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Abstract 

 
In recent years researchers in the Department of Cybernetics have been developing simple 
mobile robots capable of exploring their environment on the basis of the information 
obtained from a few simple sensors. These robots are used as the test bed for exploring 
various behaviours of single and multiple organisms: the work is inspired by considerations 
of natural systems. In this paper we concentrate on that part of the work which involves 
neural networks and related techniques. These neural networks are used both to process the 
sensor information and to develop the strategy used to control the robot. Here the robots, 
their sensors, and the neural networks used and all described. 
 

1. Introduction 
 

There is much interest in the development of intelligent machines which can learn from 
their environment. Various machines have been produced which have many sensors, 
sometimes including high resolution video, which require a great deal of computing power 
to process the information coming in to the machine, and still more processing is then 
required to determine suitable action in response to this information.  
Researchers in the Department of Cybernetics at the University of Reading believe that it is 
best to start with simpler systems. Also, we believe that there is much to learn from nature 
and in particular the behaviour of simple organisms like insects.  
Therefore, a number of simple mobile robotic 'insects' have been developed which are small, 
low power devices, which can operate rapidly in response to what they perceive in their 
environment. 
Initially these devices, equipped with two simple ultrasonic sensors, were programmed to 
move around according to simple rules and information from the sensors. Then, a learning 
system was added to allow the robots to learn these rules1. Then an extra compound eye was 
added and a neural network used to allow the robots to learn different positions in the room. 
The next stage in the work is to use the eye and the sensors to allow the robot to navigate its 
environment and return to a recognised position. These different stages are all described 
below. Related work, not described here, considers communication between various the 
robots which allows the sharing of experiences and of teaching. 

2. The Robot ‘Insects’ 
A number of these robot insects have been built. The first device had motors which were so 
powerful that the robot travelled too quickly: the robot was set down in the laboratory, it set 
off at speed, saw a wall and turned to avoid it, by which time it saw another wall, which it 
tried to avoid, but it was going too fast. A table top robot was also built which could detect 
the edge of the table and move away from it. However, this was not suitable if the robot was 
to learn its behaviour as learning requires mistakes! As a result seven simple robots were 
built, smaller versions of the original robot, which have become known as the ‘seven 
dwarves’, and which contain no microprocessor. Subsequently, more advanced robots have 
been built, which are equipped with a low power microprocessor and a number of sensors. 
The ‘seven dwarves’ robots have two ultrasonic sensors, which enable them to detect how 
far the nearest object is in front of a sensor, and two motors, each of which can be set to 
move forwards or backwards at a given speed. The actions of the robot are determined using 
a look-up table pre-programmed into an EEROM. A binary pattern, corresponding to the 
data from the ultrasonic sensors, is passed to the address lines of the EEROM, and the value 
at the addressed location specifies the speed and direction of each motor. Thus the contents 
of the EEROM define one set of simple behaviour. Different behaviours can be selected by 
using DIL ‘mode’ switches which provide extra address lines to the EEROM. A block 
diagram of the robot is shown in figure 1. 
 

 
Figure 1. Block diagram of basic robot 

 

The look-up table in the EEROM is generated using a special program which is used in the 
first year undergraduate laboratory. The student writes the rules determining what the robot 
should do given the information from the sensors, by encoding one procedure - the rest of 
the program generates suitable calls to the procedure the results of which are used to fill an 
array which is sent to the EEROM programmer. The EEROM is then loaded into the robot. 
A typical Modula-2 procedure for moving around avoiding obstacles is shown below: other 
behaviour can be programmed by writing the rules in other procedures. 
 



