Wave scattering by trapping obstacles: resolvent estimates and applications to boundary integral equations and their numerical solution

Simon Chandler-Wilde

Department of Mathematics and Statistics University of Reading s.n.chandler-wilde@reading.ac.uk

Joint work with:

Euan Spence (Bath), Andrew Gibbs (Reading/Leuven), Valery Smyshlyaev (UCL)

Analysis (Applied and PDE) Seminar:

Heriot-Watt University, September 2017 More info: new preprint "High-frequency bounds ..." on arXiv

In acoustics the increase in air pressure at x at time t, U(x,t), satisfies

$$\Delta U = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2} \quad \left(\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \right).$$

In acoustics the increase in air pressure at x at time t, U(x,t), satisfies

$$\Delta U = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2} \quad \left(\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \right).$$

If time-dependence is time harmonic, i.e.,

$$U(x,t) = A(x)\cos(\phi(x) - \omega t),$$

for some $\omega = 2\pi f > 0$, with f = frequency

In acoustics the increase in air pressure at x at time t, U(x,t), satisfies

$$\Delta U = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2} \quad \left(\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \right).$$

If time-dependence is time harmonic, i.e.,

$$U(x,t) = A(x)\cos(\phi(x) - \omega t),$$

for some $\omega = 2\pi f > 0$, with f = **frequency**, then

$$U(x,t) = \Re \left(u(x) \mathrm{e}^{-\mathrm{i}\omega t} \right)$$

where $u(x)=A(x)\exp(\mathrm{i}\phi(x))$ satisfies the Helmholtz equation

$$\Delta u + \mathbf{k}^2 u = 0,$$

with $k = \omega/c$ the wavenumber.

In acoustics the increase in air pressure at x at time t, U(x,t), satisfies

$$\Delta U = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2} \quad \left(\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \right).$$

If time-dependence is time harmonic, i.e.,

$$U(x,t) = A(x)\cos(\phi(x) - \omega t),$$

for some $\omega = 2\pi f > 0$, with f = **frequency**, then

$$U(x,t) = \Re \left(u(x) \mathrm{e}^{-\mathrm{i}\omega t} \right)$$

where $u(x)=A(x)\exp(\mathrm{i}\phi(x))$ satisfies the Helmholtz equation

$$\Delta u + \mathbf{k}^2 u = 0,$$

with $k = \omega/c$ the wavenumber. E.g. if $u(x) = \exp(ikx \cdot d)$, for some unit vector d, then

$$U(x,t) = \Re \left(u(x) \mathrm{e}^{-\mathrm{i}\omega t} \right) = \cos(\mathbf{k}x \cdot d - \omega t)$$

is a plane wave travelling in direction d with wavelength

$$\lambda = 2\pi/\mathbf{k} = c/f.$$

1. Solution is oscillatory and multiscale: one scale is the wavelength $\lambda = 2\pi/k$.

 $\begin{aligned} \Re(u(x)) &= U(x,0) \text{ for 2-d scattering of incident plane wave} \\ u^{\text{inc}}(x) &= \exp(\mathbf{i}kd\cdot x). \end{aligned}$

1. Solution is oscillatory and multiscale: one scale is the wavelength $\lambda = 2\pi/k$.

$$\begin{split} \Re(u(x)) &= U(x,0) \text{ for 2-d scattering of incident plane wave} \\ u^{\text{inc}}(x) &= \exp(\mathrm{i} k d \cdot x). \end{split}$$

2. In the singular limit $k\to\infty$ the wave equation transitions to a particle/ray/billiards model

1. Solution is oscillatory and multiscale: one scale is the wavelength $\lambda = 2\pi/k$.

$$\begin{split} \Re(u(x)) &= U(x,0) \text{ for 2-d scattering of incident plane wave} \\ u^{\text{inc}}(x) &= \exp(\mathrm{i} k d \cdot x). \end{split}$$

2. In the singular limit $k\to\infty$ the wave equation transitions to a particle/ray/billiards model

1. Solution is oscillatory and multiscale: one scale is the wavelength $\lambda = 2\pi/k$.

$$\begin{split} \Re(u(x)) &= U(x,0) \text{ for 2-d scattering of incident plane wave} \\ u^{\text{inc}}(x) &= \exp(\mathrm{i} k d \cdot x). \end{split}$$

2. In the **singular limit** $k \to \infty$ the wave equation transitions to a particle/ray/billiards model

$$u(x) \approx \sum_{j} u_j(x)$$

where sum over $\ensuremath{\mathbf{rays}}$ passing through x , with

 $\arg u_j(x) =$ **optical length** of ray path $= ks_j$

 $|u_j(x)| =$ amplitude determined by energy conservation

1. Solution is oscillatory and multiscale: one scale is the wavelength $\lambda = 2\pi/k$.

$$\begin{split} \Re(u(x)) &= U(x,0) \text{ for 2-d scattering of incident plane wave} \\ u^{\text{inc}}(x) &= \exp(\mathrm{i} k d \cdot x). \end{split}$$

2. In the **singular limit** $k \to \infty$ the wave equation transitions to a particle/ray/billiards model

$$u(x) \approx \sum_{j} u_j(x)$$

where sum over $\ensuremath{\mathbf{rays}}$ passing through x , with

 $\arg u_j(x) =$ **optical length** of ray path $= ks_j$

 $|u_j(x)|$ = amplitude determined by

energy conservation

but with multiplication of $u_j(x)$ by coefficients accounting for reflection and diffraction events.

