BOUNDARY ELEMENT METHODS, OBERWOLFACH, 6 FEBRUARY 2020

Convergence of Boundary Element Methods on Fractals

Simon Chandler-Wilde

http://www.personal.reading.ac.uk/~sms03snc/

Joint work with

D.P. Hewett (UCL), A. Moiola (Pavia), J. Besson (ENSTA)

Acoustic wave scattering by a planar screen

u satisfies Helmholtz equation $\Delta u + k^2 u = 0$, with wavenumber k > 0.

Acoustic wave scattering by a planar screen

u satisfies Helmholtz equation $\Delta u + k^2 u = 0$, with wavenumber k > 0.

Scattering: incoming wave u^i hits flat screen Γ and generates field u.

Acoustic wave scattering by a planar screen

u satisfies Helmholtz equation $\Delta u + k^2 u = 0$, with wavenumber k > 0.

Scattering: incoming wave u^i hits flat screen Γ and generates field u.

 Γ bounded subset of $\Gamma_\infty:=\{{f x}\in {\Bbb R}^n: x_n=0\}\cong {\Bbb R}^{n-1}$, n=2,3

u satisfies Sommerfeld radiation condition (SRC) at infinity (i.e. $\partial_r u - iku = o(r^{(1-n)/2})$ uniformly as $r = |\mathbf{x}| \to \infty$).

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^i(\mathbf{x}) = e^{ik\mathbf{d}\cdot\mathbf{x}}$, $|\mathbf{d}| = 1$.

$$u^{tot} = u + u^i$$

Classical problem when Γ is open and Lipschitz.

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^i(\mathbf{x}) = e^{ik\mathbf{d}\cdot\mathbf{x}}$, $|\mathbf{d}| = 1$.

$$u^{tot} = u + u^i$$

Classical problem when Γ is open and Lipschitz.

What happens for arbitrary (rougher than Lipschitz, e.g. fractal) Γ ?

Waves and fractals: applications

Wideband fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Waves and fractals: applications

Wideband fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Scattering by ice crystals in atmospheric physics e.g. C. Westbrook

Fractal apertures in laser optics e.g. J. Christian

Scattering by fractal screens

Lots of mathematical challenges:

- How to formulate well-posed BVPs?
 (What is the right function space setting? How to impose BCs?)
- ► Do solutions on prefractals converge to solutions on fractals?
- Do BEM solutions on prefractals converge?

Ideas and analysis relevant to BEM for any $BIE/\Psi DO$ on fractals or other rough sets – e.g. fractional Laplacian on rough sets?

Scattering by fractal screens

Lots of mathematical challenges:

- How to formulate well-posed BVPs?
 (What is the right function space setting? How to impose BCs?)
- ► Do solutions on prefractals converge to solutions on fractals?
- Do BEM solutions on prefractals converge?

Ideas and analysis relevant to BEM for any BIE/⊉DO on fractals or other rough sets – e.g. fractional Laplacian on rough sets? Previous BEM computations on sequences of prefractals, e.g. Jones, Ma, Rokhlin 1994, Panagiotopoulos, Panagouli 1996, but no proof that these converge to right limit.

- Sobolev spaces on rough sets
- BVPs and BIEs
 - open screens
 - compact screens

- Abstract convergence framework, using Mosco convergence
- Prefractal to fractal convergence
- Convergence of BEM on sequences of prefractals
- Numerical examples
 - Cantor set
 - Cantor dust: dependence on Hausdorff dimension
 - Fractal apertures

We need Sobolev spaces on $\Gamma \subset \mathbb{R}^{n-1}$. For $\mathbf{s} \in \mathbb{R}$ let

$$H^{s}(\mathbb{R}^{n-1}) = \left\{ u \in \mathcal{S}^{*}(\mathbb{R}^{n-1}) : \|u\|_{H^{s}(\mathbb{R}^{n-1})}^{2} := \int_{\mathbb{R}^{n-1}} (1 + |\boldsymbol{\xi}|^{2})^{s} |\hat{u}(\boldsymbol{\xi})|^{2} \, \mathrm{d}\boldsymbol{\xi} < \infty \right\}$$

We need Sobolev spaces on $\Gamma \subset \mathbb{R}^{n-1}$. For $s \in \mathbb{R}$ let $H^{s}(\mathbb{R}^{n-1}) = \left\{ u \in S^{*}(\mathbb{R}^{n-1}) : \|u\|_{H^{s}(\mathbb{R}^{n-1})}^{2} := \int_{\mathbb{R}^{n-1}} (1+|\xi|^{2})^{s} |\hat{u}(\xi)|^{2} d\xi < \infty \right\}$ For $\Gamma \subset \mathbb{R}^{n-1}$ open and $F \subset \mathbb{R}^{n-1}$ closed define (MCLEAN) $H^{s}(\Gamma) := \{u|_{\Gamma} : u \in H^{s}(\mathbb{R}^{n-1})\}$ restriction $\widetilde{H}^{s}(\Gamma) := \overline{C_{0}^{\infty}(\Gamma)}^{H^{s}(\mathbb{R}^{n-1})}$ closure $H^{s}_{F} := \{u \in H^{s}(\mathbb{R}^{n-1}) : \operatorname{supp} u \subset F\}$ support

We need Sobolev spaces on $\Gamma \subset \mathbb{R}^{n-1}$. For $\mathbf{s} \in \mathbb{R}$ let

$$H^{s}(\mathbb{R}^{n-1}) = \left\{ u \in \mathcal{S}^{*}(\mathbb{R}^{n-1}) : \|u\|_{H^{s}(\mathbb{R}^{n-1})}^{2} := \int_{\mathbb{R}^{n-1}} (1 + |\boldsymbol{\xi}|^{2})^{s} |\hat{u}(\boldsymbol{\xi})|^{2} \, \mathrm{d}\boldsymbol{\xi} < \infty \right\}$$

For $\Gamma \subset \mathbb{R}^{n-1}$ open and $F \subset \mathbb{R}^{n-1}$ closed define

(McLean)

$H^{\mathbf{s}}(\Gamma):=\{u _{\Gamma}:u\in H^{\mathbf{s}}(\mathbb{R}^{n-1})\}$	restriction
$\widetilde{H}^{s}(\Gamma) := \overline{C_{0}^{\infty}(\Gamma)}^{H^{s}(\mathbb{R}^{n-1})}$	closure

$$H^s_F := \{ u \in H^s(\mathbb{R}^{n-1}) : \operatorname{supp} u \subset F \}$$
 support

When Γ is Lipschitz it holds that

•
$$\widetilde{H}^{s}(\Gamma) \cong (H^{-s}(\Gamma))^{*}$$
 with equal norms

$$\blacktriangleright \ s \in \mathbb{N} \Rightarrow \|u\|_{H^{s}(\Gamma)}^{2} \sim \sum_{|\alpha| \leq s} \int_{\Gamma} |\partial^{\alpha} u|^{2}$$

 $\blacktriangleright \quad \widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}} \qquad (\cong H^{s}_{00}(\Gamma), s \ge 0)$

 $\blacktriangleright H_{\partial\Gamma}^{\pm 1/2} = \{0\}$

► $\{H^s(\Gamma)\}_{s\in\mathbb{R}}$ and $\{\widetilde{H}^s(\Gamma)\}_{s\in\mathbb{R}}$ are interpolation scales.

