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Acoustic scattering by planar screens

Γ a bounded subset of Γ∞ := {x ∈ Rn+1 : xn+1 = 0} ∼= Rn, n = 1, 2

Γ

u = 0 or

∂u/∂n = 0

x1

x2

x3

in D := Rn+1 \ Γ

(∆ + k2)u = 0

ui = eikd·x

|d| = 1

us := u− ui satisfies Sommerfeld Radiation Condition (SRC) at infinity
∂us/∂r − ikus = o

(
r−n/2

)
uniformly as r = |x| → ∞.

Classical problem when Γ is Lipschitz open set or smoother.

What about rougher Γ, e.g. fractal or with fractal boundary?
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Fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Attractive because of wideband/multiband performance

Not yet analysed by mathematicians

http://www.antenna-theory.com/antennas/fractal.php


Other applications

Scattering by ice crystals in atmospheric physics
- e.g. Westbrook and Nicol (2015) -
Meteorology at University of Reading

Fractal apertures in optics
- e.g. Huang, Christian, McDonald (2017)

These are all examples of ‘diffractals’ (Berry
1979), waves encountering fractals.
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Scattering by apertures in infinite planar screens

Γ a bounded subset of Γ∞ := {x ∈ Rn+1 : xn+1 = 0} ∼= Rn, n = 1, 2

Γ

u = 0 or

∂u/∂n = 0

x1

x2
x3

in D := U+ ∪ U− ∪ Γ◦,

where Γ◦ := Γ \ ∂Γ, interior of Γ

(∆ + k2)u = 0

ui = eikd·x

The Sommerfeld radiation condition is satisfied by:

u in the lower half-space, U−

us := u− ui − ur (ur a reflected plane wave) in the upper half-space, U+
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Γ a bounded subset of Γ∞ := {x ∈ Rn+1 : xn+1 = 0} ∼= Rn, n = 1, 2
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where Γ◦ := Γ \ ∂Γ, interior of Γ

(∆ + k2)u = 0

ui = eikd·x

Screen and aperture problems classically connected by Babinet’s principle:

scattered field for screen = scattered field for aperture,

in upper half-space, but for opposite boundary conditions.
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Γ a bounded subset of Γ∞ := {x ∈ Rn+1 : xn+1 = 0} ∼= Rn, n = 1, 2

Γ

u = 0 or

∂u/∂n = 0

x1

x2
x3

in D := U+ ∪ U− ∪ Γ◦,

where Γ◦ := Γ \ ∂Γ, interior of Γ

(∆ + k2)u = 0

ui = eikd·x

Screen and aperture problems classically connected by Babinet’s principle:

scattered field for screen = −transmitted field for aperture,

in lower half-space, again for opposite boundary conditions.



Overview of Talk

1 The screen/aperture problems and applications

2 Warm up
Examples/questions to get us thinking
The main questions – look ahead to answers

3 PDE and BIE formulations
for regular screens
for rough screens, e.g. fractal or fractal boundary

4 Convergence of regular screens to irregular, prefractals to fractals?

5 Recap, references & many open problems



Example 1: Fractal aperture in sound hard screen

Aperture in infinite sound hard

(
∂u

∂n
= 0

)
screen: Area = 1

Question: Is the transmitted field zero or non-zero in the limit? (The
limiting aperture is the Sierpinski triangle fractal with zero area.)
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Example 2: Sierpinski triangle screen

Sound soft (u = 0) screen: Area = 1

Question: Is the scattered field zero or non-zero in the limit? (The limiting
screen is a Sierpinski triangle with zero area.)

By Babinet’s principle this is the same question as on the previous slide.
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Example 3: Scattering by Cantor Dust

Let the closed set Cα ⊂ [0, 1] denote the standard Cantor set (0 < α < 1/2)

1 α

Let C2
α := Cα × Cα ⊂ R2 denote the associated “Cantor dust”:

Note: C2
α is uncountable and closed, with zero area (zero Lebesgue measure).