1. Solution is oscillatory and multiscale: one scale is the wavelength $\lambda = 2\pi/k$.

$$\begin{split} \Re(u(x)) &= U(x,0) \text{ for 2-d scattering of incident plane wave} \\ u^{\text{inc}}(x) &= \exp(\mathrm{i} k d \cdot x). \end{split}$$

2. In the **singular limit** $k \to \infty$ the wave equation transitions to a particle/ray/billiards model

The rigorous justification of such approximations is the concern of **semi-classical** analysis.

where sum over rays passing through x, with

 $\arg u_j(x) =$ **optical length** of ray path $= ks_j$

 $|u_j(x)| =$ amplitude determined by

energy conservation

but with multiplication of $u_j(x)$ by coefficients accounting for reflection and diffraction events.

u satisfies Sommerfeld rad. cond. (SRC) $\Delta u + {\pmb k}^2 u = f \mbox{ (source, compactly supported)}$

u satisfies Sommerfeld rad. cond. (SRC) $\Delta u + {\pmb k}^2 u = f \mbox{ (source, compactly supported)}$

This talk is about **wavenumber-explicit** bounds, i.e. bounds explicit in k, for wave scattering obstacles: focus on sound soft (Dirichlet) case and large k.

u satisfies Sommerfeld rad. cond. (SRC) $\Delta u + {\pmb k}^2 u = f \mbox{ (source, compactly supported)}$

This talk is about **wavenumber-explicit** bounds, i.e. bounds explicit in k, for wave scattering obstacles: focus on sound soft (Dirichlet) case and large k.

It's about cases where the obstacle is **nontrapping**, e.g. **star-shaped** (like above example).

u satisfies Sommerfeld rad. cond. (SRC) $\Delta u + k^2 u = f \mbox{ (source, compactly supported)}$

This talk is about **wavenumber-explicit** bounds, i.e. bounds explicit in k, for wave scattering obstacles: focus on sound soft (Dirichlet) case and large k.

It's about cases where the obstacle is **nontrapping**, e.g. **star-shaped** (like above example).

But particularly about cases where the obstacle is trapping

u satisfies Sommerfeld rad. cond. (SRC) $\Delta u + k^2 u = f \mbox{ (source, compactly supported)}$

This talk is about **wavenumber-explicit** bounds, i.e. bounds explicit in k, for wave scattering obstacles: focus on sound soft (Dirichlet) case and large k.

It's about cases where the obstacle is **nontrapping**, e.g. **star-shaped** (like above example).

But particularly about cases where the obstacle is **trapping** supporting a **trapped ray/billiard trajectory**.

u satisfies Sommerfeld rad. cond. (SRC) $\Delta u + {\pmb k}^2 u = f \mbox{ (source, compactly supported)}$

This talk is about **wavenumber-explicit** bounds, i.e. bounds explicit in k, for wave scattering obstacles: focus on sound soft (Dirichlet) case and large k.

It's about cases where the obstacle is **nontrapping**, e.g. **star-shaped** (like above example).

But particularly about cases where the obstacle is **trapping** supporting a **trapped ray/billiard trajectory**.

Including cases where the obstacle has more than one component, in other words **multiple scattering**.

Overview of Talk

Helmholtz equation: what is it and why interesting

2 What is this talk about?

B Resolvent estimates

- What are they?
- The three known estimates and their geometries
- A new estimate for parabolic trapping
- The Morawetz/Rellich identity method of proof
- Implications for Boundary Integral Equations
- 5 Implications for *hp*-BEM

6 Conclusions

It is the wavenumber-explicit bound that, for R > 0, and some specified c(k), $\|\nabla u\|_{L^2(\Omega_R)} + k\|u\|_{L^2(\Omega_R)} \lesssim c(k)\|f\|_{L^2(\Omega_R)}, \quad \text{for } k \ge k_0 > 0.$

It is the wavenumber-explicit bound that, for R > 0, and some specified c(k), $\|\nabla u\|_{L^2(\Omega_R)} + k\|u\|_{L^2(\Omega_R)} \lesssim c(k)\|f\|_{L^2(\Omega_R)}$, for $k \ge k_0 > 0$. $A \lesssim B$ means $A \le CB$, where C > 0 independent of k and f, but depends on R.

It is the wavenumber-explicit bound that, for R > 0, and some specified c(k),

 $\|\nabla u\|_{L^{2}(\Omega_{R})} + k\|u\|_{L^{2}(\Omega_{R})} \lesssim c(k)\|f\|_{L^{2}(\Omega_{R})}, \quad \text{for } k \geq k_{0} > 0.$

 $A \lesssim B$ means $A \leq CB$, where C > 0 independent of k and f, but depends on R.

