
Neural Network Control of Simple Mobile Robot

R.J.Mitchell and D.A.Keating,

Department of Cybernetics, The University of Reading, Reading,. UK.

Abstract

In recent years researchers in the Department of Cybernetics have been developing simple
mobile robots capable of exploring their environment on the basis of the information
obtained from a few simple sensors. These robots are used as the test bed for exploring
various behaviours of single and multiple organisms: the work is inspired by considerations
of natural systems. In this paper we concentrate on that part of the work which involves
neural networks and related techniques. These neural networks are used both to process the
sensor information and to develop the strategy used to control the robot. Here the robots,
their sensors, and the neural networks used and all described.

1. Introduction

There is much interest in the development of intelligent machines which can learn from
their environment. Various machines have been produced which have many sensors,
sometimes including high resolution video, which require a great deal of computing power
to process the information coming in to the machine, and still more processing is then
required to determine suitable action in response to this information.
Researchers in the Department of Cybernetics at the University of Reading believe that it is
best to start with simpler systems. Also, we believe that there is much to learn from nature
and in particular the behaviour of simple organisms like insects.
Therefore, a number of simple mobile robotic 'insects' have been developed which are small,
low power devices, which can operate rapidly in response to what they perceive in their
environment.
Initially these devices, equipped with two simple ultrasonic sensors, were programmed to
move around according to simple rules and information from the sensors. Then, a learning
system was added to allow the robots to learn these rules1. Then an extra compound eye was
added and a neural network used to allow the robots to learn different positions in the room.
The next stage in the work is to use the eye and the sensors to allow the robot to navigate its
environment and return to a recognised position. These different stages are all described
below. Related work, not described here, considers communication between various the
robots which allows the sharing of experiences and of teaching.

2. The Robot ‘Insects’
A number of these robot insects have been built. The first device had motors which were so
powerful that the robot travelled too quickly: the robot was set down in the laboratory, it set
off at speed, saw a wall and turned to avoid it, by which time it saw another wall, which it
tried to avoid, but it was going too fast. A table top robot was also built which could detect
the edge of the table and move away from it. However, this was not suitable if the robot was
to learn its behaviour as learning requires mistakes! As a result seven simple robots were
built, smaller versions of the original robot, which have become known as the ‘seven
dwarves’, and which contain no microprocessor. Subsequently, more advanced robots have
been built, which are equipped with a low power microprocessor and a number of sensors.
The ‘seven dwarves’ robots have two ultrasonic sensors, which enable them to detect how
far the nearest object is in front of a sensor, and two motors, each of which can be set to
move forwards or backwards at a given speed. The actions of the robot are determined using
a look-up table pre-programmed into an EEROM. A binary pattern, corresponding to the
data from the ultrasonic sensors, is passed to the address lines of the EEROM, and the value
at the addressed location specifies the speed and direction of each motor. Thus the contents
of the EEROM define one set of simple behaviour. Different behaviours can be selected by
using DIL ‘mode’ switches which provide extra address lines to the EEROM. A block
diagram of the robot is shown in figure 1.

Figure 1. Block diagram of basic robot

The look-up table in the EEROM is generated using a special program which is used in the
first year undergraduate laboratory. The student writes the rules determining what the robot
should do given the information from the sensors, by encoding one procedure - the rest of
the program generates suitable calls to the procedure the results of which are used to fill an
array which is sent to the EEROM programmer. The EEROM is then loaded into the robot.
A typical Modula-2 procedure for moving around avoiding obstacles is shown below: other
behaviour can be programmed by writing the rules in other procedures.

 PROCEDURE Mode (Range : INTEGER; LeftNotRight : BOOLEAN;
 VAR LeftSpeed, RightSpeed : INTEGER);
 (* Range is the distance of the nearest object (its value is 0..7);
 LeftNotRight indicates that the object is closest to the left eye, not the right eye;
 Given these suitable values are required for the speeds of the two motors:
 the speeds are in the range +4..-4: positive speeds mean go forward *)
 BEGIN
 IF Range = 7 THEN (* if no obstacle (or too far away) *)
 LeftSpeed := 4; RightSpeed := 4; (* go forwards *)
 ELSIF Range < 4 THEN (* something very close *)
 LeftSpeed := -4; RightSpeed := -4; (* go backwards *)
 ELSIF LeftNotRight THEN (* nearest left eye *)
 LeftSpeed := 4; RightSpeed := -4; (* turn right *)
 ELSE (* nearest right eye *)
 LeftSpeed := -4; RightSpeed := 4; (* turn left *)
 END
 END Mode;

Programming the robots in this way has been very successful, providing an interesting
exercise in problem solving and programming. However, the robots can only operate in a
pre-programmed manner: they can not learn.
So, the robots were then enhanced with an extra Z80 based microprocessor circuit which
replaces the EEROM, taking information from the sensors, processing that information and
driving the motors. This means the robot can act as before, with the Z80 simulating the
look-up table; or a suitable program on the Z80 can be used to allow the robot to ‘learn’ its
actions. A block diagram of the Z80 is shown in figure 2.