Question: Is the scattered field zero or non-zero for the sound-soft scat-
tering problem with Γ = C2

α?
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Scattering by fractal (and other complicated)
screens/apertures

· · ·

Lots of interesting mathematical/computational questions:

Can we formulate well-posed BVPs and equivalent BIEs?
.

Do prefractal solutions converge to fractal solutions?
.

Are there algorithms to compute the scattered field?
.

If the screen/aperture has empty interior, does it scatter?

Does fractal dimension play a role?



Scattering by fractal (and other complicated)
screens/apertures

· · ·

Lots of interesting mathematical/computational questions:

Can we formulate well-posed BVPs and equivalent BIEs?
.Yes – in fact infinitely many.

Do prefractal solutions converge to fractal solutions?
.Yes, and this helps us select which fractal solution is physical.

Are there algorithms to compute the scattered field?
.Yes, but this work in progress.

If the screen/aperture has empty interior, does it scatter? It depends.

Does fractal dimension play a role? Very much.
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1 The screen/aperture problems and applications

2 Warm up
Examples/questions to get us thinking
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Formulations for Regular Screens (Sound Soft Case)

BVP-C: Classical BVP Formulation (Bouwkamp, “Diffraction Theory”, 1954)

Γ

u = 0 ∂Γ

x1

x2

x3 (∆ + k2)u = 0 in D := Rn+1 \ Γ

ui = eikd·x

Implicit assumption that u ∈ C2(D), indeed is smooth up to the boundary
except on ∂Γ
us := u− ui satisfies Sommerfeld radiation condition (SRC)
Behaviour near ∂Γ controlled by “edge conditions”, notably (Meixner 1949)∫
G

(
|∇u|2 + |u|2

)
dx <∞ for every bounded G ⊂ D

Theorem (Meixner ’49, Levine ’64, Wolfe ’69, Stephan ’87, C-W, Hewett 2016)

If Γ is C0 open set then this formulation has a unique solution.
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Formulations for Regular Screens (Sound Soft Case)

BVP-C: Classical BVP Formulation (Bouwkamp, “Diffraction Theory”, 1954)

Γ

u = 0 ∂Γ

x1

x2

x3 (∆ + k2)u = 0 in D := Rn+1 \ Γ

ui = eikd·x

Implicit assumption that u ∈ C2(D), indeed is smooth up to the boundary
except on ∂Γ
us := u− ui satisfies Sommerfeld radiation condition (SRC)
Behaviour near ∂Γ controlled by “edge conditions”, in Sobolev space
notation, that u ∈W 1,loc(D)

Theorem (Meixner ’49, Levine ’64, Wolfe ’69, Stephan ’87, C-W, Hewett 2016)

If Γ is C0 open set then this formulation has a unique solution.



Sobolev spaces on Γ ⊂ Γ∞ = Rn

For s ∈ R let Hs(Γ∞) = Hs(Rn) = {u ∈ S∗(Rn) :
∫
Rn(1 + |ξ|2)s|û(ξ)|2 dξ <∞}

For Ω ⊂ Γ∞ open and F ⊂ Γ∞ closed define

Hs(Ω) := {u|Ω : u ∈ Hs(Γ∞)} RESTRICTION

H̃s(Ω) := C∞0 (Ω)
Hs(Γ∞)

CLOSURE

Hs
F := {u ∈ Hs(Γ∞) : suppu ⊂ F} SUPPORT

For bounded Γ ⊂ Γ∞, its interior

Γ◦ ⊂ Γ = Γ◦ ∪ ∂Γ.

Further
H̃±1/2(Γ◦) ⊂ H±1/2

Γ

with equality if Γ is open and C0.

But equality does not hold in general and this is key!
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For Ω ⊂ Γ∞ open and F ⊂ Γ∞ closed define

Hs(Ω) := {u|Ω : u ∈ Hs(Γ∞)} RESTRICTION

H̃s(Ω) := C∞0 (Ω)
Hs(Γ∞)

CLOSURE

Hs
F := {u ∈ Hs(Γ∞) : suppu ⊂ F} SUPPORT

For bounded Γ ⊂ Γ∞, its interior

Γ◦ ⊂ Γ = Γ◦ ∪ ∂Γ.

