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Acoustic wave scattering by a planar screen

u satisfies Helmholtz equation ∆u + k2u = 0, with wavenumber k > 0.

Scattering: incoming wave u i hits flat screen Γ and generates field u.

Γ bounded subset of Γ∞ := {x ∈ Rn : xn = 0} ∼= Rn−1, n = 2,3

u = −u i
Γ

x1

x2

x3 D := Rn \ Γ

∆u + k2u = 0

u i(x) = eikd·x

u satisfies Sommerfeld radiation condition (SRC) at infinity
(i.e. ∂ru − iku = o

(
r(1−n)/2

)
uniformly as r = |x| → ∞).
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Scattering by Lipschitz and rough screens

Incident field is plane wave u i(x) = eikd·x, |d| = 1. utot = u + u i

Classical problem when Γ is open and Lipschitz.

What happens for arbitrary (rougher than Lipschitz, e.g. fractal) Γ?
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Waves and fractals: applications

Wideband fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Scattering by ice crystals
in atmospheric physics
e.g. C. Westbrook

Fractal apertures in laser optics
e.g. J. Christian
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Scattering by fractal screens

· · ·
Lots of mathematical challenges:
I How to formulate well-posed BVPs?

(What is the right function space setting? How to impose BCs?)
I Do solutions on prefractals converge to solutions on fractals?
I Do BEM solutions on prefractals converge?

Ideas and analysis relevant to BEM for any BIE/ΨDO on fractals or
other rough sets – e.g. fractional Laplacian on rough sets?
Previous BEM computations on sequences of prefractals, e.g. Jones,
Ma, Rokhlin 1994, Panagiotopoulos, Panagouli 1996, but no proof
that these converge to right limit. 5
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Our method is: solve by piecewise constant BEM
on sequence of prefractals: results for Cantor set

Γ1 and Re uh
1
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Outline

I Sobolev spaces on rough sets
I BVPs and BIEs

I open screens

I compact screens

I Abstract convergence framework, using Mosco convergence
I Prefractal to fractal convergence
I Convergence of BEM on sequences of prefractals
I Numerical examples

I Cantor set
I Cantor dust: dependence on Hausdorff dimension
I Fractal apertures
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Sobolev spaces on rough subsets of Rn−1

We need Sobolev spaces on Γ ⊂ Rn−1. For s ∈ R let

Hs(Rn−1)=
{

u ∈ S∗(Rn−1) : ‖u‖2Hs(Rn−1) :=

∫
Rn−1

(1+|ξ|2)s|û(ξ)|2 dξ <∞
}

For Γ ⊂ Rn−1 open and F ⊂ Rn−1 closed define [MCLEAN]

Hs(Γ) := {u|Γ : u ∈ Hs(Rn−1)} restriction

H̃s(Γ) := C∞0 (Γ)
Hs(Rn−1)

closure

Hs
F := {u ∈ Hs(Rn−1) : supp u ⊂ F} support

When Γ is Lipschitz it holds that
I H̃s(Γ) ∼= (H−s(Γ))∗ with equal norms
I s ∈ N⇒ ‖u‖2Hs(Γ)∼

∑
|α|≤s

∫
Γ
|∂αu|2

I H̃s(Γ) = Hs
Γ

(∼= Hs
00(Γ), s ≥ 0)

I H±1/2
∂Γ = {0}

I {Hs(Γ)}s∈R and {H̃s(Γ)}s∈R
are interpolation scales.

For general open Γ

I X

I × LIPSCHITZ

I × IS

I × LUXURY!

I ×
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BVPs for open and compact screens

BVP Dop(Γ) for open screens
Let Γ ⊂ Γ∞ be bounded & open.
Given g ∈ H1/2(Γ)

(for instance, g = −(γ±u i)|Γ),
find u ∈ C2 (D) ∩W 1,loc(D)
satisfying

∆u + k2u = 0 in D,

(γ±u)|Γ = g,
Sommerfeld RC.

γ± = traces : W 1(Rn
±)→ H1/2(Γ∞)

BVP Dco(Γ) for compact scr.
Let Γ ⊂ Γ∞ be compact.
Given g ∈ H̃1/2(Γc)⊥

(e.g., g = −PΓγ
±u i),

find u ∈ C2 (D) ∩W 1,loc(D)
satisfying

∆u + k2u = 0 in D,

PΓγ
±u = g,

Sommerfeld RC.

Orthogonal projection
PΓ : H1/2(Γ∞)→ H̃1/2(Γc)⊥.

