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Single Layer ‘Perceptron’ Networks
We have looked at what artificial neural networks (ANNs) 

can do, and by looking at their history have seen some of 
the different types of neural network.

We started looking at single layer networks based on 
Perceptron or McCulloch Pitts (MCP) type neurons

We tried applying the simple delta rule to the AND problem
In this lecture we will show some MATLAB functions to 

allow us to finish learning AND, and then do OR
We will then see that we can’t, at this stage, do XOR

This will lead to multi-layer perceptrons.
We will also demonstrate that the Delta Rule does follow 

the steepest gradient down the weight error space
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Reminder Simple Linear Neuron
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MCP cell but no threshold

Output, O = k * ( Σ (xi * wi)) NB xo = 1;    k is often 1
To train, n input values and corresponding known output
In fact have training set, with many such n+1 value sets
Pass each in turn, calc O, if T is target, change weights by

∆ wi = η (T – O) xi = η δ xi the delta rule
Then pass next item from training set, etc.
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MATLAB for Single Layer Networks
As you will be able to use MATLAB in the exam, here is an 

intro to using MATLAB for single layer networks
Two functions are presented, here is the first

function node = sdr_makenode(initweights);
% NODE = SDR_MAKENODE (INITWEIGHTS)
% makes a structure with weights INITWEIGHTS
% an output and a delta field
% Dr Richard Mitchell 25.7.03
node = struct('weights', initweights, 'output', 0, 'delta', 0);

Generates a structure with fields for data in neuron.
Call by, for instance:

>> node = sdr_makenode([0.05, 0.1, -0.2]);
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Next MATLAB Function to Learn
function [node, sumsqerr] = sdr_learn (node, tset, lrate)
% [NODE, SUMSQERR] = SDR_LEARN (NODE, TSET, LRATE)
% node is struct('weights', [w0..wn], 'output', 0, 'delta', 0);
% applies each row in training set & adjusts weights suitably
% Dr Richard Mitchell 25.7.03
sumsqerr = 0;
for r = 1:size(tset, 1),    % for all rows in tset

invec = [1, tset(r, [1:size(tset,2)-1])];           % 1 and input
node.output = dot(invec, node.weights); % compute output
node.delta = tset(r,size(tset,2)) - node.output;% error
sumsqerr = sumsqerr + node.delta^2;      % add to error sum
node.weights = node.weights + lrate * invec * node.delta;

end                                             % update weights
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Notes on MATLAB code
tset = [0 0 0; 0 1 0; 1 0 0; 1 1 1] is 3 column 4 row matrix
size(tset,1) is number of rows; size(tset,2) is number of cols
invec = [1, tset(r, [1:size(tset,2)-1])];     % input vector being

1 (for bias) then columns 1 to 2  in row r of tset
dot(invec, node.weights) is the dot product which is in fact

invec(1)*node.weights(1) + invec(2)*node.weights(2) +
invec(3)*node.weights(3)     ie weighted sum inc bias

MATLAB session:
>>tset=[0 0 0; 0 1 0; 1 0 0; 1 1 1]; % define training set
>>[node, sse]=sdr_learn(node, tset, 0.1);
>> sse

1.1676 % error after one ‘epoch’
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>> for ct=2:20, [node, sse(ct)]=sdr_learn(node, tset, 0.1); end
>> sse % see how error drops
sse =
1.1676    0.8152    0.7096    0.6551    0.6123    0.5741    0.5400
0.5097    0.4831    0.4599    0.4397    0.4221    0.4069    0.3937
0.3822    0.3723    0.3637    0.3562    0.3497    0.3441
>> node.weights % ‘final’ value of weights
ans =

-0.1260    0.4589    0.3990
>> for r=1:size(tset,1), % compute training set

node.output = dot([1, tset(r, [1:2])], node.weights); 
[tset(r,:),node.output], end

ans =    0.0000    0.0000 0.0000 -0.1260
ans =    0.0000    1.0000    0.0000    0.2730
ans =    1.0000     0.000     0.0000    0.3329
ans =    1.0000    1.0000 1.0000 0.7319     % as last week
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Now Do For OR Function
otset = [0 0 0; 0 1 1; 1 0 1; 1 1 1];
Learn 100 times; sse down to 0.3086
node.weights = 0.2769    0.4451    0.4729
If we test the result (show input, target and actual output)

0.0000    0.0000    0.0000    0.2769
0.0000    1.0000    1.0000    0.7498
1.0000    0.0000    1.0000    0.7220
1.0000    1.0000    1.0000    1.1949