Figure 2. Z80 controller

The Z80 interfaces to the eyes of the insect via a tristate buffer and to the speeds of the
insect via a latch: both the buffer and the latch are connected directly to the EEROM on the
insect. The Z80 has 32K of EPROM and 32K of Static RAM, a watch dog circuit which
allows the Z80 to enter a power-down state so as to consume little power, and a field

programmable gate array, FPGA. The FPGA provides address decoding for the memory and
peripherals (and allows for further expansion), a random number generator and a UART
which allows for communication.
Subsequently, new versions of the insect have been built with the motors and ultrasonics
connected in a more conventional manner, rather than via the EEROM socket. The more
modular design of the new robots also allows the addition of further circuitry to provide
extra sensors, such as the compound eye, and further communication systems.

3. Neural Network for Obstacle Avoidance
This section describes how a neural network is used to allow the insect to learn to move
around its environment avoiding obstacles. The learning is achieved by a suitable program
running on the Z80 emulating a neural network.
The technique used is, like the insects themselves, inspired by methods used in nature.
When a baby is shown a toy it instinctively wants to grab the toy, but it does not know how.
The baby is able to move its arms and legs but it is not aware which muscles control what
part of the body. Initially, therefore, random movements occur. After a time, the baby stops
moving its legs as it realises that the legs are not allowing the toy to be grabbed. A little
later the baby learns to co-ordinate both hands, and finally is able to grab the toy. Thus the
baby learns the appropriate action by trial and error: different actions are tried and the
success or failure of the actions is used to determine the choice of later actions.
Therefore, the robots require various actions, a means of choosing the actions, criteria for
assessing the actions and a strategy for reassessing the choosing of the actions. The
technique used to implement these ideas came originally from the concept of fuzzy
automata2, but which can also be considered as a Hopfield type neural network3 using
modified Hebbian learning4. This is described in detail in5, a brief summary is given below.

3.1. Learning Strategy

The basic idea is that the device has a number of possible actions and associated with each
action is a probability of choosing that action. It is usual for the action with the highest
probability to be chosen. Then the chosen action is performed, its success evaluated and this
evaluation is used to adjust the probabilities: if the action was good then the probability of
the action is increased and the probabilities of the other actions are decreased; if the action
was poor, then its probability is decreased. Essentially therefore, good actions are rewarded,
bad actions are penalised.
The insects are allowed nine possible actions - each motor can drive forwards, backwards or
be turned off. Also, rather than always choosing the action with the highest probability, a
‘weighted roulette wheel’ technique is used - so the action with the highest probability is
most likely to be chosen. One reason for using this technique is to try to stop the system
getting trapped in local minima. Indeed, the probabilities are never allowed to be reduced to
zero: there is therefore always a chance that each action is chosen at some stage.

Careful thought was required as regards determining whether the action is successful. The
aim was to produce simple ‘common sense’ rules which did not directly ‘tell’ the insect how
to behave. The rules chosen are as follows:

If the robot was in the open, then going forward fast is good.

If the robot was close to an obstacle, then moving away is good.

If the robot was quite close, then a combination of these rules are used.

These rules are encoded to give a ‘goodness’ factor, α, which can be positive (good) or
negative (bad), and this factor is used to adjust the probabilities according to the following
(where m is the number of actions, n is the number of the action chosen, pn is the
probability of the chosen action, and pj is the probability of the jth action (where j = 1..m,
and j<>n):

IF α >= 0 THEN (* action was successful *)

 pn := pn + α (1 - pn) (* increase probability of chosen action *)

 pj := pj (1 - α) (* decrease probability of other actions *)

ELSE (* action was unsuccessful *)

 pn := pn - α (* decrease probability of chosen action *)

 pj := pj + α / (m-1) (* increase probability of other actions *)