We will see that resolvent estimates give us: bounds on **DtN maps**, on inverses of **boundary integral operators**, on errors in **FEM**, **BEM**, ...

Star-shaped obstacle (C^{∞} : Morawetz 1975; C^{0} : C-W & Monk 2008)

$$\|\nabla u\|_{L^2(\Omega_R)} + \mathbf{k} \|u\|_{L^2(\Omega_R)} \lesssim \|f\|_{L^2(\Omega_R)}, \quad \text{i.e. } c(\mathbf{k}) = 1$$

Star-shaped obstacle (C^{∞} : Morawetz 1975; C^{0} : C-W & Monk 2008)

 $\|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim \|f\|_{L^2(\Omega_R)}, \quad \text{i.e. } c(k) = 1$

Best possible bound: achieved by $u(x) = \chi(x) \exp(ikx_1)$, if $\chi \in C_0^{\infty}(\Omega_R)$.

Nontrapping obstacle (C^{∞} : Morawetz, Ralston, Strauss 1977, Vainberg 1975, Melrose & Sjöstrand 1982; polygon: Baskin & Wunsch 2013)

 $\|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim \|f\|_{L^2(\Omega_R)}, \quad \text{i.e. } c(k) = 1$

Best possible bound: achieved by $u(x) = \chi(x) \exp(ikx_1)$, if $\chi \in C_0^{\infty}(\Omega_R)$.

Nontrapping obstacle (C^{∞} : Morawetz, Ralston, Strauss 1977, Vainberg 1975, Melrose & Sjöstrand 1982; polygon: Baskin & Wunsch 2013)

 $\|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim \|f\|_{L^2(\Omega_R)}, \quad \text{i.e. } c(k) = 1$

Nontrapping: there exists T > 0 such that all the billiard trajectories starting in Ω_R at time zero and travelling at unit speed leave Ω_R by time T.

Two or more C^{∞} strictly convex, positive curvature obstacles (Ikawa 1988, Burq 2004), example of **hyperbolic**, unstable trapping

Two or more C^{∞} strictly convex, positive curvature obstacles (Ikawa 1988, Burq 2004), example of hyperbolic, unstable trapping

$$\begin{split} \|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim \log(2+k) \|f\|_{L^2(\Omega_R)}, \quad \text{i.e. } c(k) = \log(2+k), \\ \text{so only logarithmically worse than the nontrapping case.} \end{split}$$

 $\|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim \exp(\alpha k) \|f\|_{L^2(\Omega_R)}, \quad \text{i.e. } c(k) = \exp(\alpha k).$

 $\|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim \exp(\alpha k) \|f\|_{L^2(\Omega_R)}, \quad \text{i.e. } c(k) = \exp(\alpha k).$

This achieved for some $k_m \to \infty$ when there is **elliptic**, stable trapping (Cardoso, Popov 2002; Betcke, C-W, Graham, Langdon, Lindner 2011) with a **quasimode localised around the trapped ray**.

General C^{∞} "worst case" bound (Burg 1998): for some $\alpha > 0$,

 $\|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim \exp(\alpha k) \|f\|_{L^2(\Omega_R)}, \quad \text{i.e. } c(k) = \exp(\alpha k).$

This achieved for some $k_m \to \infty$ when there is **elliptic**, stable trapping (Cardoso, Popov 2002; Betcke, C-W, Graham, Langdon, Lindner 2011) with a **quasimode localised around the trapped ray**.

Where have we got to in the talk?

Helmholtz equation: what is it and why interesting

2 What is this talk about?

Resolvent estimates

- What are they?
- The three known estimates and their geometries
- A new estimate for parabolic trapping
- The Morawetz/Rellich identity method of proof
- Implications for Boundary Integral Equations
- **5** Implications for *hp*-BEM

6 Conclusions

Our new estimate for parabolic, neutral trapping

Theorem (C-W, Spence, Gibbs, Smyshlyaev 2017)

 $\|\nabla u\|_{L^2(\Omega_R)} + \mathbf{k} \|u\|_{L^2(\Omega_R)} \lesssim \mathbf{k}^2 \|f\|_{L^2(\Omega_R)}, \quad i.e. \ c(\mathbf{k}) = \mathbf{k}^2.$

Our new estimate for parabolic, neutral trapping

Theorem (C-W, Spence, Gibbs, Smyshlyaev 2017)

 $\|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim k^2 \|f\|_{L^2(\Omega_R)}, \quad i.e. \ c(k) = k^2.$

Applies to a general Lipschitz obstacle class, in particular when

 $x_d e_d \cdot n(x) \ge 0$ on the boundary

Our new estimate for parabolic, neutral trapping

Theorem (C-W, Spence, Gibbs, Smyshlyaev 2017)

 $\|\nabla u\|_{L^2(\Omega_R)} + \mathbf{k} \|u\|_{L^2(\Omega_R)} \lesssim \mathbf{k}^2 \|f\|_{L^2(\Omega_R)}, \quad i.e. \ c(\mathbf{k}) = \mathbf{k}^2.$

