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Overview

@ Lipschitz domains and an example we will meet later

© Potential theory, 2nd kind boundary integral equations, and a
long-standing open question

© The Hilbert space theory of Galerkin methods

@ Do all Galerkin BEMs, based on asymptotically dense subspace
sequences and testing with L? inner products, converge for the standard
2nd kind BIEs on Lipschitz and polyhedral domains?

© Some open questions



A bounded domain Q C R? is Lipschitz if, in a neighbourhood of each point
x € 09,

90N Be(x) = {(&1, f(&1)) : & € R} N Be(x),
for some f that satisfies, for some L > 0 (the Lipschitz constant)

[f(s)— f(t)] < L|s—t|, fors,teR.



A bounded domain Q C R? is Lipschitz if, in a neighbourhood of each point
x € 09,

90N Be(x) = {(&1, f(&1)) : & € R} N Be(x),
for some f that satisfies, for some L > 0 (the Lipschitz constant)

[f(s)— f(t)] < L|s—t|, fors,teR.

This allows corners, e.g. this f has L=1 ...
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A bounded domain Q C R? is Lipschitz if, in a neighbourhood of each point

x € 09,
90N Be(z) = {(&1, f(&1)) : & € R} N Be(x),

for some f that satisfies, for some L > 0 (the Lipschitz constant)
F(s) = F()| < Lls—t], fors,t R,

Indeed it allows infinitely many corners, e.g. this f also has L =1 ...
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Where are we in this talk?

© Potential theory, 2nd kind boundary integral equations, and a
long-standing open question



Assume that Q C R? (d = 2 or 3) is bounded and Lipschitz, and g € L(T").



BVP: Find u € C?(2) such that Au=0in Q and u =g € L*(T) on T.



BVP: Find u € C?(2) such that Au=0in Q and u =g € L*(T) on T.

Define the fundamental solution

1
Gla) = { 518l =l d=2
QCrlx—y|)~", d=3,

Look for a solution as the double-layer potential with density ¢ € L?(T):

_ 9G(z,y)
u(z) = Fwﬁb(y)ds(y)

- ! /F(x_y)'n(y)qﬁ(y)dS(y%
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for x € Q.



BVP: Find u € C?(2) such that Au=0in Q and u =g € L*(T) on T.
Define the fundamental solution
Cla,y) = { —%log\x —y|, d=2,
@2rle—y)~™", d=3,
Look for a solution as the double-layer potential with density ¢ € L?(T):
9G(z,y)

u(z) = Fwﬁb(y)ds(y)

- ! /F(x_y)'n(y)qﬁ(y)dS(y%

227 J oyl

for x € Q. This idea (with ¢ € C(T")) dates back to Gauss.




Look for a solution as the double-layer potential with density ¢ € L*(T):

_ [ 9G(z,y)
u(r) = g T(y)d)(y) ds(y), ze€Q.

This satisfies the BVP iff ¢ satisfies the boundary integral equation (BIE)

G (z,y) _
o(x) — : WWZJ) ds(y) = —g(z), zeT,



Look for a solution as the double-layer potential with density ¢ € L*(T):

_ [ 9G(z,y)
u(r) = g T(y)d)(y) ds(y), ze€Q.

This satisfies the BVP iff ¢ satisfies the boundary integral equation (BIE)

G (z,y) _
o(x) — : WWZJ) ds(y) = —g(z), zeT,

in operator form

¢—Dp=—g orAp=-—g,
where A =1 — D, I is the identity operator, and D is the double-layer potential
operator given by

[ 9G(=,y)

Do) = | T o) dsty), @ €T, 6 € L2(D)



The double-layer potential satisfies the BVP iff ¢ satisfies the BIE in operator
form

¢$—D¢p=—g orAp=—g,
where A=1— D.



The double-layer potential satisfies the BVP iff ¢ satisfies the BIE in operator
form

¢—Dp=—g orAp=—g,
where A =1 — D. The Galerkin method for solving the BIE numerically is:
choose a finite-dimensional subspace Viy C L?(I") and approximate

¢~ én €V,

where

(Apn,¥n) = —(9,¢N), YN €V, and (u,v):= / ut ds.
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The double-layer potential satisfies the BVP iff ¢ satisfies the BIE in operator
form

¢—Dp=—g orAp=—g,
where A =1 — D. The Galerkin method for solving the BIE numerically is:
choose a finite-dimensional subspace Viy C L?(I") and approximate

¢~ én €V,

where

(Apn,YN) = —(9,¢¥nN), Yy € VN, and (u,v) ::/uﬁds.
r

Long-standing open problem. “For a general Lipschitz boundary I', however,
stability and convergence of Galerkin's method in L?(T") is not yet known.”
Wendland (2009)



Where are we in this talk?