We need Sobolev spaces on $\Gamma \subset \mathbb{R}^{n-1}$. For $\mathbf{s} \in \mathbb{R}$ let $H^{s}(\mathbb{R}^{n-1}) = \left\{ u \in \mathbb{S}^{*}(\mathbb{R}^{n-1}) : \|u\|_{H^{s}(\mathbb{R}^{n-1})}^{2} := \int_{\mathbb{R}^{n-1}} (1 + |\boldsymbol{\xi}|^{2})^{s} |\hat{u}(\boldsymbol{\xi})|^{2} \, \mathrm{d}\boldsymbol{\xi} < \infty \right\}$ For $\Gamma \subset \mathbb{R}^{n-1}$ open and $F \subset \mathbb{R}^{n-1}$ closed define (MCLEAN) $H^{s}(\Gamma) := \{ u |_{\Gamma} : u \in H^{s}(\mathbb{R}^{n-1}) \}$ restriction $\widetilde{H}^{s}(\Gamma) := \overline{C_{0}^{\infty}(\Gamma)}^{H^{s}(\mathbb{R}^{n-1})}$ closure $H_{\mathbf{F}}^{\mathbf{s}} := \{ u \in H^{\mathbf{s}}(\mathbb{R}^{n-1}) : \operatorname{supp} u \subset F \}$ support When Γ is Lipschitz it holds that For general open Γ • $\widetilde{H}^{s}(\Gamma) \cong (H^{-s}(\Gamma))^{*}$ with equal norms ▶ √ ▶ $s \in \mathbb{N} \Rightarrow \|u\|_{H^{s}(\Gamma)}^{2} \sim \sum_{|\alpha| < s} \int_{\Gamma} |\partial^{\alpha} u|^{2}$ ► × **IPSCHITZ** $\blacktriangleright \widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}} \qquad (\cong H^{s}_{00}(\Gamma), s \ge 0)$ ► X IS $\blacktriangleright H_{\rm ap}^{\pm 1/2} = \{0\}$ LUXURY! ► X $\models \{H^{s}(\Gamma)\}_{s \in \mathbb{R}} \text{ and } \{\widetilde{H}^{s}(\Gamma)\}_{s \in \mathbb{R}}$ ► X are interpolation scales.

BVPs for open and compact screens

BVP $D^{op}(\Gamma)$ for open screens

Let $\Gamma \subset \Gamma_{\infty}$ be bounded & open. Given $g \in H^{1/2}(\Gamma)$ (for instance, $g = -(\gamma^{\pm}u^i)|_{\Gamma}$), find $u \in C^2(D) \cap W^{1,\text{loc}}(D)$ satisfying

> $\Delta u + k^2 u = 0$ in D, $(\gamma^{\pm} u)|_{\Gamma} = g$, Sommerfeld RC.

 $\gamma^{\pm} = \operatorname{traces} \colon W^1(\mathbb{R}^n_{\pm}) \to H^{1/2}(\Gamma_{\infty})$

BVPs for open and compact screens

BVP $D^{op}(\Gamma)$ for open screens

Let $\Gamma \subset \Gamma_{\infty}$ be bounded & open. Given $g \in H^{1/2}(\Gamma)$ (for instance, $g = -(\gamma^{\pm}u^i)|_{\Gamma}$), find $u \in C^2(D) \cap W^{1,\text{loc}}(D)$ satisfying

$$egin{array}{lll} \Delta u+k^2u=0& ext{in } D\ (\gamma^{\pm}u)|_{\Gamma}=g, \end{array}$$
 Sommerfeld RC.

BVP $D^{co}(\Gamma)$ for compact scr.

 $\begin{array}{l} \text{Let } \Gamma \subset \Gamma_{\infty} \text{ be compact.} \\ \text{Given } g \in \widetilde{H}^{1/2}(\Gamma^c)^{\perp} \\ \quad (\text{e.g.}, g = -P_{\Gamma}\gamma^{\pm}u^i), \\ \text{find } u \in C^2\left(D\right) \cap W^{1,\text{loc}}(D) \\ \text{satisfying} \end{array}$

$$\Delta u + k^2 u = 0$$
 in D,
 $P_{\Gamma} \gamma^{\pm} u = g,$
Sommerfeld RC.

 $\gamma^{\pm} = \operatorname{traces} \colon W^1(\mathbb{R}^n_{\pm}) \to H^{1/2}(\Gamma_{\infty})$

Orthogonal projection $P_{\Gamma}: H^{1/2}(\Gamma_{\infty}) \to \widetilde{H}^{1/2}(\Gamma^{c})^{\perp}.$

BVPs for open and compact screens

BVP $D^{op}(\Gamma)$ for open screens

Let $\Gamma \subset \Gamma_{\infty}$ be bounded & open. Given $g \in H^{1/2}(\Gamma)$ (for instance, $g = -(\gamma^{\pm}u^i)|_{\Gamma}$), find $u \in C^2(D) \cap W^{1,\text{loc}}(D)$ satisfying

$$egin{array}{lll} \Delta u+k^2u=0 & ext{in } L\ (\gamma^{\pm}u)|_{\Gamma}=g, \end{array}$$
 Sommerfeld RC.

BVP $D^{co}(\Gamma)$ for compact scr.

 $\begin{array}{l} \text{Let } \Gamma \subset \Gamma_{\infty} \text{ be compact.} \\ \text{Given } g \in \widetilde{H}^{1/2}(\Gamma^c)^{\perp} \\ \quad (\text{e.g.}, g = -P_{\Gamma}\gamma^{\pm}u^i), \\ \text{find } u \in C^2(D) \cap W^{1,\text{loc}}(D) \\ \text{satisfying} \end{array}$

$$\Delta u + k^2 u = 0$$
 in D ,
 $P_{\Gamma} \gamma^{\pm} u = g$,
Sommerfeld RC.