Applies to a general Lipschitz obstacle class, in particular when

 $x_d e_d \cdot n(x) \ge 0$ on the boundary

Further, $\|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \gtrsim k \|f\|_{L^2(\Omega_R)}$, for $k = m\pi/a$, m = 1, 2,

Recap of resolvent estimates for trapping obstacles

$$\|\nabla u\|_{L^{2}(\Omega_{R})} + k\|u\|_{L^{2}(\Omega_{R})} \lesssim c(k)\|f\|_{L^{2}(\Omega_{R})}, \quad \text{for } k \geq k_{0} > 0,$$

where $c(\mathbf{k}) = 1$ for **nontrapping** obstacles, and

The Morawetz/Rellich identity method

Used for:

- Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)
- "Nearly all" nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)
- A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

The Morawetz/Rellich identity method

Used for:

- Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)
- "Nearly all" nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)
- A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

Cathleen Morawetz (1923-2017), Courant Institute, New York.

Listen to the interviews at https://www.simonsfoundation.org/2012/12/20/cathleen-morawetz/ e.g. on women in mathematics, working with Courant, Courant and flexible working, the founding of the Courant Institute, ...

The Morawetz/Rellich identity method

Used for:

- Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)
- "Nearly all" nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)
- A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

The Morawetz/Rellich identity method

Used for:

- Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)
- "Nearly all" nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)
- A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

Define Morawetz multiplier $\mathcal{Z}u$ by

 $\mathcal{Z}u := Z \cdot \nabla u - \mathrm{i} \boldsymbol{k} \beta u + \alpha u,$

where Z, α , β are real-valued, with $Z\cdot n\geq 0$ on the boundary

The Morawetz/Rellich identity method

Used for:

- Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)
- "Nearly all" nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)
- A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

Define Morawetz multiplier $\mathcal{Z}u$ by

$$\mathcal{Z}u := Z \cdot \nabla u - \mathrm{i} \mathbf{k} \beta u + \alpha u,$$

where Z , α , β are real-valued, with $Z\cdot n\geq 0$ on the boundary, and

$$2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} f \, \mathrm{d}x = 2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} (\Delta u + \mathbf{k}^2 u) \, \mathrm{d}x = \int_{\Omega_R} + \mathrm{ve} + \int_{\partial\Omega_R} + \mathrm{ve}$$

The Morawetz/Rellich identity method

Used for:

- Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)
- "Nearly all" nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)
- A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

Define Morawetz multiplier $\mathcal{Z}u$ by

$$\mathcal{Z}u := Z \cdot \nabla u - \mathrm{i} \mathbf{k} \beta u + \alpha u,$$

where Z , α , β are real-valued, with $Z\cdot n\geq 0$ on the boundary, and

$$2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} f \, \mathrm{d}x = 2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} (\Delta u + \boldsymbol{k}^2 u) \, \mathrm{d}x = \int_{\Omega_R} + \mathsf{ve} + \int_{\partial \Omega_R} + \mathsf{ve}$$

For star-shaped obstacles use Z(x)=x, $\alpha=(d-1)/2,$ and $\beta(x)=|x|$ (Morawetz) or $\beta=R$ (C-W/Monk), to get

$$\int_{\Omega_R} \left(|\nabla u|^2 + \mathbf{k}^2 |u|^2 \right) \, \mathrm{d}x = -2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} f \, \mathrm{d}x - \int_{\partial\Omega_R} + \mathsf{ve} \le \epsilon \|\mathcal{Z}u\|_{L^2(\Omega_R)}^2 + \epsilon^{-1} \|f\|_{L^2(\Omega_R)}^2.$$

The Morawetz/Rellich identity method

Used for:

- Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)
- "Nearly all" nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)
- A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

Define Morawetz multiplier $\mathcal{Z}u$ by

$$\mathcal{Z}u := Z \cdot \nabla u - \mathrm{i} \mathbf{k} \beta u + \alpha u,$$

where Z , α , β are real-valued, with $Z\cdot n\geq 0$ on the boundary, and

$$2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} f \, \mathrm{d}x = 2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} (\Delta u + \boldsymbol{k}^2 u) \, \mathrm{d}x = \int_{\Omega_R} + \mathsf{ve} + \int_{\partial \Omega_R} + \mathsf{ve}$$

For star-shaped obstacles use Z(x)=x, $\alpha=(d-1)/2,$ and $\beta(x)=|x|$ (Morawetz) or $\beta=R$ (C-W/Monk), to get

$$\int_{\Omega_R} \left(|\nabla u|^2 + \mathbf{k}^2 |u|^2 \right) \, \mathrm{d}x = -2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} f \, \mathrm{d}x - \int_{\partial\Omega_R} + \mathsf{ve} \le \epsilon \|\mathcal{Z}u\|_{L^2(\Omega_R)}^2 + \epsilon^{-1} \|f\|_{L^2(\Omega_R)}^2.$$

The Morawetz/Rellich identity method

Used for:

- Star-shaped obstacles (Morawetz 1975, C-W, Monk 2008)
- "Nearly all" nontrapping obstacles in 2-d (Morawetz, Ralston, Strauss 1977)
- A class of parabolic trapping obstacles (C-W, Spence, Gibbs, Smyshlyaev 2017)

