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The wave equation and Helmholtz equation

In acoustics the increase in air pressure at x at time t, U(x, t), satisfies

∆U =
1

c2
∂2U

∂t2

(
∆ =

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
.

If time-dependence is time harmonic, i.e.,

U(x, t) = A(x) cos(φ(x)− ωt),

for some ω = 2πf > 0, with f = frequency, then

U(x, t) = <
(
u(x)e−iωt

)
where u(x) = A(x) exp(iφ(x)) satisfies the Helmholtz equation

∆u+ k2u = 0,

with k = ω/c the wavenumber. E.g. if u(x) = exp(ikx · d), for some unit
vector d, then

U(x, t) = <
(
u(x)e−iωt

)
= cos(kx · d− ωt)

is a plane wave travelling in direction d with wavelength

λ = 2π/k = c/f.
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Challenges of ∆u + k2u = 0 when k is large

1. Solution is oscillatory and multiscale: one scale is the wavelength λ = 2π/k.

<(u(x)) = U(x, 0) for 2-d scat-
tering of incident plane wave
uinc(x) = exp(ikd · x).

2. In the singular limit k →∞ the wave equation transitions to a
particle/ray/billiards model

source

x

source

x
ground

u(x) ≈
∑
j

uj(x)

where sum over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by

energy conservation

but with multiplication of uj(x) by coeffi-
cients accounting for reflection and diffrac-
tion events.



Challenges of ∆u + k2u = 0 when k is large

1. Solution is oscillatory and multiscale: one scale is the wavelength λ = 2π/k.

<(u(x)) = U(x, 0) for 2-d scat-
tering of incident plane wave
uinc(x) = exp(ikd · x).

2. In the singular limit k →∞ the wave equation transitions to a
particle/ray/billiards model

source

x

source

x
ground

u(x) ≈
∑
j

uj(x)

where sum over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by

energy conservation

but with multiplication of uj(x) by coeffi-
cients accounting for reflection and diffrac-
tion events.



Challenges of ∆u + k2u = 0 when k is large

1. Solution is oscillatory and multiscale: one scale is the wavelength λ = 2π/k.

<(u(x)) = U(x, 0) for 2-d scat-
tering of incident plane wave
uinc(x) = exp(ikd · x).

2. In the singular limit k →∞ the wave equation transitions to a
particle/ray/billiards model

source

x

source

x
groundwall

u(x) ≈
∑
j

uj(x)

where sum over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by

energy conservation

but with multiplication of uj(x) by coeffi-
cients accounting for reflection and diffrac-
tion events.



Challenges of ∆u + k2u = 0 when k is large

1. Solution is oscillatory and multiscale: one scale is the wavelength λ = 2π/k.

<(u(x)) = U(x, 0) for 2-d scat-
tering of incident plane wave
uinc(x) = exp(ikd · x).

2. In the singular limit k →∞ the wave equation transitions to a
particle/ray/billiards model

source

x

source

x
groundwall

u(x) ≈
∑
j

uj(x)

where sum over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by

energy conservation

but with multiplication of uj(x) by coeffi-
cients accounting for reflection and diffrac-
tion events.



Challenges of ∆u + k2u = 0 when k is large

1. Solution is oscillatory and multiscale: one scale is the wavelength λ = 2π/k.

<(u(x)) = U(x, 0) for 2-d scat-
tering of incident plane wave
uinc(x) = exp(ikd · x).

2. In the singular limit k →∞ the wave equation transitions to a
particle/ray/billiards model

source

x

source

x
groundwall

u(x) ≈
∑
j

uj(x)

where sum over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by

energy conservation

but with multiplication of uj(x) by coeffi-
cients accounting for reflection and diffrac-
tion events.



Challenges of ∆u + k2u = 0 when k is large

1. Solution is oscillatory and multiscale: one scale is the wavelength λ = 2π/k.

<(u(x)) = U(x, 0) for 2-d scat-
tering of incident plane wave
uinc(x) = exp(ikd · x).