 $\gamma^{\pm} = \operatorname{traces} : W^1(\mathbb{R}^n_+) \to H^{1/2}(\Gamma_\infty)$

Orthogonal projection $P_{\Gamma}: H^{1/2}(\Gamma_{\infty}) \to \widetilde{H}^{1/2}(\Gamma^{c})^{\perp}.$

If Ω bdd open & $\widetilde{H}^{-1/2}(\Omega) = H_{\overline{\Omega}}^{-1/2}$, then $\mathsf{D}^{op}(\Omega) \& \mathsf{D}^{co}(\overline{\Omega})$ are equivalent.

Well-posedness & boundary integral equations

Theorem (CW, H, M 2019) If $\widetilde{H}^{-1/2}(\Gamma) = H_{\overline{\Gamma}}^{-1/2}$ then problem $\mathsf{D}^{op}(\Gamma)$ has a unique solution u.

Theorem (CW, H 2019)

Problem $D^{co}(\Gamma)$ has a unique solution u.

Well-posedness & boundary integral equations

Theorem (CW, H, M 2019) If $\widetilde{H}^{-1/2}(\Gamma) = H_{\overline{\Gamma}}^{-1/2}$ then problem $\mathsf{D}^{op}(\Gamma)$ has a unique solution u.

Theorem (CW, H 2019)

Problem $D^{co}(\Gamma)$ has a unique solution u.

 $\begin{array}{ll} \textbf{\textit{u}} \text{ satisfies the representation formula} & \textbf{\textit{u}}(\textbf{\textit{x}}) = -\mathcal{S}_{\Gamma}\phi(\textbf{\textit{x}}), \textbf{\textit{x}} \in D, \\ \text{where } \phi = [\partial_{\textbf{n}}\textbf{\textit{u}}] := \partial_{\textbf{n}}^{+}\textbf{\textit{u}} - \partial_{\textbf{n}}^{-}\textbf{\textit{u}} \text{ is the unique solution of BIE } S_{\Gamma}\phi = -g. \\ \mathcal{S}_{\Gamma} = \text{single-layer potential}, \\ S_{\Gamma} = \text{single-layer operator: cont. & coercive in } H^{-1/2}(\mathbb{R}^{n-1}) \text{ norm.} \\ \mathcal{S}_{\Gamma}\psi(\textbf{\textit{x}}) := \int_{\Gamma} \Phi(\textbf{\textit{x}},\textbf{\textit{y}})\psi(\textbf{\textit{x}})ds(\textbf{\textit{y}}) \\ \mathcal{S}_{\Gamma}: \widetilde{H}^{-1/2}(\Gamma) \to C^{2}(D) \cap W^{1,loc}(\mathbb{R}^{n}) \\ \mathcal{S}_{\Gamma}\psi = (\gamma^{\pm}\mathcal{S}_{\Gamma}\psi)|_{\Gamma} \\ \mathcal{S}_{\Gamma}: \widetilde{H}^{-1/2}(\Gamma) \to H^{1/2}(\Gamma) \end{array} \right| \begin{array}{l} \mathcal{S}_{\Gamma} : H_{\Gamma}^{-1/2} \to C^{2}(D) \cap W^{1,loc}(\mathbb{R}^{n}) \\ \mathcal{S}_{\Gamma} : H_{\Gamma}^{-1/2} \to \widetilde{\mathcal{S}}_{\Gamma} \\ \mathcal{S}_{\Gamma}: H_{\Gamma}^{-1/2} \to \widetilde{\mathcal{H}}^{1/2}(\Gamma^{c})^{\perp} \end{array} \right|$

 Φ is the Helmholtz fundamental solution ($\Phi(\mathbf{x}, \mathbf{y}) = \frac{e^{ik|\mathbf{x}-\mathbf{y}|}}{4\pi |\mathbf{x}-\mathbf{y}|}$ for n = 3)

When is $\widetilde{H}^{-1/2}(\Gamma) = H_{\overline{\Gamma}}^{-1/2}$?

The previous theorems extend classical results for Lipschitz domains (STEPHAN & WENDLAND 1984, STEPHAN 1987).

When is $\widetilde{H}^{-1/2}(\Gamma) = H_{\overline{\Gamma}}^{-1/2}$?

The previous theorems extend classical results for Lipschitz domains (STEPHAN & WENDLAND 1984, STEPHAN 1987).

Sufficient conditions for $\widetilde{H}^{-1/2}(\Gamma) = H_{\overline{\Gamma}}^{-1/2}$ are that either

- \blacktriangleright Γ is C^0 (e.g. Lipschitz); or
- ► Γ is C^0 except at a set of countably many points $P \subset \partial \Gamma$ such that *P* has only finitely many limit points (C-W, H, M 2017); or
- ▶ $|\partial \Gamma| = 0$ and Γ is "thick", in the sense of Triebel (Caetano, H, M 2019).

When is $\widetilde{H}^{-1/2}(\Gamma) = H_{\overline{\Gamma}}^{-1/2}$?

The previous theorems extend classical results for Lipschitz domains (STEPHAN & WENDLAND 1984, STEPHAN 1987).

Sufficient conditions for $\widetilde{H}^{-1/2}(\Gamma) = H_{\overline{\Gamma}}^{-1/2}$ are that either

- \blacktriangleright Γ is C^0 (e.g. Lipschitz); or
- ► Γ is C^0 except at a set of countably many points $P \subset \partial \Gamma$ such that *P* has only finitely many limit points (C-W, H, M 2017); or
- ▶ $|\partial \Gamma| = 0$ and Γ is "thick", in the sense of Triebel (Caetano, H, M 2019).

$$\begin{split} (\widetilde{H}^{-1/2}(\Gamma) &= H_{\overline{\Gamma}}^{-1/2} \iff C_0^{\infty}(\Gamma) \stackrel{\text{dense}}{\subset} \{ v \in H^{-1/2}(\mathbb{R}^{n-1}) : \operatorname{supp} v \subset \overline{\Gamma} \}) \\ \text{Cases with } \widetilde{H}^{-1/2}(\Gamma) \neq H_{\overline{\Gamma}}^{-1/2} \text{ constructed using characterisation:} \\ \text{If } s \leq 0, \operatorname{int}(\overline{\Gamma}) \text{ is } C^0 \text{ then } \qquad \widetilde{H}^s(\Gamma) = H_{\overline{\Gamma}}^s \iff H_{\overline{\Gamma}\setminus\Gamma}^{-s} = \{0\}. \end{split}$$

BIE Variational Formulation

Suppose $\Omega \subset \Gamma_{\infty} \cong \mathbb{R}^{n-1}$ is bdd, open, C^{∞} and Γ is open or compact with $\Gamma \subset \Omega$.