Further
H̃±1/2(Γ◦) ⊂ H±1/2

Γ

with equality if Γ is open and C0.

But equality does not hold in general and this is key!



Sobolev spaces on Γ ⊂ Γ∞ = Rn

For s ∈ R let Hs(Γ∞) = Hs(Rn) = {u ∈ S∗(Rn) :
∫
Rn(1 + |ξ|2)s|û(ξ)|2 dξ <∞}
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Sobolev spaces on Γ ⊂ Γ∞ = Rn

Where U+, U− ⊂ Rn+1 are the half-spaces above and below Γ∞, define standard
trace operators

γ± : W 1(U±)→ H1/2(Γ∞)

by γ±u = u|Γ∞ , for u ∈W 1(U±) ∩ C(U±).



Formulations for Regular Screens (Sound Soft Case)

BVP-S: Sobolev space formulation (Stephan 1987)

Γ

x1

x2

x3 (∆ + k2)us = 0 in D

Require:

us ∈ C2(D) ∩W 1,loc(D)

us satisfies SRC

γ±u
s|Γ◦ = −ui|Γ◦ ∈ H1/2(Γ◦)

Theorem (Stephan 1987, C-W, Hewett 2016)

This formulation is equivalent to the classical formulation FC, and both are
uniquely solvable if Γ is a C0 open set.
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Formulations for Regular Screens (Sound Soft Case)

BIE formulation (Stephan 1987)

Γ

x1

x2
x3

D

Given a bounded open Γ ⊂ Γ∞, define single-layer operators
S : H̃−1/2(Γ)→ C2(D) ∩W 1,loc(D) and S : H̃−1/2(Γ)→ H1/2(Γ) by

Sφ(x) =

∫
Γ

Φ(x, y)φ(y) ds(y), x ∈ D and Sφ = (γ±Sφ)|Γ .

Φ(x, y) :=
eik|x−y|

4π|x− y|
in 3D.

BIE: Try us = Sψ where ψ ∈ H̃−1/2(Γ) and

Theorem (Stephan 1987, C-W & Hewett 2015)

This BIE formulation has exactly one solution for every open Γ, and this solution
satisfies BVP-S and BVP-C. Further, ψ = −[∂nu

s].
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This BIE formulation has exactly one solution for every open Γ, and this solution
satisfies BVP-S and BVP-C. Further, ψ = −[∂nu

s].



Formulations for Regular Screens (Sound Soft Case)

BVP-W: Weak BVP Formulation

Γ

u = 0 ∂Γ

x1

x2

x3 (∆ + k2)u = 0 in D := Rn+1 \ Γ

ui = eikd·x

Require:

u ∈ C2(D) ∩W 1,loc
0 (D), where W 1

0 (D) is closure of C∞0 (D) in W 1(D)

us := u− ui satisfies the SRC

Theorem
This formulation has a unique solution for every bounded Γ.

Not the end of the story! This solution is may or may not be the right
solution and may or may not be the same as the solution of the BIE.
(Though all formulations have the same unique solution if Γ is C0 open set.)
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(Though all formulations have the same unique solution if Γ is C0 open set.)



Formulations for Regular Screens (Sound Soft Case)

BVP-W: Weak BVP Formulation

Γ

u = 0 ∂Γ

x1

x2

x3 (∆ + k2)u = 0 in D := Rn+1 \ Γ

ui = eikd·x

Require:

u ∈ C2(D) ∩W 1,loc
0 (D), where W 1

0 (D) is closure of C∞0 (D) in W 1(D)

us := u− ui satisfies the SRC

Theorem
This formulation has a unique solution for every bounded Γ.

Not the end of the story! This solution is may or may not be the right
solution and may or may not be the same as the solution of the BIE.
(Though all formulations have the same unique solution if Γ is C0 open set.)