   PROCEDURE Mode (Range : INTEGER; LeftNotRight : BOOLEAN; 
                                        VAR LeftSpeed, RightSpeed : INTEGER); 
   (* Range is the distance of the nearest object (its value is 0..7);  
        LeftNotRight indicates that the object is closest to the left eye, not the right eye; 
        Given these suitable values are required for the speeds of the two motors: 
        the speeds are in the range +4..-4: positive speeds mean go forward *) 
   BEGIN 
        IF Range = 7 THEN                            (* if no obstacle (or too far away) *) 
            LeftSpeed := 4;  RightSpeed := 4;   (* go forwards *) 
        ELSIF Range < 4 THEN                    (* something very close *) 
            LeftSpeed := -4;  RightSpeed := -4;   (* go backwards *) 
        ELSIF LeftNotRight THEN          (* nearest left eye *) 
            LeftSpeed := 4; RightSpeed := -4;   (* turn right *) 
        ELSE                                                 (* nearest right eye *) 
            LeftSpeed := -4; RightSpeed := 4; (* turn left *) 
        END 
   END Mode; 
 

Programming the robots in this way has been very successful, providing an interesting 
exercise in problem solving and programming. However, the robots can only operate in a 
pre-programmed manner: they can not learn. 
So, the robots were then enhanced with an extra Z80 based microprocessor circuit which 
replaces the EEROM, taking information from the sensors, processing that information and 
driving the motors. This means the robot can act as before, with the Z80 simulating the 
look-up table; or a suitable program on the Z80 can be used to allow the robot to ‘learn’ its 
actions. A block diagram of the Z80 is shown in figure 2. 
 

 
Figure 2. Z80 controller 

 

The Z80 interfaces to the eyes of the insect via a tristate buffer and to the speeds of the 
insect via a latch: both the buffer and the latch are connected directly to the EEROM on the 
insect. The Z80 has 32K of EPROM and 32K of Static RAM, a watch dog circuit which 
allows the Z80 to enter a power-down state so as to consume little power, and a field 

programmable gate array, FPGA. The FPGA provides address decoding for the memory and 
peripherals (and allows for further expansion), a random number generator and a UART 
which allows for communication.  
Subsequently, new versions of the insect have been built with the motors and ultrasonics 
connected in a more conventional manner, rather than via the EEROM socket. The more 
modular design of the new robots also allows the addition of further circuitry to provide 
extra sensors, such as the compound eye, and further communication systems. 
 

3. Neural Network for Obstacle Avoidance 
This section describes how a neural network is used to allow the insect to learn to move 
around its environment avoiding obstacles. The learning is achieved by a suitable program 
running on the Z80 emulating a neural network. 
The technique used is, like the insects themselves, inspired by methods used in nature. 
When a baby is shown a toy it instinctively wants to grab the toy, but it does not know how. 
The baby is able to move its arms and legs but it is not aware which muscles control what 
part of the body. Initially, therefore, random movements occur. After a time, the baby stops 
moving its legs as it realises that the legs are not allowing the toy to be grabbed. A little 
later the baby learns to co-ordinate both hands, and finally is able to grab the toy. Thus the 
baby learns the appropriate action by trial and error: different actions are tried and the 
success or failure of the actions is used to determine the choice of later actions. 
Therefore, the robots require various actions, a means of choosing the actions, criteria for 
assessing the actions and a strategy for reassessing the choosing of the actions. The 
technique used to implement these ideas came originally from the concept of fuzzy 
automata2, but which can also be considered as a Hopfield type neural network3 using 
modified Hebbian learning4. This is described in detail in5, a brief summary is given below. 
 

3.1. Learning Strategy 

The basic idea is that the device has a number of possible actions and associated with each 
action is a probability of choosing that action. It is usual for the action with the highest 
probability to be chosen. Then the chosen action is performed, its success evaluated and this 
evaluation is used to adjust the probabilities: if the action was good then the probability of 
the action is increased and the probabilities of the other actions are decreased; if the action 
was poor, then its probability is decreased. Essentially therefore, good actions are rewarded, 
bad actions are penalised. 
The insects are allowed nine possible actions - each motor can drive forwards, backwards or 
be turned off. Also, rather than always choosing the action with the highest probability, a 
‘weighted roulette wheel’ technique is used - so the action with the highest probability is 
most likely to be chosen. One reason for using this technique is to try to stop the system 
getting trapped in local minima. Indeed, the probabilities are never allowed to be reduced to 
zero: there is therefore always a chance that each action is chosen at some stage. 