BIE Variational Formulation

Suppose $\Omega \subset \Gamma_{\infty} \cong \mathbb{R}^{n-1}$ is bdd, open, C^{∞} and Γ is open or compact with $\Gamma \subset \Omega$.

If Ω is the screen, then the (standard) variational formulation is:

Find $\phi \in H := \widetilde{H}^{-1/2}(\Omega)$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle_{H^* \times H}, \quad \forall \psi \in H,$$

where

$$g := \gamma^{\pm} u^i|_{\Omega} \in H^{1/2}(\Omega) \cong H^*, \quad a(\phi, \psi) := \langle S_{\Omega} \phi, \psi \rangle_{H^* \times H}, \ \forall \phi, \psi \in H.$$

N.B. $a(\cdot, \cdot)$ is continuous and coercive (Ha Duong 1992, C-W, H 2015).

BIE Variational Formulation

Suppose $\Omega \subset \Gamma_{\infty} \cong \mathbb{R}^{n-1}$ is bdd, open, C^{∞} and Γ is open or compact with $\Gamma \subset \Omega$.

If Ω is the screen, then the (standard) variational formulation is:

Find $\phi \in H := \widetilde{H}^{-1/2}(\Omega)$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle_{H^* \times H}, \quad \forall \psi \in H,$$

where

$$g := \gamma^{\pm} u^i|_{\Omega} \in H^{1/2}(\Omega) \cong H^*, \quad a(\phi, \psi) := \langle S_{\Omega} \phi, \psi \rangle_{H^* \times H}, \ \forall \phi, \psi \in H.$$

N.B. $a(\cdot, \cdot)$ is continuous and coercive (Ha Duong 1992, C-W, H 2015). If $\Gamma \subset \Omega$ is the screen the variational formulation is: Find $\phi \in V$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle_{H^* \times H}, \quad \forall \psi \in V,$$

where

$$V := \left\{ egin{array}{cc} \widetilde{H}^{-1/2}(\Gamma), & \Gamma ext{ open} \ H_{\Gamma}^{-1/2}, & \Gamma ext{ compact} \end{array}
ight.$$

N.B. Well-posed by Lax-Milgram.

 $a(\cdot, \cdot)$ is continuous and coercive on Hilbert space H, closed subspace $V \subset H$, $g \in H^*$.

 $a(\cdot, \cdot)$ is continuous and coercive on Hilbert space H, closed subspace $V \subset H$, $g \in H^*$.

Problem. Find $\phi \in V$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle, \quad \forall \psi \in V.$$

Approximating sequence. Given closed subspace $V_j \subset H$, find $\phi_j \in V_j$ s.t.

$$a(\phi_j,\psi_j)=\langle g,\psi_j\rangle,\quad\forall\psi_j\in V_j.$$

 $a(\cdot, \cdot)$ is continuous and coercive on Hilbert space H, closed subspace $V \subset H$, $g \in H^*$.

Problem. Find $\phi \in V$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle, \quad \forall \psi \in V.$$

Approximating sequence. Given closed subspace $V_j \subset H$, find $\phi_j \in V_j$ s.t.

$$a(\phi_j,\psi_j)=\langle g,\psi_j\rangle,\quad \forall\psi_j\in V_j.$$

Céa's Lemma. Suppose each $V_j \subset V$. Then

$$\phi_j \to \phi, \ \forall g \in H^* \Leftrightarrow V_j \xrightarrow{\mathcal{M}} V,$$

where $V_j \xrightarrow{\mathcal{M}} V$ means that

$$\inf_{\psi_j \in V_j} \|\psi - \psi_j\| o \mathbf{0}, \quad \forall \psi \in V.$$

 $a(\cdot, \cdot)$ is continuous and coercive on Hilbert space H, closed subspace $V \subset H$, $g \in H^*$.

Problem. Find $\phi \in V$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle, \quad \forall \psi \in V.$$

Approximating sequence. Given closed subspace $V_j \subset H$, find $\phi_j \in V_j$ s.t.

$$a(\phi_j,\psi_j)=\langle g,\psi_j\rangle,\quad \forall\psi_j\in V_j.$$

Céa's Lemma. Suppose each $V_j \subset V$. Then

$$\phi_j \to \phi, \ \forall g \in H^* \Leftrightarrow V_j \xrightarrow{\mathcal{M}} V,$$

where $V_j \xrightarrow{\mathcal{M}} V$ means that

$$\inf_{\psi_j \in V_j} \|\psi - \psi_j\| \to 0, \quad \forall \psi \in V.$$

Indeed,

$$\|\phi-\phi_j\|\leq c\inf_{\psi_j\in V_j}\|\phi-\psi_j\|.$$

 $a(\cdot, \cdot)$ is continuous and coercive on Hilbert space H, closed subspace $V \subset H$, $g \in H^*$.

Problem. Find $\phi \in V$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle, \quad \forall \psi \in V.$$

Approximating sequence. Given closed subspace $V_j \subset H$, find $\phi_j \in V_j$ s.t.

$$a(\phi_j,\psi_j)=\langle g,\psi_j\rangle,\quad \forall\psi_j\in V_j.$$
$a(\cdot, \cdot)$ is continuous and coercive on Hilbert space H, closed subspace $V \subset H$, $g \in H^*$.

Problem. Find $\phi \in V$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle, \quad \forall \psi \in V.$$

Approximating sequence. Given closed subspace $V_j \subset H$, find $\phi_j \in V_j$ s.t.

$$a(\phi_j,\psi_j)=\langle g,\psi_j\rangle,\quad \forall\psi_j\in V_j.$$

Lemma (C-W, H, M, B 2019)

$$\phi_j \to \phi, \ \forall g \in H^* \Leftrightarrow V_j \xrightarrow{\mathcal{M}} V,$$

where $V_i \xrightarrow{\mathcal{M}} V$ means that

▶ $\forall v \in V, j \in \mathbb{N}, \exists v_j \in V_j \text{ s.t. } v_j \rightarrow v$ (strong approximability) ▶ $\forall (j_m)$ subseq. of $\mathbb{N}, v_{j_m} \in V_{j_m}, v_{j_m} \rightarrow v$, then $v \in V$ (weak closure) This is Mosco convergence (Mosco 1969).

 $a(\cdot, \cdot)$ is continuous and coercive on Hilbert space H, closed subspace $V \subset H$, $g \in H^*$.

