ACHIEVING THE STABILITY MARGINS IN BODE'S METHOD

Dr Richard Mitchell Cybernetics Intelligence Research Group Department of Cybernetics The University of Reading, UK R.J.Mitchell@reading.ac.uk

Overview

 Bode's fundamental work uses asymptotes to allow a system to be stabilised having max possible gain over a given bandwidth with suitable gain and phase margin

(It's a method of placing poles/zeros)

- But, as uses asymptotes, actual margins can be very different from specified
- A solution is presented, in which margins are preprocessed before being applied

Frequency Shape for Bode's Design

Loop Transfer Function

 $\frac{GMax}{s^{2}/\omega_{0}^{2}+s/\omega_{0}+1}*\frac{1+s/\omega_{1}}{1+s/\omega_{2}}*\frac{(1+s/\omega_{d})^{2}}{(1+s/\omega_{c})^{n}}$

Second order element for low freq response. (easier for students to understand than Bode's irrational element) Lead Lag to approximate slope -2(1-y) Can be better to have multiple lead lags But actual GM and PM differ from specified ...

So Iterate Design for GM and PM

As actual margins differ from specified, do design, note errors and redesign

gms = gm; pms = pm; % initialise specified gm/pm DoBodeDesign; % and calc gma and pma while num of iterations < 8 & ... abs(gm - gma) + abs (pm - pma) > 0 do gms = gms - gma + gm; % new gm to specify pms = pms - pma + pm; DoBodeDesign end % limit iterations in case algorithm cycles

Typical Result

 $(\omega_a = 100 \text{ rad/s}, n = 4)$ ω LLag GM PM GMax GMact PMact <u>0.03 1 15 45 42478 18</u> 39 0.03 2 15 45 42478 19 **48** Then do iteration, results of which GMs PMs GMax GMact PMact **11 56 18629 15** 45 <u>11 45 56645 15</u> **45** Run tests for different n, ω_0 , GM and PM

Graphs: GMs and PMs vs ω_o

Models

- Graphs show ~ linear relationship between ω_o and GMs and PMs, for different values of n, LLag, GM and PM; partic if use 2 LLag
- So produce separate models for each
- GMs = Goff + Gfac * ω_o
- PMs = Poff + Pfac * ω_o
- But use many models, so for each n, LLag:
- GMs = G0 + $G\omega^*\omega_o$ + Ggm*GM + Gpm*PM
- PMs = P0 + $P\omega^*\omega_o$ + Pgm*GM + Ppm*PM
- Both work, second nicer as fewer models

Results Actual GM/PM (for n = 4)

Conclusion

- Bode's Maximum Available Feedback Method gives approximate response: often actual stability margins in error.
- However, particularly if have 2 lead-lags for 'fractional slope', a linear model can be used to pre-process the margins, the results being fed into Bode's method, so that the desired margins are achieved.