Careful thought was required as regards determining whether the action is successful. The 
aim was to produce simple ‘common sense’ rules which did not directly ‘tell’ the insect how 
to behave. The rules chosen are as follows: 
 

If the robot was in the open, then going forward fast is good. 

If the robot was close to an obstacle, then moving away is good. 

If the robot was quite close, then a combination of these rules are used. 

These rules are encoded to give a ‘goodness’ factor, α, which can be positive (good) or 
negative (bad), and this factor is used to adjust the probabilities according to the following 
(where m is the number of actions, n is the number of the action chosen, pn is the 
probability of the chosen action, and pj is the probability of the jth action (where j = 1..m, 
and j<>n): 
 

IF α >= 0 THEN     (* action was successful *) 

    pn := pn + α (1 - pn) (* increase probability of chosen action *) 

    pj := pj (1 - α)  (* decrease probability of other actions *) 

ELSE   (* action was unsuccessful *) 

    pn := pn - α  (* decrease probability of chosen action *) 

    pj := pj + α / (m-1)  (* increase probability of other actions *) 

END 

 

One problem with this technique is that the action which is best for moving around when 
there is no obstacle near the insect is likely to be different from the action required to move 
away from the object.  
Therefore five sets of the nine actions are used, each with its own set of probabilities: no 
obstacle visible; obstacle quite close on the left; obstacle quite close on the right; obstacle 
very close on the left and obstacle very close on the right. At any instance the current 
information from the sensors determines the one set of action chosen. 
This can be thought of as a Hopfield type network with modified Hebbian learning - as 
shown in figure 3. The inputs to the network are boolean values determining the one set of 
actions chosen - in the figure only the fourth input is ON. All the elements in that column 
are the probabilities associated with that set of actions. The possible outputs are the state of 
each motor - which can be (B)ack, (F)orward or (O)ff. One action is chosen, based on the 
probabilities - in the figure this is BF - left motor back and right motor forward. That action 
is evaluated and if it is good the probability of the action in the chosen column is increased - 
the association of the chosen action with the given input is reinforced. 
 

 
Figure 3. ‘Hopfield’ network 

 

3.2 Results 

This technique was initially implemented in simulation, where it works very well, and then 
it was applied to the actual insects, where the technique is successful though not as clear cut 
as in the simulation. Partly this is because the simulation does not accurately model the 
dynamics of the insect. Also, the simulation assumes perfect response from the ultrasonic 
sensors. There is also a problem with the two ultrasonic sensors: when the robot approaches 
a wall on the left at an acute angle, turning the left motor forwards and the right motor 
backwards does, as one would expect, move the robot away from the wall. If, however, the 
robot approaches the wall at a larger angle, this same (correct) action initially causes the 
robot to move closer to the wall, although eventually the robot will move away from the 
wall. Thus two conflicting results occur for the same case. As a result, a third eye has been 
added between the two and this is used to generate the ‘range’ value in assessing the success 
of the chosen action. 
Despite these problems, the robot learns rules similar to those outlined in the procedure 
given earlier in only a few minutes. In fact, the rules it learns are not identical each time 
(for instance there are three combinations of motor speeds which allow the robot to turn to 
the right: FB, FO or OB), and the rules which are selected are determined by the experience 
of the robot while it is learning. 
It is worth commenting that this successful learning strategy is achieved with a 20 year old 
8-bit microprocessor running a 5K byte program using about 100 bytes of static RAM. 
 

