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Overview
Bode’s fundamental work uses asymptotes 
to allow a system to be stabilised having 
max possible gain over a given bandwidth 
with suitable gain and phase margin

(It’s a method of placing poles/zeros)
But, as uses asymptotes, actual margins 
can be very different from specified
A solution is presented, in which margins 
are preprocessed before being applied
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Frequency Shape for Bode’s Design

Slope -2(1-y) → Phase = -180 + PM;
‘Bode Step’ ωd..ωc: cancel phase due to –n slope

Uncompensated: gain = 1 at ωa when slope -n

Design 
ωo= bw
x = Gain 
Margin 
y = Rel
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Loop Transfer Function 
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Second order element for low freq response.
(easier for students to understand than 
Bode’s irrational element) 

Lead Lag to approximate slope -2(1-y)
Can be better to have multiple lead lags

But actual GM and PM differ from specified …
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So Iterate Design for GM and PM

As actual margins differ from specified, do 
design, note errors and redesign

gms = gm; pms = pm; % initialise specified gm/pm
DoBodeDesign; % and calc gma and pma
while num of iterations < 8 & ...

abs(gm – gma) + abs (pm – pma) > 0  do
gms = gms - gma + gm;  % new gm to specify
pms = pms - pma + pm;
DoBodeDesign

end    % limit iterations in case algorithm cycles
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Typical Result
(ωa = 100 rad/s, n = 4)
ωo LLag GM PM GMax GMact PMact
0.03 1 15 45 42478        18 39
0.03 2 15 45 42478        19 48 
Then do iteration, results of which

GMs  PMs GMax GMact PMact
11      56 18629 15 45
11      45 56645 15 45

Run tests for different n, ωo, GM and PM
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Graphs: GMs and PMs vs ωo
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Models
Graphs show ~ linear relationship between 
ωo and GMs and PMs, for different values of 
n, LLag, GM and PM; partic if use 2 LLag
So produce separate models for each

GMs = Goff + Gfac * ωo
PMs = Poff + Pfac * ωo

But use many models, so for each n, LLag:
GMs = G0 + Gω*ωo + Ggm*GM + Gpm*PM
PMs = P0 + Pω*ωo + Pgm*GM + Ppm*PM

Both work, second nicer as fewer models
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Results Actual GM/PM (for n = 4)
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Conclusion
Bode’s Maximum Available Feedback 
Method gives approximate response: 
often actual stability margins in error.
However, particularly if have 2 lead-lags 
for ‘fractional slope’, a linear model can 
be used to pre-process the margins, the 
results being fed into Bode’s method, so 
that the desired margins are achieved.
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