END

One problem with this technique is that the action which is best for moving around when
there is no obstacle near the insect is likely to be different from the action required to move
away from the object.
Therefore five sets of the nine actions are used, each with its own set of probabilities: no
obstacle visible; obstacle quite close on the left; obstacle quite close on the right; obstacle
very close on the left and obstacle very close on the right. At any instance the current
information from the sensors determines the one set of action chosen.
This can be thought of as a Hopfield type network with modified Hebbian learning - as
shown in figure 3. The inputs to the network are boolean values determining the one set of
actions chosen - in the figure only the fourth input is ON. All the elements in that column
are the probabilities associated with that set of actions. The possible outputs are the state of
each motor - which can be (B)ack, (F)orward or (O)ff. One action is chosen, based on the
probabilities - in the figure this is BF - left motor back and right motor forward. That action
is evaluated and if it is good the probability of the action in the chosen column is increased -
the association of the chosen action with the given input is reinforced.

Figure 3. ‘Hopfield’ network

3.2 Results

This technique was initially implemented in simulation, where it works very well, and then
it was applied to the actual insects, where the technique is successful though not as clear cut
as in the simulation. Partly this is because the simulation does not accurately model the
dynamics of the insect. Also, the simulation assumes perfect response from the ultrasonic
sensors. There is also a problem with the two ultrasonic sensors: when the robot approaches
a wall on the left at an acute angle, turning the left motor forwards and the right motor
backwards does, as one would expect, move the robot away from the wall. If, however, the
robot approaches the wall at a larger angle, this same (correct) action initially causes the
robot to move closer to the wall, although eventually the robot will move away from the
wall. Thus two conflicting results occur for the same case. As a result, a third eye has been
added between the two and this is used to generate the ‘range’ value in assessing the success
of the chosen action.
Despite these problems, the robot learns rules similar to those outlined in the procedure
given earlier in only a few minutes. In fact, the rules it learns are not identical each time
(for instance there are three combinations of motor speeds which allow the robot to turn to
the right: FB, FO or OB), and the rules which are selected are determined by the experience
of the robot while it is learning.
It is worth commenting that this successful learning strategy is achieved with a 20 year old
8-bit microprocessor running a 5K byte program using about 100 bytes of static RAM.

4. A Compound Eye
The robot can do the simple task of exploring its environment avoiding obstacles despite, or
perhaps because of, its very simple sensory system. It was decided however that a more
advanced sensor was needed to improve the learning capabilities of the robot and allow it to
learn more advanced tasks. The modular construction of the robot allows extra sensors to be
added easily. The type of sensor chosen was again inspired by nature.
Given the complex behaviours prevalent in the insect world, an investigation was made into
their visual organs with the intention of building an electronic analogue. It was noted that

many insects possess a pair of compound eyes, bulging out of the head with a wide field of
vision. The eyes cannot move, have a short visual range and are of fixed focus. Each
compound eye may contain upward of 10000 or more simple photoreceptive cells, each with
its own lens. A prototype eye was developed first, experiments on which demonstrated the
feasibility of the technique, but also highlighted some problems, and so a more advanced
eye was subsequently produced. The following sections describe the tests and techniques
used for both eyes.

4.1 The First Compound Eye

To investigate how useful a simple vision system might be to the Cybernetic insects, a small
compound eye was built. This eye consists of a three dimensional array of fifteen light
dependent resistors (LDRs) mounted on the top fifteen faces of a truncated icosahedron. The
circuit processing the output of the LDRs is mounted in a box under the eye. The eye is
shown in figure 4a.
Each LDR produces an output voltage dependent on the light falling on it. An analogue
multiplexer selects which LDR is currently being measured and passes its associated voltage
to an A/D converter which gives a digital output of this voltage: a block diagram of this
circuitry is given in figure 4b.

Figure 4. The first eye

4.2 Estimating Robot Position

The output from the compound eye consists of an array of fifteen values digitised to the
interval [0..255]. These values need to be processed by the insect for a given application,
and the chosen application was for the insect to be able to recognise its position within its
environment.

This is a pattern recognition problem, so it was decided to apply a neural network to the
data from the eye. Given that the insect was equipped with only a Z80 microprocessor, it
was felt that a simple, non computationally intensive neural network was needed, one which
learns rapidly and which could conceivably be implemented subsequently in hardware. The
obvious choice, given the experience of researchers in the Department, was to use
weightless or n-tuple networks.