© The Hilbert space theory of Galerkin methods



H is a complex Hilbert space with inner product (u,v) and norm

[ull = /(u,u), eg.
H=I2D), (u0) :/uids, ME :/|u|2ds.
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A is a bounded linear operator on H if
AAu) = A Au, Alu+v)=Au+ Av, YAeC, u,v € H,
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The norm of A is
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H is a complex Hilbert space with inner product (u,v) and norm

ull = /(u,u), eg.
H=I2T), (u0) :/u@ds, ull? :/|u|2ds.
T T

A is a bounded linear operator on H if
AAu) = A Au, Alu+v)=Au+ Av, YAeC, u,v € H,
and, for some C' > 0,
| Aul| < Cllull, Vue H.

The norm of A is
|| Aull

weH\{0} ] .
A is finite rank if the range of A, A(H) := {Au: v € H}, has finite dimension.

A is compact if, for some sequence of finite rank operators Ay, As, ..., it holds
that ||A — A,|| = 0 as n — .

IA[J =




H is a complex Hilbert space with norm |ju|| = +/(u,u), e.g.

H = L*(I), (u,v):/u@ds7 ||u||2:/|u|2ds.
r r

Suppose that A is a bounded linear operator on H.
A is coercive if, for some v > 0,

|(Au,u)| > ~|Jul?, Yue€ H.
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H is a complex Hilbert space with norm |ju|| = +/(u,u), e.g.

H = L*(I), (u,v):/u@ds7 ||u||2:/|u|2ds.
r r

Suppose that A is a bounded linear operator on H.
A is coercive if, for some v > 0,

|(Au,u)| > ~|Jul?, Yue€ H.

E.g. if A= 1 — B, where [ is the identity operator and B is bounded,
|(Au,u)| = |(u = Bu,u)| = |(u,u) = (Bu,u)| > (1~ | BI)u]*.
So A=1— Bis coercive if |B]| <1, withy=1—||B|.

Indeed A is coercive iff A=0(I — B) with § € C\ 0 and ||B| < 1.



Suppose that A is a bounded linear operator on H.

The Galerkin method. Pick a sequence V = (11, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vj such that

(Aun,v) = (g,v), YveVy (G).
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subspaces of H, and seek uy € Vj such that

(Aun,v) = (g,v), YveVy (G).

In the case that A is invertible, we will say that the Galerkin method is
convergent for the sequence V' if, for every g € H, (G) has a unique solution
for all sufficiently large N and uy — u= A"'gas N — oco.



Suppose that A is a bounded linear operator on H.

The Galerkin method. Pick a sequence V = (V7, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vj such that

(Aun,v) = (g,v), YveVy (G).

In the case that A is invertible, we will say that the Galerkin method is
convergent for the sequence V' if, for every g € H, (G) has a unique solution
for all sufficiently large N and uy — u= A"'gas N — oco.

We will say that V' is asymptotically dense in H if, for every u € H,

inf |lu—wn|]] =0 as N — oc.
vNEVN

It is easy to see that a necessary condition for the convergence of the Galerkin
method is that V is asymptotically dense in H.



The Galerkin method. Pick a sequence V = (V7, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(Aun,v) = (g,v), Yv e Vy.

The Key Abstract Theorem. (Markus, 1974). If A is invertible then the
following statements are equivalent:

@ The Galerkin method converges for every V' that is asymptotically dense in H.

o A= Ay + K where Ay is coercive and K is compact.
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method does not converge.



The Galerkin method. Pick a sequence V = (V7, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(Aun,v) = (g,v), Yv e Vy.

The Key Abstract Theorem. (Markus, 1974). If A is invertible then the
following statements are equivalent:
@ The Galerkin method converges for every V' that is asymptotically dense in H.

o A= Ay + K where Ay is coercive and K is compact.

The above implies that, if A is not coercive + compact, then there exists at least
one asymptotically dense sequence V' = (V1, V4, ...) for which the Galerkin
method does not converge.