4. A Compound Eye 
The robot can do the simple task of exploring its environment avoiding obstacles despite, or 
perhaps because of, its very simple sensory system. It was decided however that a more 
advanced sensor was needed to improve the learning capabilities of the robot and allow it to 
learn more advanced tasks. The modular construction of the robot allows extra sensors to be 
added easily. The type of sensor chosen was again inspired by nature. 
Given the complex behaviours prevalent in the insect world, an investigation was made into 
their visual organs with the intention of building an electronic analogue. It was noted that 



many insects possess a pair of compound eyes, bulging out of the head with a wide field of 
vision. The eyes cannot move, have a short visual range and are of fixed focus. Each 
compound eye may contain upward of 10000 or more simple photoreceptive cells, each with 
its own lens. A prototype eye was developed first, experiments on which demonstrated the 
feasibility of the technique, but also highlighted some problems, and so a more advanced 
eye was subsequently produced. The following sections describe the tests and techniques 
used for both eyes. 
 

4.1 The First Compound Eye 

To investigate how useful a simple vision system might be to the Cybernetic insects, a small 
compound eye was built. This eye consists of a three dimensional array of fifteen light 
dependent resistors (LDRs) mounted on the top fifteen faces of a truncated icosahedron. The 
circuit processing the output of the LDRs is mounted in a box under the eye. The eye is 
shown in figure 4a. 
Each LDR produces an output voltage dependent on the light falling on it. An analogue 
multiplexer selects which LDR is currently being measured and passes its associated voltage 
to an A/D converter which gives a digital output of this voltage: a block diagram of this 
circuitry is given in figure 4b. 
 

 
Figure 4. The first eye 

 

4.2 Estimating Robot Position 

The output from the compound eye consists of an array of fifteen values digitised to the 
interval [0..255]. These values need to be processed by the insect for a given application, 
and the chosen application was for the insect to be able to recognise its position within its 
environment. 

This is a pattern recognition problem, so it was decided to apply a neural network to the 
data from the eye. Given that the insect was equipped with only a Z80 microprocessor, it 
was felt that a simple, non computationally intensive neural network was needed, one which 
learns rapidly and which could conceivably be implemented subsequently in hardware. The 
obvious choice, given the experience of researchers in the Department, was to use 
weightless or n-tuple networks. 
 

4.3 Weightless Networks 

A weightless network6 comprises many neurons where each neuron is a simple random 
access memory (RAM) which processes part of the input data. Initially all locations in each 
RAM contain ‘0’. 
When the network is being taught an input, n bits are sampled randomly from the input data 
to form a tuple, and this tuple is used to address the first RAM, and a ‘1’ is written into the 
addressed location. In this way, by one presentation of the data, the RAM neuron has learnt 
that tuple. The process is repeated, sampling the input to form the next tuple and then 
learning that tuples in the next RAM, until all the RAMs have been taught a tuple. 
When the network is analysing its input data, tuples are formed as before, and a count is 
made of the number of RAMs which recognised their tuples, that is, how many RAMs had a 
‘1’ in their addressed location. 
If the input to the network is the same as one already taught, then 100% of the RAMs will 
‘fire’. Such a neural network can therefore recognise inputs it had been taught. However, 
the system should be able to recognise similar inputs it has not been taught: it should be 
able to generalise.  
This is achieved by teaching the network a number of similar inputs. Then, for instance, 
when an input is presented which it has not been taught, the first RAM might recognise the 
first tuple from the third input it was taught, the second RAM might recognise the second 
tuple from the seventh input it was taught. 
 

4.4 Multi Discriminator Network 

One set of RAMs is called a discriminator. Such a discriminator can be taught various sets 
of data and can report whether it recognises any of these data, but it will not be able to 
discriminate between them. However, if the network has many discriminators, then each 
data set is taught into its own discriminator only, and the system can report which data set, 
if any, from which a given input comes.  
For the robots, the different data sets are different positions in the room: each position is 
taught into one discriminator. Thus the whole network should be able to report which part 
of the room that the insect is in by seeing which discriminator outputs the highest response. 
 