If threshold is 0.5 say, have learnt OR function
Note number of epochs needed to learn, for a given learning

rate, depends on initial weights (and hence initial error)
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Now Do The XOR Function
>> etset=[0 0 0; 0 1 1; 1 0 1; 1 1 0];
>> node=sdr_makenode(randn(1,3));
>> for ct=1:100, [node, sse(ct)]=sdr_learn(node, etset, 0.1); 

end
>> sse(100) = 1.2345
If we test the result (show input, target and actual output)

0.0000    0.0000 0.0000 0.5544
0.0000   1.0000     1.0000 0.4997
1.0000    0.0000     1.0000    0.4441
1.0000    1.0000 0.0000    0.3894

Clearly we have failed to learn the XOR problem
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Linear Separable Problems
A two input  MCP cell can classify any function that can be 

separated by a straight dividing line in input space
These are ‘linearly separable problems’.
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XOR Is Not Linearly Separable
A straight line wont separate classes for XOR
If add extra dimension, x1 AND x2, linear plane will separate
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In MATLAB It Works!
>> node = sdr_makenode(randn(1,4));
>> etset2 = [0 0 0 0; 0 1 0 1; 1 0 0 1; 1 1 1 0];   % incl x1 AND x2
>> for ct=1:100, [node, sse(ct)]=sdr_learn(node, etset2, 0.1); end
>> sse(100)
ans = 

0.0476
>> for r=1:size(tset,1), 

node.output = dot([1, etset2(r, [1:3])], node.weights); 
[etset2(r,:),node.output], end

0.0000    0.0000 0.0000 0.0000 0.1578
0.0000    1.0000    0.0000    1.0000    0.9218
1.0000    0.0000    0.0000 1.0000    0.9107
1.0000    1.0000 1.0000 0.0000    0.0346
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On the Separating Line
Consider example with data defined as follows

Feature Space:

Plot x2 v x1
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Line separating classes defined by w0 + w1*x1 + w2*x2 = 0
Line through -0.5,1 and 0,-0.5: so given by 0.5 + 3*x1 + x2 = 0
For points to the right of the line,  0.5 + 3*x1 + x2 > 0
e.g. 0.5 + 3 * 0.3 + -0.5 = 0.9, so Thresh (0.5 + 3 * 0.3 + -0.5) = 1 
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Why Delta Rule Does Gradient Descent
For pth item in set, we first calculate the actual output, Op

Op = Σ (xip * wi) NB x0 = 1
Next we calculate the error or delta

δp = Tp – Op

Then, each weight is to be changed by
∆ wi = η δp xip

η (eta) is the learning rate
We need to define errors, and sum of square of errors used

Ep = (Tp – Op)2 Over all training set E = Σ Ep
Note, if there are j outputs Ep = 1/2 Σ (Tpj – Opj)2 where, 
for instance, Tpj is the target for output node j, for pattern p
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Proof That It Performs Gradient Descent
To show the Simple Delta Rule performs gradient descent, 
we must show that the derivative of the error measure with 
respect to each weight is proportional to the weight 
change dictated by the Simple Delta Rule.  i.e.
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Continued
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So and but
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So the net change in wi after one complete training cycle (one 
epoch) is proportional to this derivative & hence the Delta 
Rule does perform gradient descent in Weight-Error Space.
NB. If (say for computational reasons), weights are updated 
after each pattern presentation this will depart from pure 
gradient descent.
However if the learning rate, η, is small the departure is 
negligible and this version of the delta rule still implements 
a very close approximation to true gradient descent.
But what if use sigmoidal activation ?
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Delta Rule and Activation Functions
In fact the delta rule needs slight clarification

delta term = ‘error’ * ‘derivative of activation function’
So if z is weighted sum of inputs ,for ‘linear activation’, O = z
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Summary, Hard Problems and ….
A single layer network can learn some problems, but not XOR
XOR, like PARITY, Minsky & Papert called Hard
Although ‘hard’, can solve using algorithmic methods, or: 

For any two class k-input problem which is non linearly 
separable, it is possible to solve using n ‘inputs’, where n>k,
if a suitable ‘hyperplane’ exists to make problem separable
Or, instead of one layer, have many layers – but that 
requires there to be an extension of the delta rule.

The discovery and publication of such a rule revived ANNs.
For more on linear separability see Part 1 Lab Expt 2

http://www.cyber.reading.ac.uk/current_students/part1labs/p1expt2.pdf
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