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Wolfgang Wendland (and me)

Our first meeting: IMA/SIAM Joint conference on the State of the Art in
Numerical Analysis, University of Birmingham, April 1986.

Wolfgang is a plenary speaker on “Strongly Elliptic Boundary Integral
Equations”. I’m a PhD student, School of Civil and Structural Engineering,
University of Bradford, UK. This is my first maths conference.
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1st MFO workshop focussed on BEM, Oberwolfach, October 1994.

Wolfgang is organiser with Ernst Stephan. I’m recently appointed Lecturer in
Mathematics, Brunel University. I’m an even more recent father. This is my first
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Wolfgang Wendland (and me)

Wolfgang is plenary speaker (introduced by Christoph Schwab), lecture title:
“On J. Radon’s Convergence Proof for C. Neumann’s Method with Double
Layer Potentials”. I’m recently appointed Professor of Applied Mathematics,
University of Reading, and this is my first time chairing a conference.



Overview

1 Lipschitz domains and an example we will meet later

2 Potential theory, 2nd kind boundary integral equations, and a
long-standing open question

3 The Hilbert space theory of Galerkin methods

4 Do all Galerkin BEMs, based on asymptotically dense subspace
sequences and testing with L2 inner products, converge for the standard
2nd kind BIEs on Lipschitz domains?
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A bounded domain Ω ⊂ R2 is Lipschitz if, in a neighbourhood of each point
x ∈ ∂Ω,

∂Ω ∩Bε(x) = {(ξ1, f(ξ1)) : ξ1 ∈ R} ∩Bε(x),

for some f that satisfies, for some L > 0 (the Lipschitz constant)

|f(s)− f(t)| ≤ L|s− t|, for s, t ∈ R.

This allows corners, e.g. this f has L = 1 ...
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Ω Γ = ∂Ω
∆u = 0 u = g

y
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Assume that Ω ⊂ Rd (d = 2 or 3) is bounded and Lipschitz, and g ∈ L2(Γ).

Define the fundamental solution

G(x, y) :=

{
− 1

π
log |x− y|, d = 2,

(2π|x− y|)−1, d = 3,

Look for a solution as the double-layer potential with density φ ∈ L2(Γ):

u(x) =

∫
Γ

∂G(x, y)

∂n(y)
φ(y) ds(y)

=
1

2d−2π

∫
Γ

(x− y) · n(y)

|x− y|d
φ(y) ds(y).

for x ∈ Ω.
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Look for a solution as the double-layer potential with density φ ∈ L2(Γ):

u(x) =

∫
Γ

∂G(x, y)

∂n(y)
φ(y) ds(y), x ∈ Ω.

This satisfies the BVP iff φ satisfies the boundary integral equation (BIE)

φ(x)−
∫

Γ

∂G(x, y)

∂n(y)
φ(y) ds(y) = −g(x), x ∈ Γ,

in operator form
φ−Dφ = −g or Aφ = −g,

where A = I −D, I is the identity operator, and D is the double-layer potential
operator given by

Dφ(x) =

∫
Γ

∂G(x, y)

∂n(y)
φ(y) ds(y), x ∈ Γ, φ ∈ L2(Γ).
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The double-layer potential satisfies the BVP iff φ satisfies the BIE in operator
form

φ−Dφ = −g or Aφ = −g,
where A = I −D. The Galerkin method for solving the BIE numerically is:
choose a finite-dimensional subspace VN ⊂ L2(Γ) and approximate

φ ≈ φN ∈ VN ,
where

(AφN , ψN ) = −(g, ψN ), ∀ψN ∈ VN , and (u, v) :=

∫
Γ

uv̄ ds.

Long-standing open problem. “For a general Lipschitz boundary Γ, however,
stability and convergence of Galerkin’s method in L2(Γ) is not yet known.”
Wendland (2009)
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Where are we in this talk?