4.5 Processing Grey Level Data  

The tuples sampled from the input consist of binary values. The inputs to the eye are 8-bit 
values; each value must be converted in some manner to a binary value. Three methods are 



commonly used, thresholding, thermometer coding7 and Minchinton cells8; recent work has 
shown the advantages of Minchinton cells9. 
With thresholding, a value is taken from the input and compared with a constant value, the 
threshold, producing a logic ‘1’ if the input value exceeds the threshold. With Minchinton 
cells, a given bit in the tuple is found by comparing two samples at random from the input 
data, returning a ‘1’ if the first sample exceeds the second sample. 
 

4.6 Weightless Networks and the First Eye  

Attempts to use a standard weightless network with thresholding proved unsuccessful, so 
the data from the eye were sampled by an array of Minchinton Cells whose outputs were 
passed to a 150 RAM multi-discriminator network. 
To quantise an environment to one of n positions, n discriminators were used, with each 
discriminator being taught to respond strongly to the light patterns characteristic of a 
particular position within a 4x2m section of the laboratory. First experiments used sixteen 
discriminators in a [4x4] array, spaced at 0.5m intervals along the x-axis and lm intervals 
along the y-axis. To achieve rotational invariance, each discriminator could be taught at five 
rotations of 72o around this point (see figure 5). 
 

 
Figure 5. Discriminator positions 

 

A tuple size of nine was selected to give a sharp discriminator response. Each discriminator 
was trained with eleven sets of data collected at random intervals throughout a week. No 
attempt was made to normalise laboratory lighting, window blind positions or other activity 
in the laboratory. 
This process was then repeated using the same data, but this time training four 
discriminators in a [2x2] regular array, spaced at lm intervals along the x-axis and 2m 
intervals along the y-axis. 
 

4.7 Results 

Figure 6 shows the output from a typical discriminator for both tests: on the left is the 
response from the 2*2 test, on the right the response from the 4*4 test. The figures show the 
response of the discriminator at various positions within the environment: the lighter the 
area the higher the response from the discriminator.  
 

 
Figure 6. Output from one discriminator for each test 

 
For the 2*2 test, the discriminator is that for the top left position; the response from the eye 
is at a maximum when the eye is in that position, and as the eye moves away from that 
position, the response decreases. 
For the 4*4 test, the discriminator is that for a position near the middle. Again, the response 
is highest when the eye is at that position and it falls off monotonically as the eye moves 
from the trained position. 
Similar responses are found for the discriminators trained at the other positions. 
 

4.8 The Second Eye 

In the results described above rotation of the insect was ignored. When, however, the insect 
was rotated, the performance of the system was worse than was expected. This was due to 
mismatches in the LDRs used, giving rise to large variations in output for a given incident 
light level. This meant that the RAM neurons had too many different tuples taught - the 
neurons saturated, which meant that the neurons ‘recognised’ too many input patterns, so 
there was insufficient discrimination between the positions in the room. It was also felt that 
15 elements were insufficient. 
Therefore a second generation eye has been produced. This has 32 phototransistors, 
mounted on the faces of half ‘buckie balls’, with the associated electronics mounted inside 
the ball. The phototransistors are well matched, so they should provide better performance 
when the insect is rotated, and have a greater resolution. 
This circuitry processing the signals from the phototransistors contains two sets of 
multiplexors and a comparator replacing the ADC, thereby incorporating the Minchinton 
cell processors. Using the comparators rather than an ADC eliminates quantisation noise. It 
also reduces the mains supply frequency noise which could otherwise cause fluctuations in 
the data with increased response time of the phototransistors. 
A block diagram of an eye and associated circuitry is shown in figure 7. 
 



 
Figure 6. Circuitry of the second eye 

 

The eyes were mounted on the robot and the Z80 on the insect was configured with a single 
discriminator weightless network. The insect was then taught one position in the room and 
then the response of the network found when the robot was in other positions. The results 
produced are consistent with the responses shown in figure 6, but they also successfully cope 
with rotation of the insect. 
 