If Ω bdd open & H̃−1/2(Ω) = H−1/2
Ω

, then Dop(Ω)&Dco(Ω) are
equivalent.

9
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Well-posedness & boundary integral equations

Theorem [CW, H, M 2019]

If H̃−1/2(Γ) = H−1/2
Γ

then problem
Dop(Γ) has a unique solution u.

Theorem [CW, H 2019]
Problem Dco(Γ)

has a unique solution u.

u satisfies the representation formula u(x) = −SΓφ(x),x ∈ D,
where φ = [∂nu] := ∂+

n u − ∂−n u is the unique solution of BIE SΓφ = −g.

SΓ = single-layer potential,
SΓ = single layer operator: cont. & coercive in H−1/2(Rn−1) norm.

SΓψ(x) :=

∫
Γ

Φ(x,y)ψ(x)ds(y)

SΓ : H̃−1/2(Γ)→ C2(D)∩W 1,loc(Rn)

SΓψ = (γ±SΓψ)|Γ
SΓ : H̃−1/2(Γ)→ H1/2(Γ)

SΓ : H−1/2
Γ → C2(D) ∩W 1,loc(Rn)

SΓ = PΓγ
±SΓ

SΓ : H−1/2
Γ → H̃1/2(Γc)⊥

Φ is the Helmholtz fundamental solution (Φ(x,y) = eik|x−y|

4π|x−y| for n = 3)
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When is H̃−1/2(Γ) = H−1/2
Γ

?
The previous theorems extend classical results for Lipschitz domains
(STEPHAN & WENDLAND 1984, STEPHAN 1987).

Sufficient conditions for H̃−1/2(Γ) = H−1/2
Γ

are that either
I Γ is C0 (e.g. Lipschitz); or
I Γ is C0 except at a set of countably many points P ⊂ ∂Γ such

that P has only finitely many limit points (C-W, H, M 2017); or
I |∂Γ| = 0 and Γ is “thick”, in the sense of Triebel (Caetano, H, M

2019).

(H̃−1/2(Γ) = H−1/2
Γ

⇐⇒ C∞0 (Γ)
dense
⊂ {v ∈ H−1/2(Rn−1) : supp v ⊂ Γ})

Cases with H̃−1/2(Γ) 6= H−1/2
Γ

constructed using characterisation:

If s ≤ 0, int(Γ) is C0 then H̃s(Γ) = Hs
Γ
⇐⇒ H−s

Γ\Γ = {0}.
11
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BIE Variational Formulation
Suppose Ω ⊂ Γ∞ ∼= Rn−1 is bdd, open, C∞ and Γ is open or compact
with Γ ⊂ Ω.

If Ω is the screen, then the (standard) variational formulation is:

Find φ ∈ H := H̃−1/2(Ω) s.t.

a(φ, ψ) = 〈g, ψ〉H∗×H , ∀ψ ∈ H ,

where

g := γ±u i |Ω ∈ H1/2(Ω) ∼= H∗, a(φ, ψ) := 〈SΩφ, ψ〉H∗×H , ∀φ, ψ ∈ H .

N.B. a(·, ·) is continuous and coercive (Ha Duong 1992, C-W, H 2015).

If Γ ⊂ Ω is the screen the variational formulation is:

Find φ ∈ V s.t.
a(φ, ψ) = 〈g, ψ〉H∗×H , ∀ψ ∈ V ,

where

V :=

{
H̃−1/2(Γ), Γ open

H−1/2
Γ , Γ compact

N.B. Well-posed by Lax-Milgram.
12
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Convergence of BEM: abstract framework
a(·, ·) is continuous and coercive on Hilbert space H , closed
subspace V ⊂ H , g ∈ H∗.

Problem. Find φ ∈ V s.t.

a(φ, ψ) = 〈g, ψ〉, ∀ψ ∈ V .

Approximating sequence. Given closed subspace Vj ⊂ H , find φj ∈ Vj
s.t.

a(φj, ψj) = 〈g, ψj〉, ∀ψj ∈ Vj.

Céa’s Lemma. Suppose each Vj ⊂ V . Then

φj → φ, ∀g ∈ H∗ ⇔ Vj
M−−→ V ,

where Vj
M−−→ V means that

inf
ψj∈Vj

‖ψ − ψj‖ → 0, ∀ψ ∈ V .

Indeed,
‖φ− φj‖ ≤ c inf

ψj∈Vj
‖φ− ψj‖.