2. In the singular limit k →∞ the wave equation transitions to a
particle/ray/billiards model

source

x

source

x
groundwall

The rigorous justification of such ap-
proximations is the concern of semi-
classical analysis.
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What is this talk about?

u = 0

∆u + k2u = f (source, compactly supported)

u satisfies Sommerfeld rad. cond. (SRC)

This talk is about wavenumber-explicit bounds, i.e. bounds explicit in k, for
wave scattering obstacles: focus on sound soft (Dirichlet) case and large k.

It’s about cases where the obstacle is nontrapping, e.g. star-shaped (like above
example).

But particularly about cases where the obstacle is trapping supporting a trapped
ray/billiard trajectory.

Including cases where the obstacle has more than one component, in other words
multiple scattering.
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Overview of Talk

1 Helmholtz equation: what is it and why interesting

2 What is this talk about?

3 Resolvent estimates
What are they?
The three known estimates and their geometries
A new estimate for parabolic trapping
The Morawetz/Rellich identity method of proof

4 Implications for Boundary Integral Equations

5 Implications for hp-BEM

6 Conclusions



What is a resolvent estimate?

R

ΩR

u = 0

∆u + k2u = f
f supported in ΩR

u satisfies SRC

It is the wavenumber-explicit bound that, for R > 0, and some specified c(k),

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . c(k)‖f‖L2(ΩR), for k ≥ k0 > 0.

A . B means A ≤ CB, where C > 0 independent of k and f , but depends on R.

We will see that resolvent estimates give us: bounds on DtN maps, on inverses of
boundary integral operators, on errors in FEM, BEM, ...
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The known estimates and their geometries

ΩR

∆u + k2u = f
f supported in ΩR

Star-shaped obstacle (C∞: Morawetz 1975; C0: C-W & Monk 2008)

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . ‖f‖L2(ΩR), i.e. c(k) = 1

Best possible bound: achieved by u(x) = χ(x) exp(ikx1), if χ ∈ C∞0 (ΩR).
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The known estimates and their geometries

ΩR

Nontrapping obstacle (C∞: Morawetz, Ralston, Strauss 1977, Vainberg 1975,

Melrose & Sjöstrand 1982; polygon: Baskin & Wunsch 2013)

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . ‖f‖L2(ΩR), i.e. c(k) = 1

Nontrapping: there exists T > 0 such that all the billiard trajectories starting in
ΩR at time zero and travelling at unit speed leave ΩR by time T .



The known estimates and their geometries

ΩR

∆u + k2u = f
f supported in ΩR

Two or more C∞ strictly convex, positive curvature obstacles
(Ikawa 1988, Burq 2004), example of hyperbolic, unstable trapping

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . log(2 + k)‖f‖L2(ΩR), i.e. c(k) = log(2 + k),

so only logarithmically worse than the nontrapping case.
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The known estimates and their geometries

ΩR

∆u + k2u = f
f supported in ΩR

General C∞ “worst case” bound (Burq 1998): for some α > 0,

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . exp(αk)‖f‖L2(ΩR), i.e. c(k) = exp(αk).

This achieved for some km →∞ when there is elliptic, stable trapping
(Cardoso, Popov 2002; Betcke, C-W, Graham, Langdon, Lindner 2011)

with a quasimode localised around the trapped ray.
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Our new estimate for parabolic, neutral trapping

ΩR

∆u + k2u = f
f supported in ΩR

Theorem (C-W, Spence, Gibbs, Smyshlyaev 2017)

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . k2‖f‖L2(ΩR), i.e. c(k) = k2.

Applies to a general Lipschitz obstacle class, in particular when

xded · n(x) ≥ 0 on the boundary

Further, ‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) & k‖f‖L2(ΩR), for k = mπ/a, m = 1, 2, ....
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Recap of resolvent estimates for trapping obstacles

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . c(k)‖f‖L2(ΩR), for k ≥ k0 > 0,

c(k) = log(2 + k) c(k) = k2c(k) = exp(αk)

hyperbolic parabolicelliptic

where c(k) = 1 for nontrapping obstacles, and



How are these resolvent estimates proved?

