roulette wheel system is used. Thus the strategy is a modified Hopfield network. 

If the action is successful, the weight (or probability) of the chosen action for the current case 
is increased, and if the action is unsuccessful, this weight is decreased; all the other weights in 
the current case are adjusted accordingly (in effect they are all normalised). This can thus be 
considered to be a modified Hebbian learning scheme. 
 

5. TESTS USING A SIMULATION 
A simulation was written of an insect in a room with obstacles. This was used to test the 
algorithm before it could be implemented directly on the insect. The room is shown in figure 
3; it has three obstacles on its walls and one in the middle. The figure shows the relative sizes 
of the insect, the ultrasonic beams it emits and the room. 

The simulation allows various factors to be set. For example, the insect can use one set of 
probabilities or the five sets described above; also, it is possible to specify the number of times 
the insect is moved before the action is evaluated (I); also the value of a (which is first 
calculated in the range -3..3) is then transformed either linearly to values in the range -3ar, -
2ar, -ar, 0, ar, 2ar, 3ar (for some constant ar), or more emphasis is given to very good and very 
bad actions, the values being -9ar, -4ar, -ar, 0, ar, 4ar, 9ar. It is also possible to `freeze' the 
probabilities after the simulation has been run for some time, and to fix the choice of action to 
the one with the highest associated probability. The most probable actions can then be 
encoded in a Mode procedure so as to verify that the insect has in fact learnt suitable actions. 



 
Figure 3. Simulation room used to test strategy 

The simulation was run many times, with the random number generator starting with different 
values. The insect was initially placed in the middle of an environment where there were no 
near obstacles. In general it very quickly learnt to move with both motors forward or one 
forward and one stopped, but always it eventually learnt that both motors forward was the best 
strategy to adopt in open space. The insects also successfully learnt to turn away from 
obstacles to the left or to the right by turning one motor more than another. 

One interesting result from the simulation is that the insect learnt different strategies 
depending upon its experience. Sometimes, for example, it learnt to turn away from obstacles 
which were relatively near, whereas at other times the insect would learn to turn only when it 
got very close to an obstacle. When avoiding an obstacle on the left, the insect sometimes 
learnt to turn the left motor forward and the right backward, or to turn the left forward and the 
right off, or even the left motor off and the right backwards; sometimes two or more of these 
options had a high probability, so the insect would use a combination of both actions. 

The insect could also move successfully when only one probability set is used, but here, for 
example, it has to relearn how to avoid an obstacle on the left when it has not encountered one 
on the left for sometime. 

Once the simulation has run for sometime and the updating of the probabilities is stopped, the 
insect successfully moves around its environment if the five sets of probabilities are used. 
 

6. IMPLEMENTATION ON THE INSECT 
The simulation demonstrated that the strategy works. The next stage was to implement it on 
the insect. To this end a simple microprocessor circuit was designed and built which plugged 
into the EEROM socket on the insect. The main requirement for this circuit was that it should 
consume little power, so a CMOS microprocessor was appropriate. Also, as the strategy was 
simple, an 8-bit microprocessor was sufficient. Thus, as a C compiler was available for the 
Z80 (and the simulation was written in C++ which could easily be turned into C), a CMOS 
Z80 microprocessor was selected. A block diagram of the circuit is shown in figure 4. 



 
Figure 4. Block diagram of microprocessor circuit 

The Z80 interfaces with the insect via a tristate buffer and a latch which respectively provide 
the data from the sensors (via the address lines of the EEROM socket) and generate the speed 
for the motors (using the data lines of the socket). The Z80 circuit also contains a 32K 
EPROM for the program and 32K RAM for data, a power-down circuit so the Z80 can enter 
low power mode when it has no other action, and an FPGA. This FPGA provides address 
decoding for the memories, buffer and latch (with expansion for more peripherals), a random 
number generator and (because there was space for it in the FPGA) a UART which could be 
used for communication with a computer, for monitoring the actions of the insect, or with 
other insects. 
 

CONCLUSION 
A strategy has been developed which allows simple robot insects to learn to move around an 
environment avoiding obstacles and this has been implemented in hardware on the insects. 
This, however, is just the beginning: further work is required to more fully investigate the 
strategy; to enable the insects to learn other tasks, like following objects; and then other 
sensors need to be added to the insect. It is also intended that the insects will be able to 
communicate with each other and report their actions to a logging computer. 
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