Problem. Find $\phi \in V$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle, \quad \forall \psi \in V.$$

Approximating sequence. Given closed subspace $V_j \subset H$, find $\phi_j \in V_j$ s.t.

$$a(\phi_j,\psi_j)=\langle g,\psi_j\rangle,\quad \forall\psi_j\in V_j.$$

Lemma (C-W, H, M, B 2019)

$$\phi_j \to \phi, \ \forall g \in H^* \Leftrightarrow V_j \xrightarrow{\mathcal{M}} V,$$

where $V_i \xrightarrow{\mathcal{M}} V$ means that

▶ $\forall v \in V, j \in \mathbb{N}, \exists v_j \in V_j \text{ s.t. } v_j \rightarrow v$ (strong approximability) ▶ $\forall (j_m)$ subseq. of $\mathbb{N}, v_{j_m} \in V_{j_m}, v_{j_m} \rightarrow v$, then $v \in V$ (weak closure) This is Mosco convergence (Mosco 1969).

Open Problem. Replacement for $\|\phi - \phi_j\| \le c \inf_{\psi_j \in V_j} \|\phi - \psi_j\|$? (This doesn't hold, for example, if $V_j \supset V$.)

 $a(\cdot, \cdot)$ is continuous and coercive on Hilbert space H, closed subspace $V \subset H$, $g \in H^*$.

Problem. Find $\phi \in V$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle, \quad \forall \psi \in V.$$

Approximating sequence. Given closed subspace $V_j \subset H$, find $\phi_j \in V_j$ s.t.

$$a(\phi_j,\psi_j) = \langle g,\psi_j \rangle, \quad \forall \psi_j \in V_j.$$

Lemma (C-W, H, M, B 2019)

$$\phi_j \to \phi, \ \forall g \in H^* \Leftrightarrow V_j \xrightarrow{\mathcal{M}} V,$$

where $V_i \xrightarrow{\mathcal{M}} V$ means that

- ► $\forall v \in V, j \in \mathbb{N}, \exists v_j \in V_j \text{ s.t. } v_j \rightarrow v$ (strong approximability)
- ▶ $\forall (j_m)$ subseq. of \mathbb{N} , $v_{j_m} \in V_{j_m}$, $v_{j_m} ext{-} v$, then $v \in V$ (weak closure)

 $a(\cdot, \cdot)$ is continuous and coercive on Hilbert space H, closed subspace $V \subset H$, $g \in H^*$.

Problem. Find $\phi \in V$ s.t.

$$a(\phi,\psi) = \langle g,\psi \rangle, \quad \forall \psi \in V.$$

Approximating sequence. Given closed subspace $V_j \subset H$, find $\phi_j \in V_j$ s.t.

$$a(\phi_j,\psi_j)=\langle g,\psi_j\rangle,\quad \forall\psi_j\in V_j.$$

Lemma (C-W, H, M, B 2019)

$$\phi_j \to \phi, \ \forall g \in H^* \Leftrightarrow V_j \xrightarrow{\mathcal{M}} V,$$

where $V_i \xrightarrow{\mathcal{M}} V$ means that

- ► $\forall v \in V, j \in \mathbb{N}, \exists v_j \in V_j \text{ s.t. } v_j \rightarrow v$ (strong approximability)
- ▶ $\forall (j_m)$ subseq. of \mathbb{N} , $v_{j_m} \in V_{j_m}$, $v_{j_m} arrow v$, then $v \in V$ (weak closure)

Elementary examples of Mosco convergence. $V_j \xrightarrow{\mathcal{M}} V$ if either

$$V_1 \subset V_2 \subset ... \text{ and } V = \bigcup_{j=1}^{\infty} V_j \text{ or } V_1 \supset V_2 \supset ... \text{ and } V = \bigcap_{j=1}^{\infty} V_j$$

Prefractal to fractal convergence of BVPs

Let Γ_j be a sequence of "prefractals" approximating "fractal" Γ . Denote ϕ_j and ϕ the corresponding variational BIE solutions.

Prefractal to fractal convergence of BVPs

Let Γ_i be a sequence of "prefractals" approximating "fractal" Γ . Denote ϕ_i and ϕ the corresponding variational BIE solutions.

If Mosco convergence $V_i \xrightarrow{\mathcal{M}} V$ holds, then $\phi_i \to \phi$ in $H^{-1/2}(\Gamma_{\infty})$ and $\mathcal{S}_{\Gamma_i} \phi_i \to \mathcal{S}_{\Gamma} \phi$ in $W^{1,\text{loc}}(\mathbb{R}^n)$,

where
$$V_j = \begin{cases} \widetilde{H}^{-1/2}(\Gamma_j) & \Gamma_j \text{ open} \\ H_{\Gamma_j}^{-1/2} & \Gamma_j \text{ comp.} \end{cases}$$
 $V = \begin{cases} \widetilde{H}^{-1/2}(\Gamma) & \Gamma \text{ open} \\ H_{\Gamma}^{-1/2} & \Gamma \text{ comp.} \end{cases}$

Definition of Mosco convergence:

 $\blacktriangleright \forall v \in W, j \in \mathbb{N}, \exists v_i \in W_i \text{ s.t. } v_i \rightarrow v$

 $H \supset W_i \xrightarrow{\mathcal{M}} W \subset H$ if

(strong approximability)

▶ $\forall (j_m)$ subseq. of \mathbb{N} , $v_{j_m} \in W_{j_m}$, $v_{j_m} \rightarrow v$, then $v \in W$ (weak closure)

Prefractal to fractal convergence of BVPs

Let Γ_j be a sequence of "prefractals" approximating "fractal" Γ . Denote ϕ_j and ϕ the corresponding variational BIE solutions.