The Morawetz/Rellich identity method

Used for:

Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)

“Nearly all” nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)

A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

Cathleen Morawetz (1923-2017), Courant Institute, New York.

Listen to the interviews at
https://www.simonsfoundation.org/2012/12/20/cathleen-morawetz/
e.g. on women in mathematics, working with Courant, Courant and flexible working, the
founding of the Courant Institute, ...
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“Nearly all” nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)

A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

Define Morawetz multiplier Zu by

Zu := Z · ∇u− ikβu+ αu,

where Z, α, β are real-valued, with Z · n ≥ 0 on the boundary, and

2<
∫

ΩR

Zuf dx = 2<
∫

ΩR

Zu(∆u+ k2u) dx =

∫
ΩR

+ve +

∫
∂ΩR

+ve

For star-shaped obstacles use Z(x) = x, α = (d− 1)/2, and β(x) = |x| (Morawetz) or
β = R (C-W/Monk), to get∫

ΩR

(
|∇u|2 + k2|u|2

)
dx = −2<

∫
ΩR

Zuf dx−
∫
∂ΩR

+ve ≤ ε‖Zu‖2L2(ΩR)+ε
−1‖f‖2L2(ΩR).
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How is our new estimate for parabolic trapping proved?



Define Morawetz multiplier Zu by

Zu := Z · ∇u− ikβu+ αu,

where Z, α, β are real-valued, with Z · n ≥ 0 on the boundary, and

2<
∫

ΩR

Zuf dx = 2<
∫

ΩR

Zu(∆u+ k2u) dx =

∫
ΩR

+ve +

∫
∂ΩR

+ve +

∫
ΩR

small

R0

R1

n

xd

Choose R1 > R0 > 0 and set

Z(x) = xded for |x| ≤ R0, Z(x) = x for |x| ≥ R1.

Resolvent estimate obtained if Z · n = xded · n ≥ 0 on boundary & R1/R0 ≥ 121.



Define Morawetz multiplier Zu by

Zu := Z · ∇u− ikβu+ αu,

where Z, α, β are real-valued, with Z · n ≥ 0 on the boundary, and

2<
∫

ΩR

Zuf dx = 2<
∫

ΩR

Zu(∆u+ k2u) dx =

∫
ΩR

+ve +

∫
∂ΩR

+ve +

∫
ΩR

small

R0

R1

n

xd

Choose R1 > R0 > 0 and set

Z(x) = xded for |x| ≤ R0, Z(x) = x for |x| ≥ R1.

Resolvent estimate obtained if Z · n = xded · n ≥ 0 on boundary & R1/R0 ≥ 121.



Define Morawetz multiplier Zu by

Zu := Z · ∇u− ikβu+ αu,

where Z, α, β are real-valued, with Z · n ≥ 0 on the boundary, and

2<
∫

ΩR

Zuf dx = 2<
∫

ΩR

Zu(∆u+ k2u) dx =

∫
ΩR

+ve +

∫
∂ΩR

+ve +

∫
ΩR

small

R0

R1

n

xd

Choose R1 > R0 > 0 and set

Z(x) = xded for |x| ≤ R0, Z(x) = x for |x| ≥ R1.

Resolvent estimate obtained if Z · n ≥ 0 on boundary and R1/R0 ≥ 121.



Overview of Talk

1 Helmholtz equation: what is it and why interesting

2 What is this talk about?

3 Resolvent estimates
What are they?
The three known estimates and their geometries
A new estimate for parabolic trapping
The Morawetz/Rellich identity method of proof

4 Implications for Boundary Integral Equations

5 Implications for hp-BEM

6 Conclusions



Integral Equations and k-Explicit Bounds

uinc

Γ u = 0

∆u+ k2u = 0

Ω+

Ω− u− uinc satisfies radiation condition

Assume throughout that Ω− is bounded and Lipschitz.
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|x− y|
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n u
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inc.
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If η ∈ R, η 6= 0, then this integral equation is uniquely solvable in L2(Γ).