1 Lipschitz domains and an example we will meet later

2 Potential theory, 2nd kind boundary integral equations, and a
long-standing open question

3 The Hilbert space theory of Galerkin methods

4 Do all Galerkin BEMs, based on asymptotically dense subspace
sequences and testing with L2 inner products, converge for the standard
2nd kind BIEs on Lipschitz domains?



H is a complex Hilbert space with norm ‖u‖ =
√

(u, u) , e.g.

H = L2(Γ), (u, v) =

∫
Γ

uv ds, ‖u‖2 =

∫
Γ

|u|2 ds.

Suppose that A is a bounded linear operator on H.

A is coercive if, for some γ > 0,

|(Au, u)| ≥ γ‖u‖2, ∀u ∈ H.

E.g. if A = I −B, where I is the identity operator and B is bounded,

(Au, u) = (u−Bu, u) = (u, u)− (Bu, u) ≥ (1− ‖B‖)‖u‖2.

So A = I −B is coercive if ‖B‖ < 1, with γ = 1− ‖B‖.
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Suppose that A is a bounded linear operator on H.

The Galerkin method. Pick a sequence V = (V1, V2, ...) of finite-dimensional
subspaces of H, and seek uN ∈ VN such that

(AuN , v) = (g, v), ∀v ∈ VN (G).

In the case that A is invertible, we will say that the Galerkin method is
convergent for the sequence V if, for every g ∈ H, (G) has a unique solution
for all sufficiently large N and uN → u = A−1g as N →∞.

We will say that V is asymptotically dense in H if, for every u ∈ H,

inf
vN∈VN

‖u− vN‖ → 0 as N →∞.

It is easy to see that a necessary condition for the convergence of the Galerkin
method is that V is asymptotically dense in H.
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The Galerkin method. Pick a sequence V = (V1, V2, ...) of finite-dimensional
subspaces of H, and seek uN ∈ VN such that

(AuN , v) = (g, v), ∀v ∈ VN .

The Key Abstract Theorem. (Markus, 1974). If A is invertible then the
following statements are equivalent:

The Galerkin method converges for every V that is asymptotically dense in H.

A = A0 +K where A0 is coercive and K is compact.
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What is known about the double-layer potential operator D and A = I −D
when Ω is Lipschitz? Remember the BIE in operator form is Aφ = −g.

A is a bounded linear operator on L2(Γ) if Ω is a bounded Lipschitz domain
(Coifman, McIntosh, Meyer Ann. Math. 1982)

A is invertible on L2(Γ) (Verchota J. Funct. Anal. 1984)

D is compact (so A = I −D is coercive + compact) if Ω is C1 (Fabes,

Jodeit, Rivière Acta. Math. 1978)

D = D0 + C, with ‖D0‖ < 1 and C compact, if Ω is a (curvilinear) polygon
(Shelepov Soviet Math. Dokl. 1969, Chandler J. Austral. Math. Soc. Ser. B 1984)

so
A = I −D = I −D0︸ ︷︷ ︸

coercive

+ C︸︷︷︸
compact

The same holds if Γ is Lipschitz with small Lipschitz constant (I. Mitrea J.

Fourier Anal. Appl. 1999, C-W, Spence 2021)

A is coercive on H1/2(Γ) equipped with a specific norm (Steinbach, Wendland

J. Math. Anal. Appl. 2001) – but inner product in H1/2(Γ) harder to compute

Open question: is A = coercive + compact on L2(Γ)

for every bounded Lipschitz domain Ω?
at least for every bounded Lipschitz domain in 2D?
at least for every Lipschitz polyhedron in 3D?

The answer is NO in each case (C-W & Spence, 2021).
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The Galerkin method. Pick a sequence V = (V1, V2, ...) of finite-dimensional
subspaces of H, and seek uN ∈ VN such that

(AuN , v) = (g, v), ∀v ∈ VN .

The Key Abstract Theorem extended.