5. Navigation 
The output from the eye network gives both an indication of the approximate position of the 
room and an indication of the direction the robot must travel in order to reach a given 
position. In addition the ultrasonic sensors provide information which allows the robot to 
avoid obstacles. The next stage in the work to be described is how all this information is 
used to allow the robot to travel to a given position whilst avoiding any obstacle in its way. 
This is to be achieved using an algorithm inspired by the klinotaxic behaviour used by 
insects to navigate10. This behaviour inspired the Chemotaxis algorithm11: the basic idea of 
which is also used as an alternative to back propagation in multi-layer perceptron neural 
networks. 
A key point in the results of the eye is that the output of the network decreases 
monotonically as the insect moves from the taught position.  
The idea for navigation is as follows. The robot is set to move in a random direction, and it 
continues to move in that direction until it determines that it is moving away from its 
desired destination. This it can decide using the compound eye: if the response from the 
discriminator trained on the desired position decreases, the insect is going in the wrong 
direction. At such a time, the insect chooses another direction randomly, and repeats the 
process. Eventually the robot reaches the desired position. 
However, an obstacle may be in the way. Therefore, a priority system is employed: if there 
are no obstacles visible to the robot, the ‘chemotaxis’ technique is used, but if there are 
obstacles, obstacle avoidance using the ultrasonic sensors is used to determine how the robot 
should move. 
So far, this technique has been established in simulation only, though the learning rules and 
the compound eye have been successfully employed on the real robots. 

 

6. Discussion 
This paper has discussed some of the work done in the Cybernetics Department on its 
simple mobile robots, in particular the research using neural networks. First a Hopfield-type 
network, which is used to allow the robot to ‘learn’ how to move around its environment 
avoiding obstacles. Next a compound eye is described with its neural network processing 
circuitry. Finally, a technique is outlined, based on an algorithm used in Neural Networks, 
for combining both networks to allow the robot to navigate back to a position it recognises 
within its environment. 

 

References 

1. R.J.Mitchell, D.A.Keating and C.Kambhampati, Learning System for a Simple Robot 
Insect, Proc. Control '94, pp: 492-497, 1995 

2. K. Narendra and M.A.L. Thathachar, Learning Automata: an introduction, Prentice-
Hall, 1989. 

3. J.J.Hopfield, Neural Networks and physical systems with emergent collective 
properties. Proc. Nat.Acad.Sci., USA 79. 2554-8, 1992 

4. D.E.Hebb, The Organisation of Behavour, Wiley, 1949. 
5. R.J.Mitchell, D.A.Keating and C.Kambhampati, Neural Network Controller for Mobile 

Robot Insect, Proc. EURISCON '94, pp: 78-85, 1994. 
6. I.Aleksander and T.J.Stonham, Guide to pattern recognition using random-access 

memories, IEE proceedings pt E, 2, 1, pp29-40, 1979. 
7. I.Aleksander and M.J.D Wilson, Adaptive windows for image processing, IEE 

proceedings pt E, 132, 5, pp233-245, 1985. 
8. J.M.Bishop, P.R.Minchinton & R.J.Mitchell, Real Time Invariant Grey Level Image 

Processing Using Digital Neural Networks, Proc IMechE Conf. EuroTech Direct '91, 
pp: 187-199, 1991. 

9. R.J.Mitchell, J.M.Bishop, S.K.Box and J.F.Hawker, Comparison of methods for 
processing ‘grey’ level data in weightless networks, Proc Weightless Neural Network 
Workshop 1995, pp76-81, Univ. of Kent, 1995. 

10. P.J.Gullan and P.S.Cranston, The Insects: An Ouline of Entomology, Chapman and 
Hall, 1994. 

11. H.J.Bremermann and R.W.Anderson, An alternative to Back-Propagation: a simple 
rule for synaptic modification for neural net training and memory, Internal Report, 
Dept of Maths, Uni of California, Berkeley, 1989. 