 $\begin{array}{l} \text{If Mosco convergence } V_j \xrightarrow{\mathcal{M}} V \text{ holds,} \\ \text{ then } \phi_j \to \phi \text{ in } H^{-1/2}(\Gamma_\infty) \text{ and } \mathcal{S}_{\Gamma_j} \phi_j \to \mathcal{S}_{\Gamma} \phi \text{ in } W^{1,\text{loc}}(\mathbb{R}^n), \end{array}$

where
$$V_j = \begin{cases} \widetilde{H}^{-1/2}(\Gamma_j) & \Gamma_j \text{ open} \\ H_{\Gamma_j}^{-1/2} & \Gamma_j \text{ comp.} \end{cases}$$
 $V = \begin{cases} \widetilde{H}^{-1/2}(\Gamma) & \Gamma \text{ open} \\ H_{\Gamma}^{-1/2} & \Gamma \text{ comp.} \end{cases}$

Definition of Mosco convergence:

 $\blacktriangleright \quad \forall v \in W, j \in \mathbb{N}, \exists v_j \in W_j \text{ s.t. } v_j \rightarrow v$

 $H \supset W_j \xrightarrow{\mathcal{M}} W \subset H$ if

- $\exists v_j \in W_j \text{ s.t. } v_j
 ightarrow v$ (strong approximability)
- ▶ $\forall (j_m)$ subseq. of \mathbb{N} , $v_{j_m} \in W_{j_m}$, $v_{j_m} ext{-} v$, then $v \in W$ (weak closure)

1 open $\Gamma_j \subset \Gamma_{j+1}$ 2 compact $\Gamma_j \supset \Gamma_{j+1}$ 3 non-nested $\Gamma_j \swarrow^{\mathcal{G}} \Gamma_{j+1}$ **A A A A A A A B + * ***

Partition open prefractal Γ_i with pre-convex mesh

$$\mathbf{M}_{\mathbf{j}} = \{T_{\mathbf{j},1},\ldots,T_{T_{\mathbf{j}},N_{\mathbf{j}}}\},\$$

where "pre-convex" means elements have disjoint convex hulls and $|\partial T_{j,l}| = 0$.

Partition open prefractal Γ_j with pre-convex mesh

$$\mathbf{M}_{\mathbf{j}} = \{T_{\mathbf{j},1},\ldots,T_{T_{\mathbf{j}},N_{\mathbf{j}}}\},\$$

where "pre-convex" means elements have disjoint convex hulls and $|\partial T_{j,l}| = 0$. Let $h_j :=$ maximum element diameter.

Partition open prefractal Γ_j with pre-convex mesh

$$\mathbf{M}_{\mathbf{j}} = \{T_{\mathbf{j},1},\ldots,T_{T_{\mathbf{j}},N_{\mathbf{j}}}\},\$$

where "pre-convex" means elements have disjoint convex hulls and $|\partial T_{j,l}| = 0$. Let $h_j :=$ maximum element diameter.

Denote by $V_j^h \subset H^{-1/2}(\Gamma_\infty)$ the space of piecewise constants on M_j , and let ϕ_j^h denote the Galerkin BEM solution on Γ_j obtained by solving the variational problem on subspace V_j^h .

Partition open prefractal Γ_j with pre-convex mesh

$$\mathbf{M}_{\mathbf{j}} = \{T_{\mathbf{j},1},\ldots,T_{T_{\mathbf{j}},N_{\mathbf{j}}}\},\$$

where "pre-convex" means elements have disjoint convex hulls and $|\partial T_{j,l}| = 0$. Let $h_j :=$ maximum element diameter.

Denote by $V_j^h \subset H^{-1/2}(\Gamma_\infty)$ the space of piecewise constants on M_j , and let ϕ_j^h denote the Galerkin BEM solution on Γ_j obtained by solving the variational problem on subspace V_j^h .

Key approximation lemma (C-W, H, M, B 2019). For $-1 \le s \le 0$ and $0 \le t \le 1$, if $v \in H^t(\Gamma_j)$,

$$\|\Pi_{L^2,V_j^h}\boldsymbol{v}-\boldsymbol{v}\|_{\tilde{H}^s(\Gamma_j)} \le \left(h_j/\pi\right)^{t-s}\|\boldsymbol{v}\|_{H^t(\Gamma_j)}.$$

Partition open prefractal Γ_j with pre-convex mesh

$$\mathbf{M}_{\mathbf{j}} = \{T_{\mathbf{j},1},\ldots,T_{T_{\mathbf{j}},N_{\mathbf{j}}}\},\$$

where "pre-convex" means elements have disjoint convex hulls and $|\partial T_{j,l}| = 0$. Let $h_j :=$ maximum element diameter.

Denote by $V_j^h \subset H^{-1/2}(\Gamma_\infty)$ the space of piecewise constants on M_j , and let ϕ_j^h denote the Galerkin BEM solution on Γ_j obtained by solving the variational problem on subspace V_j^h .

Key approximation lemma (C-W, H, M, B 2019). For $-1 \le s \le 0$ and $0 \le t \le 1$, if $v \in H^t(\Gamma_j)$,

$$\|\Pi_{L^2,V_j^h}\boldsymbol{v}-\boldsymbol{v}\|_{\tilde{H}^s(\Gamma_j)} \leq \left(h_j/\pi\right)^{t-s}\|\boldsymbol{v}\|_{H^t(\Gamma_j)}.$$

We want to ensure BEM solution on Γ_j converges to BIE solution on Γ .

Partition open prefractal Γ_j with pre-convex mesh

$$\mathbf{M}_{\mathbf{j}} = \{T_{\mathbf{j},1},\ldots,T_{T_{\mathbf{j}},N_{\mathbf{j}}}\},\$$

where "pre-convex" means elements have disjoint convex hulls and $|\partial T_{j,l}| = 0$. Let $h_j :=$ maximum element diameter.

Denote by $V_j^h \subset H^{-1/2}(\Gamma_\infty)$ the space of piecewise constants on M_j , and let ϕ_j^h denote the Galerkin BEM solution on Γ_j obtained by solving the variational problem on subspace V_j^h .

Key approximation lemma (C-W, H, M, B 2019). For $-1 \le s \le 0$ and $0 \le t \le 1$, if $v \in H^t(\Gamma_j)$,

$$\|\Pi_{L^2,V_j^h}\boldsymbol{v}-\boldsymbol{v}\|_{\tilde{H}^s(\Gamma_j)} \leq \left(h_j/\pi\right)^{t-s}\|\boldsymbol{v}\|_{H^t(\Gamma_j)}.$$

We want to ensure BEM solution on Γ_j converges to BIE solution on Γ .

If $V_j^h \xrightarrow{\mathcal{M}} V$, (with either $V = \widetilde{H}^{-1/2}(\Gamma)$ or $V = H_{\Gamma}^{-1/2}$) then BEM solution $\phi_j^h \to \phi$ in $H^{-1/2}(\Gamma_{\infty})$ and $\mathcal{S}_{\Gamma_j}\phi_j^h \to u$ in $W^{1,\text{loc}}(\mathbb{R}^n)$

BEM convergence: open screen

Assume all mesh elements have disjoint convex hulls and $|\partial T_{j,l}| = 0$. (Allows multi-component elements!)

How to choose $(h_j)_{j=0}^{\infty}$ so that $V_j^h \xrightarrow{\mathcal{M}} V$?