Overview of Talk

1 The screen/aperture problems and applications

2 Warm up
Examples/questions to get us thinking
The main questions – look ahead to answers

3 PDE and BIE formulations
for regular screens
for rough screens, e.g. fractal or fractal boundary

4 Convergence of regular screens to irregular, prefractals to fractals?

5 Recap, references & many open problems



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

ΓL

x1

x2
x3

Start with Lipschitz open ΓL ⊂ Γ∞. Define single-layer operators

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ .



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ .



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ , so∫

ΓL
SLψ φ ds = −

∫
ΓL
ui|ΓL

φ ds, for φ ∈ C∞0 (Γ◦) .



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ , so∫

ΓL
SLψ φ ds = −

∫
ΓL
ui|ΓL

φ ds, for φ ∈ C∞0 (Γ◦) .

Let 〈·, ·〉 be the standard duality pairing on H1/2(ΓL)× H̃−1/2(ΓL):
〈φ1, φ2〉 =

∫
ΓL
φ1φ2ds if φ2 ∈ L2(ΓL).



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ so

〈SLψ, φ〉 = −〈ui|ΓL
, φ〉, for φ ∈ C∞0 (Γ◦) .

Let 〈·, ·〉 be the standard duality pairing on H1/2(ΓL)× H̃−1/2(ΓL):
〈φ1, φ2〉 =

∫
ΓL
φ1φ2ds if φ2 ∈ L2(ΓL).



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ so

〈SLψ, φ〉 = −〈ui|ΓL
, φ〉, for φ ∈ H̃−1/2(Γ◦) .

Let 〈·, ·〉 be the standard duality pairing on H1/2(ΓL)× H̃−1/2(ΓL):
〈φ1, φ2〉 =

∫
ΓL
φ1φ2ds if φ2 ∈ L2(ΓL).



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ so

〈SLψ, φ〉 = −〈ui|ΓL
, φ〉, for φ ∈ H̃−1/2(Γ◦) .

Theorem (Ha Duong 1992, C-W & Hewett 2015)

For some c > 0, |〈SLφ, φ〉| ≥ c‖φ‖2H̃−1/2(ΓL)
, for φ ∈ H̃−1/2(ΓL)



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ so

〈SLψ, φ〉 = −〈ui|ΓL
, φ〉, for φ ∈ H̃−1/2(Γ◦) .

Case 1: H̃−1/2(Γ◦) = H
−1/2

Γ
, e.g. Γ is open and C0.

BIE-V has exactly one solution by Lax-Milgram.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ so

〈SLψ, φ〉 = −〈ui|ΓL
, φ〉, for φ ∈ H̃−1/2(Γ◦) .

Case 1a: Γ◦ = ∅ and {0} = H̃−1/2(Γ◦) = H
−1/2

Γ
, e.g. Γ is countable or

dimH(Γ) < n− 1. BIE-V has only the zero solution, us = 0.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ so

〈SLψ, φ〉 = −〈ui|ΓL
, φ〉, for φ ∈ H̃−1/2(Γ◦) .

Case 2: H̃−1/2(Γ◦) $ H
−1/2

Γ
.

BIE-V has infinitely many solutions.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ so

〈SLψ, φ〉 = −〈ui|ΓL
, φ〉, for φ ∈ H̃−1/2(Γ◦) .

Case 2a: Γ◦ = ∅ and {0} = H̃−1/2(Γ◦) $ H
−1/2

Γ
, e.g. dimH(Γ) > n− 1, e.g.

Γ = . BIE-V has infinitely many solutions.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ H−1/2

Γ
and SLψ|Γ◦ = −ui|Γ◦ so

〈SLψ, φ〉 = −〈ui|ΓL
, φ〉, for φ ∈ H̃−1/2(Γ◦) .