Define Morawetz multiplier $\mathcal{Z}u$ by

$$\mathcal{Z}u := Z \cdot \nabla u - \mathrm{i} \boldsymbol{k} \beta u + \alpha u,$$

where $Z\text{, }\alpha\text{, }\beta$ are real-valued, with $Z\cdot n\geq 0$ on the boundary, and

$$2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} f \, \mathrm{d}x = 2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} (\Delta u + \mathbf{k}^2 u) \, \mathrm{d}x = \int_{\Omega_R} +\mathsf{ve} + \int_{\partial\Omega_R} +\mathsf{ve}$$

In rough surface scattering (C-W, Monk 2005) use $Z(x) = x_d e_d$, $\alpha = 1/2$, $\beta = R$, to get

$$\int_{\Omega_R} \left| \partial_d u \right|^2 \mathrm{d}x \le -2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} f \,\mathrm{d}x \le \epsilon \|\mathcal{Z}u\|_{L^2(\Omega_R)}^2 + \epsilon^{-1} \|f\|_{L^2(\Omega_R)}^2;$$

then use Friedrichs inequality to bound $||u||_{L^2(\Omega_R)}$ in terms of $||\partial_d u||_{L^2(\Omega_R)}$.

How is our new estimate for parabolic trapping proved?

Define Morawetz multiplier $\mathcal{Z}u$ by

$$\mathcal{Z}u := Z \cdot \nabla u - \mathrm{i} \mathbf{k} \beta u + \alpha u,$$

where $Z,\,\alpha,\,\beta$ are real-valued, with $Z\cdot n\geq 0$ on the boundary, and

$$2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} f \, \mathrm{d}x = 2\Re \int_{\Omega_R} \overline{\mathcal{Z}u} (\Delta u + \mathbf{k}^2 u) \, \mathrm{d}x = \int_{\Omega_R} +\mathsf{ve} + \int_{\partial\Omega_R} +\mathsf{ve} + \int_{\Omega_R} \mathsf{small}$$

Define **Morawetz multiplier** $\mathcal{Z}u$ by

$$\mathcal{Z}u := Z \cdot \nabla u - \mathrm{i} \mathbf{k} \beta u + \alpha u,$$

where Z, α , β are real-valued, with $Z \cdot n \geq 0$ on the boundary, and

 $Z(x) = x_d e_d \text{ for } |x| \le R_0, \quad Z(x) = x \text{ for } |x| \ge R_1.$

Resolvent estimate obtained if $Z \cdot n = x_d e_d \cdot n \ge 0$ on boundary & $R_1/R_0 \ge 121$.

Define **Morawetz multiplier** $\mathcal{Z}u$ by

$$\mathcal{Z}u := Z \cdot \nabla u - \mathrm{i} \mathbf{k} \beta u + \alpha u,$$

where Z , α , β are real-valued, with $Z\cdot n\geq 0$ on the boundary, and

 $Z(x) = x_d e_d \text{ for } |x| \le R_0, \quad Z(x) = x \text{ for } |x| \ge R_1.$

Resolvent estimate obtained if $Z \cdot n \ge 0$ on boundary and $R_1/R_0 \ge 121$.

Overview of Talk

Helmholtz equation: what is it and why interesting

2 What is this talk about?

3 Resolvent estimates

- What are they?
- The three known estimates and their geometries
- A new estimate for parabolic trapping
- The Morawetz/Rellich identity method of proof

Implications for Boundary Integral Equations

5 Implications for hp-BEM

6 Conclusions

Integral Equations and k-Explicit Bounds

Assume throughout that Ω_{-} is bounded and Lipschitz.

Integral Equations and k-Explicit Bounds

Assume throughout that Ω_{-} is bounded and Lipschitz. Plot of $\Re(u(x)) = U(x, 0)$:

Integral Equations and k-Explicit Bounds

Assume throughout that Ω_{-} is bounded and Lipschitz.

Theorem (Green's Representation Theorem)

$$u(x)=u^{\rm inc}(x)+\int_{\Gamma}\Phi(x,y)\partial_n^+u(y)\,ds(y),\quad x\in\Omega_+.$$

where

$$\Phi(x,y) := \frac{\mathrm{i}}{4} H_0^{(1)}(\mathbf{k}|x-y|) \quad (2\mathsf{D}), \quad := \frac{1}{4\pi} \frac{\mathrm{e}^{\mathrm{i}\mathbf{k}|x-y|}}{|x-y|} \quad (3\mathsf{D}).$$

Theorem (Green's Representation Theorem) $u(x) = u^{\rm inc}(x) + \int_{\Gamma} \Phi(x, y) \partial_n^+ u(y) \, ds(y), \quad x \in \Omega_+.$

$$\mathcal{U}_{\mu u^{\text{inc}}} \qquad \Delta u + k^2 u = 0$$

$$\Gamma u = 0$$

$$u - u^{\text{inc}} \text{ satisfies radiation condition}$$

$$\Omega_+$$

Theorem (Green's Representation Theorem)

$$u(x) = u^{\rm inc}(x) + \int_{\Gamma} \Phi(x, y) \partial_n^+ u(y) \, ds(y), \quad x \in \Omega_+.$$