If A is invertible then the following statements are equivalent:

The Galerkin method converges for every V that is asymptotically dense in H.

A = A0 +K where A0 is coercive and K is compact.

0 6∈Wess(A)

Here Wess(A) denotes the essential numerical range of A, defined by

Wess(A) :=
⋂

K compact

W (A+K),

where, for a bounded linear operator B, W (B) denotes the numerical range or
field of values of B, given by

W (B) := {(Bu, u) : ‖u‖ = 1}.

Key question: If A = I −D and D is the double-layer potential operator, is
0 ∈Wess(A)? Equivalently, is 1 ∈Wess(D)?
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Theorem. (C-W, Spence 2021) If Γ is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

Wess(D) ⊃ {z ∈ C : |z| ≤ L/2}.

Thus, if L ≥ 2, then 1 ∈Wess(D), so that A = I −D is not coercive + compact.

slope L

Γ

How is this proved?
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Three simple lemmas.

Lemma A. If Γ′ ⊂ Γ and D′ is the DLP operator on Γ′, then

W (D′) ⊂W (D).

Γ′

Γ

Lemma B. If Γ′ and Γ are similar and D′ is the DLP operator on Γ′, then
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Lemma C. If Γ1 ⊂ Γ2 ⊂ ... Γ =
⋃∞
j=1 Γj , and Dj denotes the DLP on Γj , then

W (D) =
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j=1

W (Dj).
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What can we say about W (D) for the DLP operator D on this Γ?

slope L

Γ

By Lemma A, W (D) ⊃W (D′) where D′ is the DLP operator on each of these
Γ′ in red. So, by Lemma B, also W (D) ⊃W (D′) where D′ is the DLP operator
on each of the red curves below.

So, by Lemma C, also W (D) ⊃W (D†) where D† is the DLP operator on the
infinite sawtooth. And W (D†) (by some explicit calculations) contains
{z ∈ C : |z| ≤ L/2}. So we have proved ...
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Theorem. (C-W, Spence 2021) If Γ is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

W (D) ⊃ {z ∈ C : |z| ≤ L/2}.
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Localisation Lemma. (C-W, Spence 2021, cf. I. Mitrea, 1999)

Wess(D) ⊇
⋂
δ>0

W (Dx,δ) , ∀x ∈ Γ,

with equality for at least one x, where Dx,δ is the DLP operator on Γ ∩Bδ(x).
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In conclusion we have proved ...

Theorem. (C-W, Spence 2021) If Γ is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

Wess(D) ⊃ {z ∈ C : |z| ≤ L/2}.

Thus, if L ≥ 2, then 1 ∈Wess(D), so that A = I −D is not coercive + compact.

slope L
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Theorem. (C-W, Spence 2021) If A is not coercive + compact then for every
asymptotically dense V = (V1, V2, ...) there exists a sequence V ∗ = (V ∗1 , V

∗
2 , ...)

for which the Galerkin method does not converge which is sandwiched by V ,
meaning that, for each N ,

VN ⊂ V ∗N ⊂ VMN
, for some MN ≥ N.

Choose V to be any asymptotically dense sequence of BEM spaces. Then V ∗ is a
BEM space sequence (V ∗N ⊂ VMN

) that is asymptotically dense (VN ⊂ V ∗N ) for
which the Galerkin method does not converge.
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On arXiv ...



Summary of the talk

1 Lipschitz domains and an example we will meet later

2 Potential theory, 2nd kind boundary integral equations, and a
long-standing open question

3 The Hilbert space theory of Galerkin methods

4 Do all Galerkin BEMs, based on asymptotically dense subspace
sequences and testing with L2 inner products, converge for the standard
2nd kind BIEs on Lipschitz domains?



3D Polyhedra for which A = I −D is not coercive +
compact.

The “open book” polyhedron with four pages and opening angle θ = π/4.

http://www.personal.reading.ac.uk/~sms03snc/polyhed.avi
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