Case 2: H̃−1/2(Γ◦) $ H
−1/2

Γ
. To make BIE-V well-posed, choose as the trial

and test space a single closed subspace V with H̃−1/2(Γ◦) ⊆ V ⊆ H−1/2

Γ
.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ V and SLψ|Γ◦ = −ui|Γ◦ so
〈SLψ, φ〉 = −〈ui|ΓL

, φ〉, for φ ∈ H̃−1/2(Γ◦) .

Case 2: H̃−1/2(Γ◦) $ H
−1/2

Γ
. To make BIE-V well-posed, choose as the trial

and test space a single closed subspace V with H̃−1/2(Γ◦) ⊆ V ⊆ H−1/2

Γ
.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ V and SLψ|Γ◦ = −ui|Γ◦ so
〈SLψ, φ〉 = −〈ui|ΓL

, φ〉, for φ ∈V .

Case 2: H̃−1/2(Γ◦) $ H
−1/2

Γ
. To make BIE-V well-posed, choose as the trial

and test space a single closed subspace V with H̃−1/2(Γ◦) ⊆ V ⊆ H−1/2

Γ
.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ V and SLψ|Γ◦ = −ui|Γ◦ so
〈SLψ, φ〉 = −〈ui|ΓL

, φ〉, for φ ∈V .

Case 2: H̃−1/2(Γ◦) $ H
−1/2

Γ
. To make BIE-V well-posed, choose as the trial

and test space a single closed subspace V with H̃−1/2(Γ◦) ⊆ V ⊆ H−1/2

Γ
.

Infinitely many (ℵ0) choices; distinct choices have distinct solutions for a.e. d.



BIE for General Bounded Sound Soft Screen Γ ⊂ Rn

Γ

ΓL

x1

x2
x3

Now add the bounded Γ ⊂ ΓL ⊂ Γ∞. Remember Γ = Γ◦ ∪ ∂Γ.

SLφ(x) =

∫
ΓL

Φ(x, y)φ(y) ds(y), and SLφ = (γ±Sφ)|ΓL
.

We want [∂nu
s] ∈ H−1/2

Γ
and γ±u

s|Γ◦ = −ui|Γ◦ , so ...

BIE-V: Try us = SLψ with ψ ∈ V and SLψ|Γ◦ = −ui|Γ◦ so
〈SLψ, φ〉 = −〈ui|ΓL

, φ〉, for φ ∈V .

Case 2: H̃−1/2(Γ◦) $ H
−1/2

Γ
. To make BIE-V well-posed, choose as the trial

and test space a single closed subspace V with H̃−1/2(Γ◦) ⊆ V ⊆ H−1/2

Γ
.

But are any of these infinitely many solutions physical?



Overview of Talk

1 The screen/aperture problems and applications

2 Warm up
Examples/questions to get us thinking
The main questions – look ahead to answers

3 PDE and BIE formulations
for regular screens
for rough screens, e.g. fractal or fractal boundary

4 Convergence of regular screens to irregular, prefractals to fractals?

5 Recap, references & many open problems



Prefractal convergence from above

Suppose Rn ⊃ Γ1 ⊃ Γ2 ⊃ ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Γ1 =

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =
∞⋂
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H
−1/2

Γ
.

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .



Prefractal convergence from above

Suppose Rn ⊃ Γ1 ⊃ Γ2 ⊃ ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Γ2 =

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =

∞⋂
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H
−1/2

Γ
.

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .



Prefractal convergence from above

Suppose Rn ⊃ Γ1 ⊃ Γ2 ⊃ ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Γ3 =

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =
∞⋂
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H
−1/2

Γ
.

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .



Prefractal convergence from above

Suppose Rn ⊃ Γ1 ⊃ Γ2 ⊃ ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Γ3 =

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =

∞⋂
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H
−1/2

Γ
.

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .



Prefractal convergence from above

Suppose Rn ⊃ Γ1 ⊃ Γ2 ⊃ ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Γ3 = Γ =

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =

∞⋂
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H
−1/2

Γ
.

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .



Prefractal convergence from above

Suppose Rn ⊃ Γ1 ⊃ Γ2 ⊃ ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Γ3 = Γ =

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =

∞⋂
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H
−1/2

Γ
.