13
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Prefractal to fractal convergence of BVPs

Let Γj be a sequence of “prefractals” approximating “fractal” Γ.
Denote φj and φ the corresponding variational BIE solutions.

If Mosco convergence Vj
M−−→ V holds,

then φj → φ in H−1/2(Γ∞) and SΓjφj → SΓφ in W 1,loc(Rn),

where Vj =

{
H̃−1/2(Γj) Γj open
H−1/2

Γj
Γj comp.

V =

{
H̃−1/2(Γ) Γ open
H−1/2

Γ Γ comp.

Definition of Mosco convergence: H ⊃Wj
M−−→W ⊂ H if

I ∀v ∈W , j ∈ N,∃vj ∈Wj s.t. vj→v (strong approximability)
I ∀(jm) subseq. of N, vjm ∈Wjm , vjm⇀v, then v ∈W (weak closure)

1 open Γj ⊂ Γj+1 2 compact Γj ⊃ Γj+1 3 non-nested Γj
6⊂
6⊃Γj+1
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The boundary element method (BEM)
Partition open prefractal Γj with pre-convex mesh

Mj = {Tj,1, . . . ,TTj,Nj},

where ”pre-convex” means elements have disjoint convex hulls and
|∂Tj,l | = 0. Let hj := maximum element diameter.
Denote by V h

j ⊂ H−1/2(Γ∞) the space of piecewise constants on Mj,
and let φh

j denote the Galerkin BEM solution on Γj obtained by
solving the variational problem on subspace V h

j .

Key approximation lemma (C-W, H, M, B 2019). For −1 ≤ s ≤ 0 and
0 ≤ t ≤ 1, if v ∈ H t(Γj),

‖ΠL2,V h
j
v − v‖H̃s(Γj)

≤ (hj/π)
t−s ‖v‖H t(Γj).

We want to ensure BEM solution on Γj con-
verges to BIE solution on Γ.

φh
j φj φ

hj → 0 j →∞

?

If V h
j
M−−→ V , (with either V = H̃−1/2(Γ) or V = H−1/2

Γ )
then BEM solution φh

j → φ in H−1/2(Γ∞) and SΓjφ
h
j → u in W 1,loc(Rn)

17
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BEM convergence: open screen

Assume all mesh elements have disjoint convex hulls and |∂Tj,l | = 0.
(Allows multi-component elements!)

How to choose (hj)
∞
j=0 so that V h

j
M−−→ V?

Theorem (CW, H, M 2019)
Let Γ, Γj be bounded open, Γj ⊂ Γj+1, Γ =

⋃∞
j=0 Γj.

Then BEM convergence holds if hj → 0 as j →∞.

Proof: For V h
j
M−−→ V = H̃−1/2(Γ) = C∞0 (Γ) we have to show

(i) strong approximability and (ii) weak closedness.
For (i), let v ∈ C∞0 (Γ). Then ∃j∗(v) s.t. v ∈ C∞0 (Γj) for j ≥ j∗(v) and

‖ΠL2,V h
j
v − v‖H̃−1/2(Γ) ≤ (hj/π)

1/2 ‖v‖L2(Γj).

For (ii), V h
j ⊂ H̃−1/2(Γj) ⊂ H̃−1/2(Γ). �

Extends to some non-nested Γj
6⊂
6⊃Γj+1, e.g.
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BEM convergence: compact screen

When Γ is compact with empty interior and
dimHΓ > 1 this argument fails because
C∞0 (Γ◦)={0} is not dense in V =H−1/2

Γ 6={0}.

To obtain smooth approximation we mollify:
this enlarges the support.
Currently only results for “thickened prefractals”.

Theorem (CW, H, M 2019)
Let Γ compact & Γj open satisfy Γ ⊂ Γ(εj) ⊂ Γj ⊂ Γ(ηj), 0 < εj < ηj → 0.
Then BEM convergence holds if hj = o(εj) as j →∞.
If H t

Γ is dense in H−1/2
Γ for t ∈ (−1/2,0) then hj = o(ε−2t

j ) suffices.

If Γ is d-set (e.g. IFS attractor), hj = o(εµj ), µ > n − 1− d is enough.
Proof of (i) (strong approx.): Let v ∈ H t

Γ and set vj := (ψεj/2 ∗ v), then

‖ΠL2,V h
j
vj − vj‖H̃−1/2(Γ) ≤ (hj/π)

1/2 ‖vj‖L2(Γj) ≤ (hj/π)
1/2

(εj/2)
t ‖v‖H t

Γ
.