Taking a linear combination of Dirichlet (γ_+) and Neumann (∂_n^+) traces, we get the **boundary integral equation** (Burton & Miller 1971)

$$\frac{1}{2}\partial_n^+ u(x) + \int_{\Gamma} \left(\frac{\partial \Phi(x,y)}{\partial n(x)} + \mathrm{i}\eta \Phi(x,y) \right) \partial_n^+ u(y) ds(y) = f(x), \quad x \in \Gamma,$$

where

$$f := \partial_n^+ u^{\rm inc} + {\rm i}\eta\gamma_+ u^{\rm inc}.$$

$$\begin{split} & \underbrace{\lambda u}_{\text{inc}} \qquad \Delta u + k^2 u = 0 \\ & & & \\ & &$$

$$A_{\mathbf{k},\eta}\partial_n^+ u = f := \partial_n^+ u^{\mathrm{inc}} + \mathrm{i}\eta\gamma_+ u^{\mathrm{inc}}.$$

$$\begin{split} & \mathcal{M}_{*} \ u^{\mathrm{inc}} & \Delta u + k^{2}u = 0 \\ & & & & \\ & & & \\ & & & \\ & & \Omega_{+} & \\ & & \frac{1}{2}\partial_{n}^{+}u(x) + \int_{\Gamma} \left(\frac{\partial \Phi(x,y)}{\partial n(x)} + \mathrm{i}\eta \Phi(x,y)\right) \partial_{n}^{+}u(y)ds(y) = f(x), \quad x \in \Gamma, \\ & \text{in operator form} \end{split}$$

$$A_{\mathbf{k},\eta}\partial_n^+ u = f := \partial_n^+ u^{\mathrm{inc}} + \mathrm{i}\eta\gamma_+ u^{\mathrm{inc}}.$$

Theorem (Burton & Miller 1971, Mitrea 1996, C-W & Langdon 2007)

If $\eta \in \mathbb{R}$, $\eta \neq 0$, then this integral equation is uniquely solvable in $L^2(\Gamma)$.

$$\begin{split} & \bigvee_{u^{\text{inc}}} \Delta u + k^2 u = 0 \\ & & & & \\ & & & \\ & & & \\ &$$

in operator form

$$A_{\mathbf{k},\eta}\partial_n^+ u = f := \partial_n^+ u^{\mathrm{inc}} + \mathrm{i}\eta\gamma_+ u^{\mathrm{inc}}.$$

Theorem (Burton & Miller 1971, Mitrea 1996, C-W & Langdon 2007)

If $\eta \in \mathbb{R}$, $\eta \neq 0$, then this integral equation is uniquely solvable in $L^2(\Gamma)$.

The standard choice is $\eta = k$, and with this choice we have

$$\|A_{\boldsymbol{k},\boldsymbol{k}}^{-1}\|_{L^2(\Gamma)\to L^2(\Gamma)} \lesssim 1$$

if Ω_{-} is star-shaped (C-W, Monk 2008) or C^{∞} and nontrapping (Baskin, Spence, Wunsch 2016).

$$\begin{split} & \bigvee_{u^{\text{inc}}} \Delta u + k^2 u = 0 \\ & & & & \\ & & & \\ & & & \\ &$$

in operator form

$$A_{\boldsymbol{k},\eta}\partial_n^+ u = f := \partial_n^+ u^{\mathrm{inc}} + \mathrm{i}\eta\gamma_+ u^{\mathrm{inc}}.$$

Theorem (Burton & Miller 1971, Mitrea 1996, C-W & Langdon 2007)

If $\eta \in \mathbb{R}$, $\eta \neq 0$, then this integral equation is uniquely solvable in $L^2(\Gamma)$.

The standard choice is $\eta = k$, and with this choice we have

$$\|A_{\boldsymbol{k},\boldsymbol{k}}^{-1}\|_{L^2(\Gamma)\to L^2(\Gamma)} \lesssim 1$$

if Ω_{-} is **star-shaped** (C-W, Monk 2008) or C^{∞} and **nontrapping** (Baskin, Spence, Wunsch 2016). But what if Ω_{-} is **trapping**?

A recipe for bounding $||A_{k,k}^{-1}||$ (C-W, Spence, Gibbs, Smyshlyaev 2017) $\Delta u + k^2 u = f \in L^2(\Omega_+)$, compactly supported $\Gamma u = g \in H^1(\Gamma)$ u satisfies radiation condition Ω_+ A recipe for bounding $||A_{k,k}^{-1}||$ (C-W, Spence, Gibbs, Smyshlyaev 2017) $\Delta u + \mathbf{k}^2 u = f \in L^2(\Omega_+)$, compactly supported $\label{eq:Gamma-state} \begin{array}{l} \Gamma \ u = g \in H^1(\Gamma) \\ \\ \Omega_- \quad u \ \text{satisfies radiation condition} \end{array}$ Ω_{\pm} **Step 1** (Resolvent Estimate). Show that, for every R > 0, if g = 0, $\|\nabla u\|_{L^{2}(\Omega_{B})} + \mathbf{k}\|u\|_{L^{2}(\Omega_{B})} \lesssim c(\mathbf{k})\|f\|_{L^{2}(\Omega_{+})},$ where $\Omega_R := \{ x \in \Omega_+ : |x| < R \}.$