The standard choice is η = k, and with this choice we have

‖A−1
k,k‖L2(Γ)→L2(Γ) . 1

if Ω− is star-shaped (C-W, Monk 2008) or C∞ and nontrapping (Baskin, Spence,

Wunsch 2016). But what if Ω− is trapping?
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A recipe for bounding ‖A−1
k,k‖ (C-W, Spence, Gibbs, Smyshlyaev 2017)

Γ u = g ∈ H1(Γ)

∆u+ k2u = f ∈ L2(Ω+), compactly supported

Ω+

Ω− u satisfies radiation condition

Step 1 (Resolvent Estimate). Show that, for every R > 0, if g = 0,

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . c(k)‖f‖L2(Ω+),

where ΩR := {x ∈ Ω+ : |x| < R}.
Step 2 (DtN Map Bound). It follows that, if f = 0,

‖∂+
n u‖L2(Γ) . c(k)

(
‖∇Γg‖L2(Γ) + k‖g‖L2(Γ)

)
Step 3 As (C-W, Graham, Langdon, Spence 2012)

A−1
k,k = I − (P+

DtN − ik)P−ItD

and P−ItD is bounded in Spence (2015), Baskin, Spence, Wunsch (2016), it follows that

‖A−1
k,k‖L2(Γ)→L2(Γ) . c(k)k1/2

if each component of Ω− is star-shaped or C∞.
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Recap of resolvent estimates for trapping obstacles

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . c(k)‖f‖L2(ΩR), for k ≥ k0 > 0,

c(k) = log(2 + k) c(k) = k2c(k) = exp(αk)

hyperbolic parabolicelliptic

where c(k) = 1 for nontrapping obstacles, and

Applying our general recipe

‖A−1
k,k‖L2(Γ)→L2(Γ) . c(k) . kN

in the nontrapping and hyperbolic and parabolic trapping cases.
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Recap of resolvent estimates for trapping obstacles

‖∇u‖L2(ΩR) + k‖u‖L2(ΩR) . c(k)‖f‖L2(ΩR), for k ≥ k0 > 0,

c(k) = log(2 + k) c(k) = k2c(k) = exp(αk)

hyperbolic parabolicelliptic

where c(k) = 1 for nontrapping obstacles, and

Applying our general recipe, for some N ≥ 0,

‖A−1
k,k‖L2(Γ)→L2(Γ) . c(k) . kN

in the nontrapping and hyperbolic and parabolic trapping cases.



Application to hp-BEM analysis

hyperbolic parabolic

For these configurations ∃N ≥ 0 s.t. ‖A−1
k,k‖L2(Γ)→L2(Γ) . kN , k ≥ k0 > 0.

Corollary (Löhndorf, Melenk 2011)

Suppose Γ is analytic and Th is a quasi-uniform triangulation with mesh size h.
Then, given k0 > 0, ∃C1, C2, C3 such that, if k ≥ k0,

kh

p
≤ C1, and p ≥ C2 log(2 + k),

then the Galerkin hp-BEM solution vhp ∈ Sp(Th) satisfies the quasi-optimal error
estimate

‖vhp − ∂+
n u‖L2(Γ) ≤ C3 inf

v∈Sp(Th)
‖v − ∂+

n u‖L2(Γ).



Conclusions

In this talk you have seen:

All the resolvent estimates that exist for (Dirichlet) obstacles

hyperbolic parabolicelliptic

In particular our new bound for parabolic trapping obstacles

The Morawetz/Rellich identity method for proving these estimates

How resolvent estimates lead in a “black box” way to:

bounds on the DtN map
bounds on ‖A−1

k,k‖L2→L2

hp-BEM quasi-optimality

Not covered today are k-explicit results for h-BEM, FEM, and bounds on A−1
k,k as

an operator on Hs(Γ), for −1 ≤ s ≤ 0.