19
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j ) suffices.

If Γ is d-set (e.g. IFS attractor), hj = o(εµj ), µ > n − 1− d is enough.
Proof of (i) (strong approx.): Let v ∈ H t

Γ and set vj := (ψεj/2 ∗ v), then

‖ΠL2,V h
j
vj − vj‖H̃−1/2(Γ) ≤ (hj/π)

1/2 ‖vj‖L2(Γj) ≤ (hj/π)
1/2

(εj/2)
t ‖v‖H t

Γ
.
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Attractors of iterated function systems

Let s1, . . . , sm : Rn−1 → Rn−1 be contracting similarities,
s(U ) :=

⋃ν
m=1 sm(U ), for U ⊂ Rn−1,

Γ = s(Γ) the unique attractor (the fractal).

(Open set condition.)
Assume O 6= ∅ is open, convex, s(O) ⊂ O and sm(O) ∩ sm′(O) = ∅.
Define open prefractal sequence: Γ0 := O, Γj+1 := s(Γj)

Let M0 = {T0,1, ...,T0,N0} be any convex mesh on Γ0,
then define a convex mesh on Γj as

Mj :=
{
sm1 ◦ · · · ◦ smj (T0,l) : 1 ≤ mj′ ≤ ν for j′ = 1, ..., j and 1 ≤ l ≤ N0

}
.

Then Γ is a d-set, and BEM convergence holds if Γ ⊂ O.

The prefractals Γj are not the standard ones, but thickened.
Convergence extends to “pre-convex” meshes, each element with
many components.
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Cantor set

Cantor set is attractor of IFS with

s1(t) = αt, s2(t) = αt + 1− α,

for some α ∈ (0,1/2).

α = 1/3 is the classic “middle-third” Cantor-set.

BEM converges if we take

Γ0 := (−ε,1 + ε), Γj+1 := s(Γj) := s1(Γj) ∪ s2(Γj), j = 0,1, ...,

and mesh Γj so that the elements are the 2j components of Γj, each
of length hj = (1 + 2ε)3−j.

In fact BEM converges with only 1.3j elements (and degrees of
freedom) on Γj.
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Cantor set: α = 1/3

Γ1 and Re uh
1
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Cantor set: α = 1/3

Γ2 and Re uh
2
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Cantor set: α = 1/3

Γ3 and Re uh
3
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Cantor set: α = 1/3

Γ4 and Re uh
4
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Cantor set: α = 1/3

Γ5 and Re uh
5
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Cantor set: α = 1/3

Γ6 and Re uh
6
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Cantor set: α = 1/3

Γ7 and Re uh
7
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Cantor dust

Cantor dust is Cartesian product of 2 copies of Cantor set with
parameter 0 < α < 1/2. Prefractals Γ0, . . . ,Γ4:

1 α

I Γ “audible” (φ 6= 0) ⇐⇒ α > 1
4 ⇐⇒ dimH(Γ) > 1.

(φ 6= 0 ⇐⇒ dimH(Γ) > 1 holds for all d-sets!)

I H−1/2
Γj

M−−→ H−1/2
Γ , prefractal solutions φj converge to φ.

I BEM on thickened prefractals converge,
1 DOF / prefractal component is enough.

Actually BEM converges with even less than 1 DOF/component:
mj components/element on Γj for 1 ≤ mj < 4( log 4

log 1/α−1) j.
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Cantor dust: field plots

Prefractal level j = 6, Nj = 46 = 4 096 DOFs, k = 50, α = 1/3.

J L2 norms of far-field,
α ∈ (0.025,0.475),
prefractal levels j = 0, . . . ,6.
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Apertures

Field through bounded apertures in unbounded Neumann screens
computed via Babinet’s principle.

n = 1, Cantor set α = 1/3, prefractal level 12:
field through 0-measure holes!

Koch snowflake-shaped aperture 4
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Open questions

I Impedance (Robin) bc’s: Hewett and Gibbs in progress
I Regularity theory for the fractal solution
I Rates of convergence - something replacing best

approximation?
I Convergence on standard prefractal sequences?
I Approximation on fractals - distributional elements?
I Fast BEM implementation - (pre)conditioning - conditioning is

better, care with inverse estimates!
I Curved screens
I Maxwell case - talk to Carolina/Dave Hewett! Other ΨDOs?

Thank you!
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