4.3 Weightless Networks

A weightless network6 comprises many neurons where each neuron is a simple random
access memory (RAM) which processes part of the input data. Initially all locations in each
RAM contain ‘0’.
When the network is being taught an input, n bits are sampled randomly from the input data
to form a tuple, and this tuple is used to address the first RAM, and a ‘1’ is written into the
addressed location. In this way, by one presentation of the data, the RAM neuron has learnt
that tuple. The process is repeated, sampling the input to form the next tuple and then
learning that tuples in the next RAM, until all the RAMs have been taught a tuple.
When the network is analysing its input data, tuples are formed as before, and a count is
made of the number of RAMs which recognised their tuples, that is, how many RAMs had a
‘1’ in their addressed location.
If the input to the network is the same as one already taught, then 100% of the RAMs will
‘fire’. Such a neural network can therefore recognise inputs it had been taught. However,
the system should be able to recognise similar inputs it has not been taught: it should be
able to generalise.
This is achieved by teaching the network a number of similar inputs. Then, for instance,
when an input is presented which it has not been taught, the first RAM might recognise the
first tuple from the third input it was taught, the second RAM might recognise the second
tuple from the seventh input it was taught.

4.4 Multi Discriminator Network

One set of RAMs is called a discriminator. Such a discriminator can be taught various sets
of data and can report whether it recognises any of these data, but it will not be able to
discriminate between them. However, if the network has many discriminators, then each
data set is taught into its own discriminator only, and the system can report which data set,
if any, from which a given input comes.
For the robots, the different data sets are different positions in the room: each position is
taught into one discriminator. Thus the whole network should be able to report which part
of the room that the insect is in by seeing which discriminator outputs the highest response.

4.5 Processing Grey Level Data

The tuples sampled from the input consist of binary values. The inputs to the eye are 8-bit
values; each value must be converted in some manner to a binary value. Three methods are

commonly used, thresholding, thermometer coding7 and Minchinton cells8; recent work has
shown the advantages of Minchinton cells9.
With thresholding, a value is taken from the input and compared with a constant value, the
threshold, producing a logic ‘1’ if the input value exceeds the threshold. With Minchinton
cells, a given bit in the tuple is found by comparing two samples at random from the input
data, returning a ‘1’ if the first sample exceeds the second sample.

4.6 Weightless Networks and the First Eye

Attempts to use a standard weightless network with thresholding proved unsuccessful, so
the data from the eye were sampled by an array of Minchinton Cells whose outputs were
passed to a 150 RAM multi-discriminator network.
To quantise an environment to one of n positions, n discriminators were used, with each
discriminator being taught to respond strongly to the light patterns characteristic of a
particular position within a 4x2m section of the laboratory. First experiments used sixteen
discriminators in a [4x4] array, spaced at 0.5m intervals along the x-axis and lm intervals
along the y-axis. To achieve rotational invariance, each discriminator could be taught at five
rotations of 72o around this point (see figure 5).

Figure 5. Discriminator positions

A tuple size of nine was selected to give a sharp discriminator response. Each discriminator
was trained with eleven sets of data collected at random intervals throughout a week. No
attempt was made to normalise laboratory lighting, window blind positions or other activity
in the laboratory.
This process was then repeated using the same data, but this time training four
discriminators in a [2x2] regular array, spaced at lm intervals along the x-axis and 2m
intervals along the y-axis.

4.7 Results

Figure 6 shows the output from a typical discriminator for both tests: on the left is the
response from the 2*2 test, on the right the response from the 4*4 test. The figures show the
response of the discriminator at various positions within the environment: the lighter the
area the higher the response from the discriminator.

Figure 6. Output from one discriminator for each test

For the 2*2 test, the discriminator is that for the top left position; the response from the eye
is at a maximum when the eye is in that position, and as the eye moves away from that
position, the response decreases.
For the 4*4 test, the discriminator is that for a position near the middle. Again, the response
is highest when the eye is at that position and it falls off monotonically as the eye moves
from the trained position.
Similar responses are found for the discriminators trained at the other positions.

4.8 The Second Eye

In the results described above rotation of the insect was ignored. When, however, the insect
was rotated, the performance of the system was worse than was expected. This was due to
mismatches in the LDRs used, giving rise to large variations in output for a given incident
light level. This meant that the RAM neurons had too many different tuples taught - the
neurons saturated, which meant that the neurons ‘recognised’ too many input patterns, so
there was insufficient discrimination between the positions in the room. It was also felt that
15 elements were insufficient.
Therefore a second generation eye has been produced. This has 32 phototransistors,
mounted on the faces of half ‘buckie balls’, with the associated electronics mounted inside
the ball. The phototransistors are well matched, so they should provide better performance
when the insect is rotated, and have a greater resolution.
This circuitry processing the signals from the phototransistors contains two sets of
multiplexors and a comparator replacing the ADC, thereby incorporating the Minchinton
cell processors. Using the comparators rather than an ADC eliminates quantisation noise. It
also reduces the mains supply frequency noise which could otherwise cause fluctuations in
the data with increased response time of the phototransistors.
A block diagram of an eye and associated circuitry is shown in figure 7.