A recipe for bounding $||A_{k,k}^{-1}||$ (C-W, Spence, Gibbs, Smyshlyaev 2017) $\Delta u + \mathbf{k}^2 u = f \in L^2(\Omega_+)$, compactly supported $\label{eq:Gamma} \begin{array}{l} \Gamma \ u = g \in H^1(\Gamma) \\ \\ \Omega_- \quad u \ \text{satisfies radiation condition} \end{array}$ Ω_{\pm} **Step 1** (Resolvent Estimate). Show that, for every R > 0, if q = 0, $\|\nabla u\|_{L^{2}(\Omega_{R})} + \frac{k}{\|u\|_{L^{2}(\Omega_{R})}} \lesssim c(k) \|f\|_{L^{2}(\Omega_{L})},$ where $\Omega_R := \{ x \in \Omega_+ : |x| < R \}.$ **Step 2** (DtN Map Bound). It follows that, if f = 0, $\|\partial_n^+ u\|_{L^2(\Gamma)} \lesssim c(\mathbf{k}) \left(\|\nabla_{\Gamma} g\|_{L^2(\Gamma)} + \mathbf{k} \|g\|_{L^2(\Gamma)} \right)$

A recipe for bounding $||A_{k,k}^{-1}||$ (C-W, Spence, Gibbs, Smyshlyaev 2017) $\Delta u + \mathbf{k}^2 u = f \in L^2(\Omega_+)$, compactly supported $\label{eq:Gamma-statistic} \begin{array}{l} \Gamma \ u = g \in H^1(\Gamma) \\ \\ \Omega_- \end{array} \quad u \ \text{satisfies radiation condition} \end{array}$ Ω_{+} **Step 1** (Resolvent Estimate). Show that, for every R > 0, if q = 0, $\|\nabla u\|_{L^{2}(\Omega_{R})} + \frac{k}{\|u\|_{L^{2}(\Omega_{R})}} \lesssim c(k) \|f\|_{L^{2}(\Omega_{L})},$ where $\Omega_R := \{x \in \Omega_+ : |x| < R\}.$ **Step 2** (DtN Map Bound). It follows that, if f = 0, $\|\partial_n^+ u\|_{L^2(\Gamma)} \lesssim c(k) \left(\|\nabla_{\Gamma} g\|_{L^2(\Gamma)} + k \|g\|_{L^2(\Gamma)} \right)$ Step 3 As (C-W, Graham, Langdon, Spence 2012) $A_{h,h}^{-1} = I - (P_{D,h}^{+} - ik)P_{I,h}^{-}$ and P_{ItD}^{-} is bounded in Spence (2015), Baskin, Spence, Wunsch (2016), it follows that

 $\|A_{\boldsymbol{k},\boldsymbol{k}}^{-1}\|_{L^2(\Gamma)\to L^2(\Gamma)}\lesssim c(\boldsymbol{k})\boldsymbol{k}^{1/2}$

A recipe for bounding $||A_{k\,k}^{-1}||$ (C-W, Spence, Gibbs, Smyshlyaev 2017) $\Delta u + k^2 u = f \in L^2(\Omega_+)$, compactly supported $\label{eq:Gamma-static} \begin{array}{l} \Gamma \ u = g \in H^1(\Gamma) \\ \\ \Omega_- \end{array} \quad u \text{ satisfies radiation condition} \end{array}$ Ω_{+} **Step 1** (Resolvent Estimate). Show that, for every R > 0, if g = 0, $\|\nabla u\|_{L^{2}(\Omega_{R})} + \frac{k}{\|u\|_{L^{2}(\Omega_{R})}} \lesssim c(k) \|f\|_{L^{2}(\Omega_{L})},$ where $\Omega_R := \{x \in \Omega_+ : |x| < R\}.$ **Step 2** (DtN Map Bound). It follows that, if f = 0, $\|\partial_n^+ u\|_{L^2(\Gamma)} \lesssim c(\mathbf{k}) \left(\|\nabla_{\Gamma} g\|_{L^2(\Gamma)} + \mathbf{k} \|g\|_{L^2(\Gamma)} \right)$

Step 3 As (C-W, Graham, Langdon, Spence 2012)

$$A_{\boldsymbol{k},\boldsymbol{k}}^{-1} = I - (P_{DtN}^+ - \mathrm{i}\boldsymbol{k})P_{ItD}^-$$

and P_{ItD}^- is bounded in Spence (2015), Baskin, Spence, Wunsch (2016), it follows that $\|A_{k,k}^{-1}\|_{L^2(\Gamma)\to L^2(\Gamma)} \lesssim c(k)$

if each component of Ω_{-} is star-shaped or C^{∞} .

