
p1 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Single Layer ‘Perceptron’ Networks
We have looked at what artificial neural networks (ANNs)

can do, and by looking at their history have seen some of
the different types of neural network.

We started looking at single layer networks based on
Perceptron or McCulloch Pitts (MCP) type neurons

We tried applying the simple delta rule to the AND problem
In this lecture we will show some MATLAB functions to

allow us to finish learning AND, and then do OR
We will then see that we can’t, at this stage, do XOR

This will lead to multi-layer perceptrons.
We will also demonstrate that the Delta Rule does follow

the steepest gradient down the weight error space

p2 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Reminder Simple Linear Neuron

kIn
pu

ts

xn

x2

x1

wn

w1

bias, w0

w2

Output

MCP cell but no threshold

Output, O = k * (Σ (xi * wi)) NB xo = 1; k is often 1
To train, n input values and corresponding known output
In fact have training set, with many such n+1 value sets
Pass each in turn, calc O, if T is target, change weights by

∆ wi = η (T – O) xi = η δ xi the delta rule
Then pass next item from training set, etc.

p3 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

MATLAB for Single Layer Networks
As you will be able to use MATLAB in the exam, here is an

intro to using MATLAB for single layer networks
Two functions are presented, here is the first

function node = sdr_makenode(initweights);
% NODE = SDR_MAKENODE (INITWEIGHTS)
% makes a structure with weights INITWEIGHTS
% an output and a delta field
% Dr Richard Mitchell 25.7.03
node = struct('weights', initweights, 'output', 0, 'delta', 0);

Generates a structure with fields for data in neuron.
Call by, for instance:

>> node = sdr_makenode([0.05, 0.1, -0.2]);

p4 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Next MATLAB Function to Learn
function [node, sumsqerr] = sdr_learn (node, tset, lrate)
% [NODE, SUMSQERR] = SDR_LEARN (NODE, TSET, LRATE)
% node is struct('weights', [w0..wn], 'output', 0, 'delta', 0);
% applies each row in training set & adjusts weights suitably
% Dr Richard Mitchell 25.7.03
sumsqerr = 0;
for r = 1:size(tset, 1), % for all rows in tset

invec = [1, tset(r, [1:size(tset,2)-1])]; % 1 and input
node.output = dot(invec, node.weights); % compute output
node.delta = tset(r,size(tset,2)) - node.output;% error
sumsqerr = sumsqerr + node.delta^2; % add to error sum
node.weights = node.weights + lrate * invec * node.delta;

end % update weights

p5 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Notes on MATLAB code
tset = [0 0 0; 0 1 0; 1 0 0; 1 1 1] is 3 column 4 row matrix
size(tset,1) is number of rows; size(tset,2) is number of cols
invec = [1, tset(r, [1:size(tset,2)-1])]; % input vector being

1 (for bias) then columns 1 to 2 in row r of tset
dot(invec, node.weights) is the dot product which is in fact

invec(1)*node.weights(1) + invec(2)*node.weights(2) +
invec(3)*node.weights(3) ie weighted sum inc bias

MATLAB session:
>>tset=[0 0 0; 0 1 0; 1 0 0; 1 1 1]; % define training set
>>[node, sse]=sdr_learn(node, tset, 0.1);
>> sse

1.1676 % error after one ‘epoch’

p6 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

>> for ct=2:20, [node, sse(ct)]=sdr_learn(node, tset, 0.1); end
>> sse % see how error drops
sse =
1.1676 0.8152 0.7096 0.6551 0.6123 0.5741 0.5400
0.5097 0.4831 0.4599 0.4397 0.4221 0.4069 0.3937
0.3822 0.3723 0.3637 0.3562 0.3497 0.3441
>> node.weights % ‘final’ value of weights
ans =

-0.1260 0.4589 0.3990
>> for r=1:size(tset,1), % compute training set

node.output = dot([1, tset(r, [1:2])], node.weights);
[tset(r,:),node.output], end

ans = 0.0000 0.0000 0.0000 -0.1260
ans = 0.0000 1.0000 0.0000 0.2730
ans = 1.0000 0.000 0.0000 0.3329
ans = 1.0000 1.0000 1.0000 0.7319 % as last week

p7 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Now Do For OR Function
otset = [0 0 0; 0 1 1; 1 0 1; 1 1 1];
Learn 100 times; sse down to 0.3086
node.weights = 0.2769 0.4451 0.4729
If we test the result (show input, target and actual output)

0.0000 0.0000 0.0000 0.2769
0.0000 1.0000 1.0000 0.7498
1.0000 0.0000 1.0000 0.7220
1.0000 1.0000 1.0000 1.1949

If threshold is 0.5 say, have learnt OR function
Note number of epochs needed to learn, for a given learning

rate, depends on initial weights (and hence initial error)

p8 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Now Do The XOR Function
>> etset=[0 0 0; 0 1 1; 1 0 1; 1 1 0];
>> node=sdr_makenode(randn(1,3));
>> for ct=1:100, [node, sse(ct)]=sdr_learn(node, etset, 0.1);

end
>> sse(100) = 1.2345
If we test the result (show input, target and actual output)

0.0000 0.0000 0.0000 0.5544
0.0000 1.0000 1.0000 0.4997
1.0000 0.0000 1.0000 0.4441
1.0000 1.0000 0.0000 0.3894

Clearly we have failed to learn the XOR problem

p9 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Linear Separable Problems
A two input MCP cell can classify any function that can be

separated by a straight dividing line in input space
These are ‘linearly separable problems’.