Theorem. (C-W, Spence 2021) If A is not coercive + compact then, for every
asymptotically dense V' = (V;, V4, ...), there exists a sequence V* = (Vi*, V5, ...)
for which the Galerkin method does not converge which is sandwiched by V',
meaning that, for each N,

VN C V§ C Vg, for some My > N.



The Galerkin method. Pick a sequence V = (V7, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(Aun,v) = (g,v), Yv e Vy.

The Key Abstract Theorem. (Markus, 1974). If A is invertible then the
following statements are equivalent:

@ The Galerkin method converges for every V' that is asymptotically dense in H.
o A= Ay + K where Ay is coercive and K is compact.
The above implies that, if A is not coercive + compact, then there exists at least

one asymptotically dense sequence V' = (V1, V4, ...) for which the Galerkin
method does not converge.

Theorem. (C-W, Spence 2021) If A is not coercive + compact then, for every
asymptotically dense V' = (V;, V4, ...), there exists a sequence V* = (Vi*, V5, ...)
for which the Galerkin method does not converge which is sandwiched by V',
meaning that, for each N,

VN C Vﬁ C V]\/[N, for some My > N.

N.B. Viy C Vy implies that V* is also asymptotically dense.



Where are we in this talk?

@ Do all Galerkin BEMs, based on asymptotically dense subspace
sequences and testing with L? inner products, converge for the standard
2nd kind BIEs on Lipschitz and polyhedral domains?



What is known about the double-layer potential operator D and A=1— D
when  is Lipschitz? Remember the BIE in operator form is A¢p = —g.
o A is a bounded linear operator on L?(T") if Q is a bounded Lipschitz domain
(Coifman, Mclntosh, Meyer Ann. Math. 1982)
o A is invertible on L?(T") (Verchota J. Funct. Anal. 1984)
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What is known about the double-layer potential operator D and A=1— D
when  is Lipschitz? Remember the BIE in operator form is A¢p = —g.

o A is a bounded linear operator on L?(T") if Q is a bounded Lipschitz domain
(Coifman, Mclntosh, Meyer Ann. Math. 1982)

o A is invertible on L?(T") (Verchota J. Funct. Anal. 1984)

e D is compact (so A =1 — D is coercive + compact) if Q is C'! (Fabes,
Jodeit, Riviere Acta. Math. 1978)

e D= Dy+ C, with |[Do|| <1 and C compact, if Q is a (curvilinear) polygon
(Shelepov Soviet Math. Dokl. 1969, Chandler J. Austral. Math. Soc. Ser. B 1984)
so

A=T1-D=I1-Dy+ C
—— ~~~

coercive compact

@ The same holds if " is Lipschitz with small Lipschitz constant (I. Mitrea J.
Fourier Anal. Appl. 1999, C-W, Spence 2021)
o A is coercive on H'/?(I") equipped with a specific norm (Steinbach, Wendland
J. Math. Anal. Appl. 2001) — but inner product in H''/?(T") harder to compute
Open question: is A = coercive + compact on L?(T)
o for every bounded Lipschitz domain Q7
@ at least for every bounded Lipschitz domain in 2D?
@ at least for every Lipschitz polyhedron in 3D7
The answer is NO in each case (C-W & Spence, 2021).



The Galerkin method. Pick a sequence V = (17, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(AUN7’U):(Q,U)7 V’UGVvN-

The Key Abstract Theorem extended.
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@ The Galerkin method converges for every V' that is asymptotically dense in H.
o A= Ay + K where Ay is coercive and K is compact.
0 0& Wess(A)
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where, for a bounded linear operator B, W(B) denotes the numerical range or
field of values of B, given by

W (B) := {(Bu,u) : [lu] = 1}.



The Galerkin method. Pick a sequence V = (17, V4, ...) of finite-dimensional
subspaces of H, and seek uy € Vi such that

(AUN7’U):(Q,U)7 V’UGVvN-

The Key Abstract Theorem extended.

If A is invertible then the following statements are equivalent:
@ The Galerkin method converges for every V' that is asymptotically dense in H.
o A= Ay + K where Ay is coercive and K is compact.
0 0& Wess(A)

Here Wess(A) denotes the essential numerical range of A, defined by

Wess(A) = (] W(A+K),
K compact

where, for a bounded linear operator B, W(B) denotes the numerical range or
field of values of B, given by

W (B) := {(Bu,u) : [lu] = 1}.

Key question: If A =1 — D and D is the double-layer potential operator, is
0 € Wess(A)? Equivalently, is 1 € Wess(D)?