More details see:

C-W, Spence, Gibbs, Smyshlyaev 2017, High-frequency bounds for the Helmholtz
equation under parabolic trapping and applications in numerical analysis,
arXiv:1708.08415



Conclusions

In this talk you have seen:

All the resolvent estimates that exist for (Dirichlet) obstacles

hyperbolic parabolicelliptic

In particular our new bound for parabolic trapping obstacles

The Morawetz/Rellich identity method for proving these estimates

How resolvent estimates lead in a “black box” way to:

bounds on the DtN map
bounds on ‖A−1

k,k‖L2→L2

hp-BEM quasi-optimality

Not covered today are k-explicit results for h-BEM, FEM, and bounds on A−1
k,k as

an operator on Hs(Γ), for −1 ≤ s ≤ 0.

More details see:

C-W, Spence, Gibbs, Smyshlyaev 2017, High-frequency bounds for the Helmholtz
equation under parabolic trapping and applications in numerical analysis,
arXiv:1708.08415



Conclusions

In this talk you have seen:

All the resolvent estimates that exist for (Dirichlet) obstacles

hyperbolic parabolicelliptic

In particular our new bound for parabolic trapping obstacles

The Morawetz/Rellich identity method for proving these estimates

How resolvent estimates lead in a “black box” way to:

bounds on the DtN map
bounds on ‖A−1

k,k‖L2→L2

hp-BEM quasi-optimality

Not covered today are k-explicit results for h-BEM, FEM, and bounds on A−1
k,k as

an operator on Hs(Γ), for −1 ≤ s ≤ 0.

More details see:

C-W, Spence, Gibbs, Smyshlyaev 2017, High-frequency bounds for the Helmholtz
equation under parabolic trapping and applications in numerical analysis,
arXiv:1708.08415



Conclusions

In this talk you have seen:

All the resolvent estimates that exist for (Dirichlet) obstacles

hyperbolic parabolicelliptic

In particular our new bound for parabolic trapping obstacles

The Morawetz/Rellich identity method for proving these estimates

How resolvent estimates lead in a “black box” way to:

bounds on the DtN map
bounds on ‖A−1

k,k‖L2→L2

hp-BEM quasi-optimality

Not covered today are k-explicit results for h-BEM, FEM, and bounds on A−1
k,k as

an operator on Hs(Γ), for −1 ≤ s ≤ 0.

More details see:

C-W, Spence, Gibbs, Smyshlyaev 2017, High-frequency bounds for the Helmholtz
equation under parabolic trapping and applications in numerical analysis,
arXiv:1708.08415



Conclusions

In this talk you have seen:

All the resolvent estimates that exist for (Dirichlet) obstacles

hyperbolic parabolicelliptic

In particular our new bound for parabolic trapping obstacles

The Morawetz/Rellich identity method for proving these estimates

How resolvent estimates lead in a “black box” way to:

bounds on the DtN map
bounds on ‖A−1

k,k‖L2→L2

hp-BEM quasi-optimality

Not covered today are k-explicit results for h-BEM, FEM, and bounds on A−1
k,k as

an operator on Hs(Γ), for −1 ≤ s ≤ 0.

More details see:

C-W, Spence, Gibbs, Smyshlyaev 2017, High-frequency bounds for the Helmholtz
equation under parabolic trapping and applications in numerical analysis,
arXiv:1708.08415



Conclusions

In this talk you have seen:

All the resolvent estimates that exist for (Dirichlet) obstacles

hyperbolic parabolicelliptic

In particular our new bound for parabolic trapping obstacles

The Morawetz/Rellich identity method for proving these estimates

How resolvent estimates lead in a “black box” way to:

bounds on the DtN map
bounds on ‖A−1

k,k‖L2→L2

hp-BEM quasi-optimality

Not covered today are k-explicit results for h-BEM, FEM, and bounds on A−1
k,k as

an operator on Hs(Γ), for −1 ≤ s ≤ 0.

More details see:

C-W, Spence, Gibbs, Smyshlyaev 2017, High-frequency bounds for the Helmholtz
equation under parabolic trapping and applications in numerical analysis,
arXiv:1708.08415


	Helmholtz equation: what is it and why interesting
	What is this talk about?
	Resolvent estimates
	What are they?
	The three known estimates and their geometries
	A new estimate for parabolic trapping
	The Morawetz/Rellich identity method of proof

	Implications for Boundary Integral Equations
	Implications for hp-BEM
	Conclusions