Figure 6. Circuitry of the second eye

The eyes were mounted on the robot and the Z80 on the insect was configured with a single
discriminator weightless network. The insect was then taught one position in the room and
then the response of the network found when the robot was in other positions. The results
produced are consistent with the responses shown in figure 6, but they also successfully cope
with rotation of the insect.

5. Navigation
The output from the eye network gives both an indication of the approximate position of the
room and an indication of the direction the robot must travel in order to reach a given
position. In addition the ultrasonic sensors provide information which allows the robot to
avoid obstacles. The next stage in the work to be described is how all this information is
used to allow the robot to travel to a given position whilst avoiding any obstacle in its way.
This is to be achieved using an algorithm inspired by the klinotaxic behaviour used by
insects to navigate10. This behaviour inspired the Chemotaxis algorithm11: the basic idea of
which is also used as an alternative to back propagation in multi-layer perceptron neural
networks.
A key point in the results of the eye is that the output of the network decreases
monotonically as the insect moves from the taught position.
The idea for navigation is as follows. The robot is set to move in a random direction, and it
continues to move in that direction until it determines that it is moving away from its
desired destination. This it can decide using the compound eye: if the response from the
discriminator trained on the desired position decreases, the insect is going in the wrong
direction. At such a time, the insect chooses another direction randomly, and repeats the
process. Eventually the robot reaches the desired position.
However, an obstacle may be in the way. Therefore, a priority system is employed: if there
are no obstacles visible to the robot, the ‘chemotaxis’ technique is used, but if there are
obstacles, obstacle avoidance using the ultrasonic sensors is used to determine how the robot
should move.
So far, this technique has been established in simulation only, though the learning rules and
the compound eye have been successfully employed on the real robots.

6. Discussion
This paper has discussed some of the work done in the Cybernetics Department on its
simple mobile robots, in particular the research using neural networks. First a Hopfield-type
network, which is used to allow the robot to ‘learn’ how to move around its environment
avoiding obstacles. Next a compound eye is described with its neural network processing
circuitry. Finally, a technique is outlined, based on an algorithm used in Neural Networks,
for combining both networks to allow the robot to navigate back to a position it recognises
within its environment.

References

1. R.J.Mitchell, D.A.Keating and C.Kambhampati, Learning System for a Simple Robot
Insect, Proc. Control '94, pp: 492-497, 1995

2. K. Narendra and M.A.L. Thathachar, Learning Automata: an introduction, Prentice-
Hall, 1989.

3. J.J.Hopfield, Neural Networks and physical systems with emergent collective
properties. Proc. Nat.Acad.Sci., USA 79. 2554-8, 1992

4. D.E.Hebb, The Organisation of Behavour, Wiley, 1949.
5. R.J.Mitchell, D.A.Keating and C.Kambhampati, Neural Network Controller for Mobile

Robot Insect, Proc. EURISCON '94, pp: 78-85, 1994.
6. I.Aleksander and T.J.Stonham, Guide to pattern recognition using random-access

memories, IEE proceedings pt E, 2, 1, pp29-40, 1979.
7. I.Aleksander and M.J.D Wilson, Adaptive windows for image processing, IEE

proceedings pt E, 132, 5, pp233-245, 1985.
8. J.M.Bishop, P.R.Minchinton & R.J.Mitchell, Real Time Invariant Grey Level Image

Processing Using Digital Neural Networks, Proc IMechE Conf. EuroTech Direct '91,
pp: 187-199, 1991.

9. R.J.Mitchell, J.M.Bishop, S.K.Box and J.F.Hawker, Comparison of methods for
processing ‘grey’ level data in weightless networks, Proc Weightless Neural Network
Workshop 1995, pp76-81, Univ. of Kent, 1995.

10. P.J.Gullan and P.S.Cranston, The Insects: An Ouline of Entomology, Chapman and
Hall, 1994.

11. H.J.Bremermann and R.W.Anderson, An alternative to Back-Propagation: a simple
rule for synaptic modification for neural net training and memory, Internal Report,
Dept of Maths, Uni of California, Berkeley, 1989.