Theorem. (C-W, Spence 2021) If T" is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

Wess(D) D {z € C:|z| < L/2}.

Thus, if L > 2, then 1 € Wegs(D), so that A =1 — D is not coercive + compact.
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Theorem. (C-W, Spence 2021) If T" is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

Wess(D) D {z € C:|z| < L/2}.

Thus, if L > 2, then 1 € Wegs(D), so that A =1 — D is not coercive + compact.

slope L

How is this proved? By three simple lemmas and a calculation ...
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Three simple lemmas.

Lemma A. If IV C T" and D’ is the DLP operator on I/, then
W (D" c W(D).

1"/
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Lemma B. If IV and I" are similar and D’ is the DLP operator on I, then



Lemma C. If ' CI'> C ... '= 2, I';, and D; denotes the DLP on T';, then

WD) = | w(D,).

Jj=1



Lemma C. If ' CI'> C ... '= 2, I';, and D; denotes the DLP on T';, then

WD) = | w(D,).

Jj=1

M



Lemma C. If ' CI'> C ... '=J;Z, I';, and D; denotes the DLP on T';, then
w(D) = | w(D,).
j=1

NN\



Lemma C. If ' CI'> C ... '=J;Z, I';, and D; denotes the DLP on T';, then
w(D) = | w(D,).
j=1

NN N



Lemma C. If ' CI'> C ... '=J;Z, I';, and D; denotes the DLP on T';, then

WD) = | w(D,).



Lemma C. If ' CI'> C ... '=J;Z, I';, and D; denotes the DLP on T';, then

WD) = | w(D,).

NN N



What can we say about W (D) for the DLP operator D on this I'?

slope L




What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I in red.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I in red.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I in red.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I in red.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I'"in red. So, by Lemma B, also W (D) D W(D’) where D’ is the DLP operator
on each of the red curves below.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I'" in red. So, by Lemma B, also W(D) D W(D’) where D’ is the DLP operator
on each of the red curves below.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I'" in red. So, by Lemma B, also W(D) D W(D’) where D’ is the DLP operator
on each of the red curves below.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I'" in red. So, by Lemma B, also W(D) D W(D’) where D’ is the DLP operator
on each of the red curves below.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I'" in red. So, by Lemma B, also W(D) D W(D’) where D’ is the DLP operator
on each of the red curves below.

So, by Lemma C, also W (D) D W(D'") where DT is the DLP operator on the
infinite sawtooth.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
I'" in red. So, by Lemma B, also W (D) D W(D’) where D’ is the DLP operator
on each of the red curves below.

slope L

So, by Lemma C, also W (D) D W(D'") where DT is the DLP operator on the
infinite sawtooth. And W (D') (by some explicit calculations — see later)
contains {z € C: |z| < L/2}.



What can we say about W (D) for the DLP operator D on this I'?

slope L

By Lemma A, W (D) D W(D') where D’ is the DLP operator on each of these
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So, by Lemma C, also W (D) D W(D'") where DT is the DLP operator on the
infinite sawtooth. And W (D') (by some explicit calculations — see later)
contains {z € C: |z| < L/2}. So we have proved ...
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Theorem. (C-W, Spence 2021) If T" is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

Wess(D) D {z € C:|z| < L/2}.

Localisation Lemma. (C-W, Spence 2021, cf. |. Mitrea, 1999)

ess ﬂ W x, o Yo € F7
6>0

with equality for at least one x, where D, ;5 is the DLP operator on I' N Bj(x).



In conclusion we have proved ...

Theorem. (C-W, Spence 2021) If " is the boundary of the Lipschitz domain shown
below with Lipschitz constant L, then

Wess(D) D {z€C:|z| < L/2}.

Thus, if L > 2, then 1 € Wess(D), so that A =1 — D is not coercive + compact.
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The DLP operator D' on the sawtooth graph I'f
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Theorem. Let D' be the DLP operator on the infinite sawtooth I'T with slope
L. Then, as an operator on L%(I'),

WD) >{zeC: |2/ <L/2} and ||D'|| > L.
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Theorem. Let D' be the DLP operator on the infinite sawtooth I'T with slope
L. Then, as an operator on L%(I'),
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and let '
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be orthogonal projection.