BEM convergence: open screen

Assume all mesh elements have disjoint convex hulls and $|\partial T_{i,l}| = 0$. (Allows multi-component elements!)

How to choose $(h_j)_{j=0}^{\infty}$ so that $V_j^h \xrightarrow{\mathcal{M}} V$?

Theorem (CW, H, M 2019)

Let Γ , Γ_i be bounded open, $\Gamma_i \subset \Gamma_{i+1}$, $\Gamma = \bigcup_{i=0}^{\infty} \Gamma_i$. Then BEM convergence holds if $h_i \rightarrow 0$ as $j \rightarrow \infty$.

BEM convergence: open screen

Assume all mesh elements have disjoint convex hulls and $|\partial T_{i,l}| = 0$. (Allows multi-component elements!)

How to choose $(h_j)_{j=0}^{\infty}$ so that $V_j^h \xrightarrow{\mathcal{M}} V$?

Theorem (CW, H, M 2019)

Let Γ , Γ_i be bounded open, $\Gamma_i \subset \Gamma_{i+1}$, $\Gamma = \bigcup_{i=0}^{\infty} \Gamma_i$. Then BEM convergence holds if $h_i \rightarrow 0$ as $j \rightarrow \infty$.

For $V_i^h \xrightarrow{\mathcal{M}} V = \widetilde{H}^{-1/2}(\Gamma) = \overline{C_0^{\infty}(\Gamma)}$ we have to show Proof: (i) strong approximability and (ii) weak closedness. For (i), let $v \in C_0^{\infty}(\Gamma)$. Then $\exists j_*(v)$ s.t. $v \in C_0^{\infty}(\Gamma_i)$ for $j \geq j_*(v)$ and

$$\|\Pi_{L^2,V_j^h} v - v\|_{\widetilde{H}^{-1/2}(\Gamma)} \le (h_j/\pi)^{1/2} \|v\|_{L^2(\Gamma_j)}.$$

For (ii), $V_i^h \subset \widetilde{H}^{-1/2}(\Gamma_j) \subset \widetilde{H}^{-1/2}(\Gamma)$. Extends to some non-nested $\Gamma_i \not\subset \Gamma_{i+1}$, e.g.

When Γ is compact with empty interior and $\dim_{\mathrm{H}}\Gamma > 1$ this argument fails because $C_0^{\infty}(\Gamma^{\circ}) = \{0\}$ is not dense in $V = H_{\Gamma}^{-1/2} \neq \{0\}$.

When Γ is compact with empty interior and $\dim_{\mathrm{H}}\Gamma > 1$ this argument fails because $C_0^{\infty}(\Gamma^{\circ}) = \{0\}$ is not dense in $V = H_{\Gamma}^{-1/2} \neq \{0\}$.

To obtain smooth approximation we mollify: this enlarges the support. Currently only results for "thickened prefractals".

When Γ is compact with empty interior and $\dim_{\mathrm{H}}\Gamma > 1$ this argument fails because $C_0^{\infty}(\Gamma^{\circ}) = \{0\}$ is not dense in $V = H_{\Gamma}^{-1/2} \neq \{0\}$.

To obtain smooth approximation we mollify: this enlarges the support. Currently only results for "thickened prefractals".

Theorem (CW, H, M 2019)

Let Γ compact & Γ_j open satisfy $\Gamma \subset \Gamma(\epsilon_j) \subset \Gamma_j \subset \Gamma(\eta_j)$, $0 < \epsilon_j < \eta_j \rightarrow 0$. Then BEM convergence holds if $h_j = o(\epsilon_j)$ as $j \rightarrow \infty$. If H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$ for $t \in (-1/2, 0)$ then $h_j = o(\epsilon_j^{-2t})$ suffices.

If Γ is *d*-set (e.g. IFS attractor), $h_j = o(\epsilon_j^{\mu})$, $\mu > n - 1 - d$ is enough.

When Γ is compact with empty interior and $\dim_{\mathrm{H}}\Gamma > 1$ this argument fails because $C_0^{\infty}(\Gamma^{\circ}) = \{0\}$ is not dense in $V = H_{\Gamma}^{-1/2} \neq \{0\}$.

To obtain smooth approximation we **mollify**: this enlarges the support. Currently only results for "thickened prefractals".

Theorem (CW, H, M 2019)

Let Γ compact & Γ_i open satisfy $\Gamma \subset \Gamma(\epsilon_i) \subset \Gamma_i \subset \Gamma(\eta_i)$, $0 < \epsilon_i < \eta_i \to 0$. Then BEM convergence holds if $h_i = o(\epsilon_i)$ as $j \to \infty$. If H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$ for $t \in (-1/2, 0)$ then $h_i = o(\epsilon_i^{-2t})$ suffices.

If Γ is *d*-set (e.g. IFS attractor), $h_j = o(\epsilon_i^{\mu})$, $\mu > n - 1 - d$ is enough. Proof of (i) (strong approx.): Let $v \in H^t_{\Gamma}$ and set $v_j := (\psi_{\varepsilon_i/2} * v)$, then

$$\|\Pi_{L^2, V_j^h} v_j - v_j\|_{\widetilde{H}^{-1/2}(\Gamma)} \le (h_j/\pi)^{1/2} \|v_j\|_{L^2(\Gamma_j)} \le (h_j/\pi)^{1/2} (\varepsilon_j/2)^t \|v\|_{H_{\Gamma}^t}.$$

Attractors of iterated function systems

Let $s_1, \ldots, s_m : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be contracting similarities,	
$\mathbf{s}(U):=igcup_{m=1}^{ u}\mathbf{s}_m(U)$, for $U\subset \mathbb{R}^{n-1}$,	
$\Gamma=m{s}(\Gamma)$ the unique attractor (the fractal).	

		- 22		 		
1.00	18 A.		10 A 1	 10.00	1.000	120
	۰.			 		•
				•••		•
100	A	1.2.2		 12.2	1.00	12.
	•			 		
	:		::	::	::	:
	÷.,			 		
				 122 H	- 22 I	121
1000	_					

(Open set condition.)

Assume $O \neq \emptyset$ is open, convex, $s(O) \subset O$ and $s_m(O) \cap s_{m'}(O) = \emptyset$. Define open prefractal sequence: $\Gamma_0 := O$, $\Gamma_{i+1} := s(\Gamma_i)$

Attractors of iterated function systems

Let $s_1, \ldots, s_m : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be contracting similarities, $s(U) := \bigcup_{m=1}^{\nu} s_m(U)$, for $U \subset \mathbb{R}^{n-1}$, $\Gamma = s(\Gamma)$ the unique attractor (the fractal).