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .



Prefractal convergence from above

Suppose Rn ⊃ Γ1 ⊃ Γ2 ⊃ ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Γ3 = Γ =

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =

∞⋂
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H
−1/2

Γ
.

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .

Theorem (C-W, Hewett 2016)

This solution coincides with the solution to BVP-w
in which the boundary condition is enforced by u ∈W 1,loc

0 (D).



Prefractal convergence from above

Suppose Rn ⊃ Γ1 ⊃ Γ2 ⊃ ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Γ3 = Γ =

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =

∞⋂
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H
−1/2

Γ
.

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .

Theorem (C-W, Hewett 2016)

us = 0 if Γ is countable or dimH Γ < n− 1.
us 6= 0 if dimH Γ > n− 1.



Prefractal convergence from above

Suppose Rn ⊃ Γ1 ⊃ Γ2 ⊃ ... are closed sets, each sufficiently regular so that
solutions of all formulations coincide, e.g (with n = 2)

Γ3 = Γ = dimH Γ = log2 3 > n− 1.

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =

∞⋂
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H
−1/2

Γ
.

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .

Theorem (C-W, Hewett 2016)

us = 0 if Γ is countable or dimH Γ < n− 1.
us 6= 0 if dimH Γ > n− 1.



Prefractal convergence from above: n = 1,
Γ = “Middle Third” Cantor set, dimH Γ = log3 2 > 0

Accurate spectral computations by Mikaël Slevinsky (Slevinsky, Olver 2017).
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Prefractal convergence from above: n = 1,
Γ = “Middle Third” Cantor set, dimH Γ = log3 2 > 0

Accurate spectral computations by Mikaël Slevinsky (Slevinsky, Olver 2017).
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Prefractal convergence from above: n = 1,
Γ = “Middle Third” Cantor set, dimH Γ = log3 2 > 0

Accurate spectral computations by Mikaël Slevinsky (Slevinsky, Olver 2017).

Γ3 and Reus3



Prefractal convergence from above: n = 1,
Γ = “Middle Third” Cantor set, dimH Γ = log3 2 > 0

Accurate spectral computations by Mikaël Slevinsky (Slevinsky, Olver 2017).
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Prefractal convergence from above: n = 1,
Γ = “Middle Third” Cantor set, dimH Γ = log3 2 > 0

Accurate spectral computations by Mikaël Slevinsky (Slevinsky, Olver 2017).

Γ5 and Reus5



Prefractal convergence from above: n = 1,
Γ = “Middle Third” Cantor set, dimH Γ = log3 2 > 0

Accurate spectral computations by Mikaël Slevinsky (Slevinsky, Olver 2017).

Γ6 and Reus6



Back to Example 3, Cantor dust...

Let C2
α := Cα × Cα ⊂ R2 denote the “Cantor dust” (0 < α < 1/2):

1 α

C2
α is uncountable and closed, with zero area (zero Lebesgue measure).

Furthermore, dimH(C2
α) =

log(4)

log(1/α)
> n− 1⇔ α > 1/4

Question: Is the scattered field zero or non-zero for the sound-soft scat-
tering problem with Γ = C2

α?

Answer: ZERO, if 0 < α ≤ 1/4; NON-ZERO, in general, if 1/4 < α < 1/2.
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Numerical results - Cantor dust α = 1/3 (us 6= 0)

k = 8, prefractal level 0
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Numerical results - Cantor dust α = 1/10 (us = 0)

k = 8, prefractal level 0



Numerical results - Cantor dust α = 1/10 (us = 0)

k = 8, prefractal level 1



Numerical results - Cantor dust α = 1/10 (us = 0)

k = 8, prefractal level 2



Numerical results - Cantor dust α = 1/10 (us = 0)

k = 8, prefractal level 3



Numerical results - Cantor dust α = 1/10 (us = 0)

k = 8, prefractal level 4



Numerical results - Cantor dust α = 1/10 (us = 0)

k = 8, prefractal level 5



Prefractal convergence from below

Suppose Γ1 ⊂ Γ2 ⊂ ... are bounded open sets, each sufficiently regular so that
solutions of all formulations coincide, e.g

Γ1 =

Let us1, us2, ... denote the corresponding scattered fields, and let Γ =
∞⋃
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H̃−1/2(Γ◦).