The DLP operator D' on the sawtooth graph I'f

Tt slope L

Theorem. Let D' be the DLP operator on the infinite sawtooth I'T with slope
L. Then, as an operator on L%(I'),

WD) >{zeC: |2/ <L/2} and ||D'|| > L.
Proof. Let

V. :={¢ € L*(T'") : ¢ constant on each side of I''},

and let '
P:L*(Th =V,
be orthogonal projection. Then (cf. Lemma A)

W(D") > W(PD'|y.) and |D'|| > ||PD'

Vi
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and ., is the normalised characteristic function of I',,.
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Proof continued ... Moreover, for ¢ € V,,

(PDW’ Z Am— n¢|r n’ where an = Sgn(n) |(DTXO,X7L)|»

n=—oo

and x,, is the normalised characteristic function of I',,. So

|PD'|v.|| = |lalloc where af(t Z ane'™ = —Qiz lay, | sin(nt)

n=—oo

is the symbol of the bi-infinite Laurent matrix [a,,—»]. Moreover,

L
lan| = —n4—0(rf?)7 n — 0o, so that hm la(t)| = lim —
T

Thus
D= [PD v, || = llallee = lim fa(t)] = L.



In conclusion we have proved ...
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Theorem. (C-W, Spence 2021) If A is not coercive + compact then for every
asymptotically dense V' = (V1, V4, ...) there exists a sequence V* = (V;*, V5, ...)
for which the Galerkin method does not converge which is sandwiched by V',
meaning that, for each N,

VN C Vy C Vg, for some My > N.
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Theorem. (C-W, Spence 2021) If A is not coercive + compact then for every
asymptotically dense V' = (V1, V4, ...) there exists a sequence V* = (V;*, V5, ...)
for which the Galerkin method does not converge which is sandwiched by V',
meaning that, for each N,

VN C Vy C Vg, for some My > N.

Choose V' to be any asymptotically dense sequence of BEM spaces. Then V* is a
BEM space sequence (V3 C Vas, ) that is asymptotically dense (Viy C V5;) for
which the Galerkin method does not converge.



3D Polyhedra for which A =1 — D is not coercive +
compact.

The “open book” polyhedron with four pages and opening angle 6§ = /4.



http://www.personal.reading.ac.uk/~sms03snc/polyhed.avi
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o Conversely, concrete examples of Galerkin BEMs that are not convergent?
@ For our 2D example

Wess(D) :=sup{|z| : 2 € Wess(D)} > L/2,
but Kenig (1994) has conjectured that
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Coercivity, essential norms, and the Galerkin method for
second-kind integral equations on polyvhedral and Lipschitz
domains

S. N. Chandler-Wilde*, E. A. Spencel

Dedicated to Wolfgang Wendland on the occasion of his 85th birthday

Abstract

It is well known that, with a particular choice of norm, the classical double-layer potential
operator D has essential norm < 1/2 as an operator on the natural trace space H'/2(T)
whenever I is the boundary of a bounded Lipschitz domain. This implies, for the standard
second-kind boundary integral equations for the interior and exterior Dirichlet and Neumann
problems in potential theory, convergence of the Galerkin method in H'/2(T') for any sequence
of finite-dimensional subspaces (Hy)¥_; that is asymptotically dense in H'/*(T'). Long-
standing open questions are whether the essential norm is also < 1/2 for D as an operator
on LQ(F) for all Lipschitz I' in 2-d; or whether, for all Lipschitz I" in 2-d and 3-d, or at
least for the smaller class of Lipschitz polyhedra in 3-d, the weaker condition holds that the
operators +41 + D are compact perturbations of coercive operators — this a necessary and
sufficient condition for the convergence of the Galerkin method for every sequence of subspaces
(HN)3F—; that is asymptotically dense in Z?(T'). We settle these open questions negatively. We
give examples of 2-d and 3-d Lipschitz domains with Lipschitz constant equal to one for which
the essential norm of D is > 1/2, and examples with Lipschitz constant two for which the
operators &2 + D are not coercive plus compact. We also give, for every C' > 0, examples of
Lipschitz polyhedra for which the essential norm is > C and for which AJ+ D is not a compact
perturbation of a coercive operator for any real or complex A with [A| < C. We then, via a
new result on the Galerkin method in Hilbert spaces, explore the implications of these results
for the convergence of Galerkin boundary element methods in the L*?(T) setting. Finally, we
resolve negatively a related open question in the convergence theory for collocation methods,
showing that, for our polyhedral examples, there is no weighted norm on C(I'), equivalent to
the standard supremum norm, for which the essential norm of D on C(T') is < 1/2.
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