-	÷.,		: ::	:: :
	:		: ::	
- 22	÷.,		: ::	50 B.
\sim	:	:::::	: ::	:: :
-	÷.,		1.11	

(Open set condition.)

Assume $O \neq \emptyset$ is open, convex, $s(O) \subset O$ and $s_m(O) \cap s_{m'}(O) = \emptyset$. Define open prefractal sequence: $\Gamma_0 := O$, $\Gamma_{j+1} := s(\Gamma_j)$

Let $M_0 = \{T_{0,1}, ..., T_{0,N_0}\}$ be any convex mesh on Γ_0 , then define a convex mesh on Γ_i as

 $\textit{M}_{j}:=\left\{\textit{s}_{m_{1}}\circ\cdots\circ\textit{s}_{m_{j}}\left(T_{0,l}\right):1\leq m_{j'}\leq\nu\text{ for }j'=1,...,j\text{ and }1\leq l\leq N_{0}\right\}.$

Then Γ is a *d*-set, and BEM convergence holds if $\Gamma \subset O$.

The prefractals Γ_j are not the standard ones, but thickened. Convergence extends to "pre-convex" meshes, each element with many components.

Cantor set

Cantor set is attractor of IFS with

$$s_1(t) = \alpha t, \quad s_2(t) = \alpha t + 1 - \alpha,$$

for some $\alpha \in (0, 1/2)$.

 $\alpha = 1/3$ is the classic "middle-third" Cantor-set.

Cantor set is attractor of IFS with

$$s_1(t) = \alpha t, \quad s_2(t) = \alpha t + 1 - \alpha,$$

for some $\alpha \in (0, 1/2)$.

 $\alpha = 1/3$ is the classic "middle-third" Cantor-set.

BEM converges if we take

$$\Gamma_0 := (-\epsilon, 1+\epsilon), \quad \Gamma_{j+1} := \mathbf{s}(\Gamma_j) := \mathbf{s}_1(\Gamma_j) \cup \mathbf{s}_2(\Gamma_j), \quad j = 0, 1, ...,$$

and mesh Γ_j so that the elements are the 2^j components of Γ_j , each of length $h_j = (1+2\epsilon)3^{-j}$.

Cantor set is attractor of IFS with

$$s_1(t) = \alpha t, \quad s_2(t) = \alpha t + 1 - \alpha,$$

for some $\alpha \in (0, 1/2)$.

 $\alpha = 1/3$ is the classic "middle-third" Cantor-set.

BEM converges if we take

 $\Gamma_0 := (-\epsilon, 1+\epsilon), \quad \Gamma_{j+1} := \mathbf{s}(\Gamma_j) := \mathbf{s}_1(\Gamma_j) \cup \mathbf{s}_2(\Gamma_j), \quad j = 0, 1, ...,$

and mesh Γ_j so that the elements are the 2^j components of Γ_j , each of length $h_j = (1+2\epsilon)3^{-j}$.

In fact BEM converges with only 1.3^{j} elements (and degrees of freedom) on $\Gamma_{j}.$

Cantor dust

Cantor dust is Cartesian product of 2 copies of Cantor set with parameter $0 < \alpha < 1/2$. Prefractals $\Gamma_0, \ldots, \Gamma_4$:

Cantor dust

Cantor dust is Cartesian product of 2 copies of Cantor set with parameter $0 < \alpha < 1/2$. Prefractals $\Gamma_0, \ldots, \Gamma_4$:

 $\begin{tabular}{ll} \label{eq:product} \begin{tabular}{ll} \beg$

• $H_{\Gamma_i}^{-1/2} \xrightarrow{\mathcal{M}} H_{\Gamma}^{-1/2}$, prefractal solutions ϕ_j converge to ϕ .

 BEM on thickened prefractals converge, 1 DOF / prefractal component is enough.

Actually BEM converges with even less than 1 DOF/component: m_j components/element on Γ_j for $1 \le m_j < 4^{(\frac{\log 4}{\log 1/\alpha} - 1)j}$.

Cantor dust: field plots

Prefractal level j = 6, $N_j = 4^6 = 4\,096$ DOFs, k = 50, $\alpha = 1/3$.

Cantor dust: field plots

Prefractal level j = 6, $N_j = 4^6 = 4\,096\,$ DOFs, k = 50, $\alpha = 1/3$.

← L^2 norms of far-field, $\alpha \in (0.025, 0.475)$, prefractal levels j = 0, ..., 6.
Field through bounded apertures in unbounded Neumann screens computed via Babinet's principle.

Real part total field Magnitude total field

n = 1, Cantor set $\alpha = 1/3$, prefractal level 12: field through 0-measure holes! Field through bounded apertures in unbounded Neumann screens computed via Babinet's principle.

n = 1, Cantor set $\alpha = 1/3$, prefractal level 12: field through 0-measure holes!

Koch snowflake-shaped aperture \triangle

Bibliography

- ▶ SNCW, Scattering by arbitrary planar screens, MFO Rep. 3/2013
- SNCW, DPH, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens, IEOT, 2015
- SNCW, DPH, AM, Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples, Mathematika, 2015
- DPH, AM, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, An. and Appl., 2017
- ► SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of ℝⁿ with application to BIEs on fractal screens, IEOT, 2017
- DPH, AM, A note on properties of the restriction operator on Sobolev spaces, JAA 2017
- SNCW, DPH, Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 2018
- A. Caetano, DPH, AM, Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets arXiv 2019
- SNCW, DPH, AM, JB, scattering by fractal screens
 Boundary element methods for acoustic arXiv 2019

Open questions

- Impedance (Robin) bc's: Hewett and Gibbs in progress
- Regularity theory for the fractal solution
- Rates of convergence something replacing best approximation?
- ► Convergence on standard prefractal sequences?
- Approximation on fractals distributional elements?
- Fast BEM implementation (pre)conditioning conditioning is better, care with inverse estimates!
- Curved screens
- ▶ Maxwell case talk to Carolina/Dave Hewett! Other ¥DOs?

Open questions

- Impedance (Robin) bc's: Hewett and Gibbs in progress
- Regularity theory for the fractal solution
- Rates of convergence something replacing best approximation?
- Convergence on standard prefractal sequences?
- Approximation on fractals distributional elements?
- Fast BEM implementation (pre)conditioning conditioning is better, care with inverse estimates!
- Curved screens
- ▶ Maxwell case talk to Carolina/Dave Hewett! Other ⊉DOs?