Recap of resolvent estimates for trapping obstacles

$$\|
abla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim c(k) \|f\|_{L^2(\Omega_R)}, \quad ext{for } k \ge k_0 > 0,$$

where $c(\mathbf{k}) = 1$ for **nontrapping** obstacles, and

Recap of resolvent estimates for trapping obstacles

$$\|\nabla u\|_{L^2(\Omega_R)} + k \|u\|_{L^2(\Omega_R)} \lesssim c(k) \|f\|_{L^2(\Omega_R)}, \quad \text{for } k \ge k_0 > 0,$$

where $c(\mathbf{k}) = 1$ for **nontrapping** obstacles, and

Applying our general recipe

$$\|A_{\boldsymbol{k},\boldsymbol{k}}^{-1}\|_{L^2(\Gamma)\to L^2(\Gamma)} \lesssim c(\boldsymbol{k})$$

Recap of resolvent estimates for trapping obstacles

$$\|\nabla u\|_{L^{2}(\Omega_{R})} + k\|u\|_{L^{2}(\Omega_{R})} \lesssim c(k)\|f\|_{L^{2}(\Omega_{R})}, \quad \text{for } k \geq k_{0} > 0,$$

where $c(\mathbf{k}) = 1$ for **nontrapping** obstacles, and

Applying our general recipe, for some $N \ge 0$,

$$\|A_{\boldsymbol{k},\boldsymbol{k}}^{-1}\|_{L^2(\Gamma)\to L^2(\Gamma)} \lesssim c(\boldsymbol{k}) \lesssim \boldsymbol{k}^N$$

in the nontrapping and hyperbolic and parabolic trapping cases.

Application to hp-BEM analysis

parabolic

For these configurations $\exists N \geq 0$ s.t. $\|A_{k,k}^{-1}\|_{L^2(\Gamma) \to L^2(\Gamma)} \lesssim k^N$, $k \geq k_0 > 0$.

Corollary (Löhndorf, Melenk 2011)

Suppose Γ is analytic and \mathcal{T}_h is a quasi-uniform triangulation with mesh size h. Then, given $k_0 > 0$, $\exists C_1, C_2, C_3$ such that, if $k > k_0$,

$$\frac{kh}{p} \le C_1, \quad \text{and} \quad p \ge C_2 \log(2+k),$$

then the Galerkin hp-BEM solution $v_{hp} \in S^p(\mathcal{T}_h)$ satisfies the quasi-optimal error estimate

$$\|v_{hp} - \partial_n^+ u\|_{L^2(\Gamma)} \le C_3 \inf_{v \in \mathcal{S}^p(\mathcal{T}_h)} \|v - \partial_n^+ u\|_{L^2(\Gamma)}.$$

In this talk you have seen:

• All the resolvent estimates that exist for (Dirichlet) obstacles

In this talk you have seen:

• All the resolvent estimates that exist for (Dirichlet) obstacles

• In particular our new bound for parabolic trapping obstacles

In this talk you have seen:

• All the resolvent estimates that exist for (Dirichlet) obstacles

- In particular our new bound for parabolic trapping obstacles
- $\bullet\,$ The Morawetz/Rellich identity method for proving these estimates

In this talk you have seen:

• All the resolvent estimates that exist for (Dirichlet) obstacles

- In particular our new bound for parabolic trapping obstacles
- $\bullet\,$ The Morawetz/Rellich identity method for proving these estimates
- How resolvent estimates lead in a "black box" way to:
 - bounds on the DtN map
 - bounds on $\|A_{{\boldsymbol k},{\boldsymbol k}}^{-1}\|_{L^2 \to L^2}$
 - *hp*-BEM quasi-optimality
Conclusions

In this talk you have seen:

• All the resolvent estimates that exist for (Dirichlet) obstacles

• In particular our new bound for parabolic trapping obstacles

- The Morawetz/Rellich identity method for proving these estimates
- How resolvent estimates lead in a "black box" way to:
 - bounds on the DtN map
 - bounds on $||A_{\boldsymbol{k},\boldsymbol{k}}^{-1}||_{L^2 \to L^2}$
 - *hp*-BEM quasi-optimality

Not covered today are k-explicit results for h-BEM, FEM, and bounds on $A_{k,k}^{-1}$ as an operator on $H^s(\Gamma)$, for $-1 \le s \le 0$.

Conclusions

In this talk you have seen:

• All the resolvent estimates that exist for (Dirichlet) obstacles

- In particular our new bound for parabolic trapping obstacles
- The Morawetz/Rellich identity method for proving these estimates
- How resolvent estimates lead in a "black box" way to:
 - bounds on the DtN map
 - bounds on $||A_{\boldsymbol{k},\boldsymbol{k}}^{-1}||_{L^2 \to L^2}$
 - *hp*-BEM quasi-optimality

Not covered today are k-explicit results for h-BEM, FEM, and bounds on $A_{k,k}^{-1}$ as an operator on $H^s(\Gamma)$, for $-1 \le s \le 0$.

More details see:

C-W, Spence, Gibbs, Smyshlyaev 2017, *High-frequency bounds for the Helmholtz equation under parabolic trapping and applications in numerical analysis*, arXiv:1708.08415