x1

x21

1

AND

x1

x21

1

OR

p10 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

XOR Is Not Linearly Separable
A straight line wont separate classes for XOR
If add extra dimension, x1 AND x2, linear plane will separate

x1 AND x2

x2

1
1

x1

x21

1 XOR
0

1

10

x1

1

p11 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

In MATLAB It Works!
>> node = sdr_makenode(randn(1,4));
>> etset2 = [0 0 0 0; 0 1 0 1; 1 0 0 1; 1 1 1 0]; % incl x1 AND x2
>> for ct=1:100, [node, sse(ct)]=sdr_learn(node, etset2, 0.1); end
>> sse(100)
ans =

0.0476
>> for r=1:size(tset,1),

node.output = dot([1, etset2(r, [1:3])], node.weights);
[etset2(r,:),node.output], end

0.0000 0.0000 0.0000 0.0000 0.1578
0.0000 1.0000 0.0000 1.0000 0.9218
1.0000 0.0000 0.0000 1.0000 0.9107
1.0000 1.0000 1.0000 0.0000 0.0346

p12 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

On the Separating Line
Consider example with data defined as follows

Feature Space:

Plot x2 v x1

1.5

0

-1

-0.5 0.5

x1 x2 T
-0.5 -0.5 0
-0.5 +0.5 0
+0.3 -0.5 1
+0.0 +1.0 1

Line separating classes defined by w0 + w1*x1 + w2*x2 = 0
Line through -0.5,1 and 0,-0.5: so given by 0.5 + 3*x1 + x2 = 0
For points to the right of the line, 0.5 + 3*x1 + x2 > 0
e.g. 0.5 + 3 * 0.3 + -0.5 = 0.9, so Thresh (0.5 + 3 * 0.3 + -0.5) = 1

p13 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Why Delta Rule Does Gradient Descent
For pth item in set, we first calculate the actual output, Op

Op = Σ (xip * wi) NB x0 = 1
Next we calculate the error or delta

δp = Tp – Op

Then, each weight is to be changed by
∆ wi = η δp xip

η (eta) is the learning rate
We need to define errors, and sum of square of errors used

Ep = (Tp – Op)2 Over all training set E = Σ Ep
Note, if there are j outputs Ep = 1/2 Σ (Tpj – Opj)2 where,
for instance, Tpj is the target for output node j, for pattern p

p14 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Proof That It Performs Gradient Descent
To show the Simple Delta Rule performs gradient descent,
we must show that the derivative of the error measure with
respect to each weight is proportional to the weight
change dictated by the Simple Delta Rule. i.e.

rule delta in w to alproportion is whichxk
w

E
iipp

i

p
∆=

∂

∂
δ

i

p

p

p

i

p
w
O

O
E

w
E

∂

∂

∂

∂
=

∂

∂
Using the chain rule

() ppp
p

p k O-T2
O

E
So δ==

∂

∂
But, Ep = (Tp - Op)2

p15 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Continued
∑=
i

ipip x*wOFor linear neurons,

(xip is input i for test pattern p, and x0p = 1 for bias weight)

2p
2

2p2

2

1p1

2

0p0

2

p

2p21p10p0p

x 00
w

xw

w

xw

w

xw

w

O

instancefor,xwxwx wOif

++=
∂

∂
+

∂

∂
+

∂

∂
=

∂

∂

++=

ip
i

p x
w

O
 i, all for So, =
∂

∂

So delta rule is prop
to grad in Error spaceipi

i

p

p

p

i

p xk
w

O

O

E

w

E
Thus δ=

∂

∂

∂

∂
=

∂

∂

p16 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

So and but
∑
∂

∂
=

∂
∂

p i

p

i w

E

w
E set, training wholethe Over

So the net change in wi after one complete training cycle (one
epoch) is proportional to this derivative & hence the Delta
Rule does perform gradient descent in Weight-Error Space.
NB. If (say for computational reasons), weights are updated
after each pattern presentation this will depart from pure
gradient descent.
However if the learning rate, η, is small the departure is
negligible and this version of the delta rule still implements
a very close approximation to true gradient descent.
But what if use sigmoidal activation ?

p17 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Delta Rule and Activation Functions
In fact the delta rule needs slight clarification

delta term = ‘error’ * ‘derivative of activation function’
So if z is weighted sum of inputs ,for ‘linear activation’, O = z

error 1* error So 1(z)
dz
d

dz
dO

==== δ

 week}last quoted {as Output) - (1* Output* error So
)O1(*O)1O(*O)1e1(*O

e*)e1(1*e*-1*)e1(
z d
O d

1-2z-2

z-2z-z-2z-

=
−=−=−+=

+=−+= −−

δ

z-e1
1 O

+
=But if the neuron had sigmoidal activation

p18 RJM 12/09/05 CYMN2 – Neural Networks – 2 – Single Layer Networks
© Dr Richard Mitchell 2005

Summary, Hard Problems and ….
A single layer network can learn some problems, but not XOR
XOR, like PARITY, Minsky & Papert called Hard
Although ‘hard’, can solve using algorithmic methods, or:

For any two class k-input problem which is non linearly
separable, it is possible to solve using n ‘inputs’, where n>k,
if a suitable ‘hyperplane’ exists to make problem separable
Or, instead of one layer, have many layers – but that
requires there to be an extension of the delta rule.

The discovery and publication of such a rule revived ANNs.
For more on linear separability see Part 1 Lab Expt 2

http://www.cyber.reading.ac.uk/current_students/part1labs/p1expt2.pdf

	Single Layer ‘Perceptron’ Networks
	MATLAB for Single Layer Networks
	Notes on MATLAB code
	Now Do For OR Function
	Now Do The XOR Function
	Linear Separable Problems
	XOR Is Not Linearly Separable
	In MATLAB It Works!
	On the Separating Line
	Why Delta Rule Does Gradient Descent
	Proof That It Performs Gradient Descent
	Continued
	So and but
	Summary, Hard Problems and ….