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .

u := ui + us not in W 1.loc
0 (D) if H̃−1/2(Γ◦) $ H

−1/2

Γ
.

Open problem: Is H̃−1/2(Γ◦) = H
−1/2

Γ
for the Koch snowflake?
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Let us1, us2, ... denote the corresponding scattered fields, and let Γ =
∞⋃
m=1

Γj , e.g.

Theorem (C-W, Hewett, Moiola 2017, C-W, Hewett 2016)

usj → us as j →∞, uniformly on closed subsets of D, where us is the solution to

BIE-V with V = H̃−1/2(Γ◦).

BIE-V: Set us = SLψ where ψ ∈ V satisfies 〈SLψ, φ〉 = −〈ui|Γ, φ〉, for φ ∈ V .

u := ui + us not in W 1.loc
0 (D) if H̃−1/2(Γ◦) $ H

−1/2

Γ
.

Open problem: Is H̃−1/2(Γ◦) = H
−1/2

Γ
for the Koch snowflake?
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Variant on Example 1: Infinite sound hard screen with
aperture Γ = “Middle Third” Cantor set

By Babinet’s principle

transmitted field for aperture Γj = − scattered field for sound soft screen Γj .

Aperture Γ1 and Reu1



Variant on Example 1: Infinite sound hard screen with
aperture Γ = “Middle Third” Cantor set

By Babinet’s principle

transmitted field for aperture Γj = − scattered field for sound soft screen Γj .

Aperture Γ2 and Reu2



Variant on Example 1: Infinite sound hard screen with
aperture Γ = “Middle Third” Cantor set

By Babinet’s principle

transmitted field for aperture Γj = − scattered field for sound soft screen Γj .

Aperture Γ3 and Reu3



Variant on Example 1: Infinite sound hard screen with
aperture Γ = “Middle Third” Cantor set

By Babinet’s principle

transmitted field for aperture Γj = − scattered field for sound soft screen Γj .

Aperture Γ4 and Reu4



Variant on Example 1: Infinite sound hard screen with
aperture Γ = “Middle Third” Cantor set

By Babinet’s principle

transmitted field for aperture Γj = − scattered field for sound soft screen Γj .

Aperture Γ5 and Reu5



Variant on Example 1: Infinite sound hard screen with
aperture Γ = “Middle Third” Cantor set

By Babinet’s principle

transmitted field for aperture Γj = − scattered field for sound soft screen Γj .

Aperture Γ6 and Reu6



Variant on Example 1: Infinite sound hard screen with
aperture Γ = “Middle Third” Cantor set

By Babinet’s principle

transmitted field for aperture Γj = − scattered field for sound soft screen Γj .

Aperture Γ7 and Reu7



Recap – a few take homes

All standard formulations coincide for the sound soft problem if Γ is a C0

open set

If H̃−1/2(Γ◦) $ H
−1/2

Γ
there are infinitely many BIE solutions corresponding to different trial and
test space V with H̃−1/2(Γ◦) ⊂ V ⊂ H

−1/2

Γ

V = H
−1/2

Γ
is the right choice for approximation from above, e.g. Sierpinski

triangle, and implies u ∈W 1,loc
0 (D)

V = H̃−1/2(Γ◦) is the right choice for approximation from below, e.g. Koch
snowflake, but implies u 6∈W 1,loc

0 (D)

Sound can get through holes in both sound soft and sound hard screens, even
when the apertures have no interior points.

Sound soft screens with zero surface area can scatter – and then
[∂nu] ∈ H−1/2

Γ
is not a function

This is interesting and surprising stuff, where subtle properties of Sobolev
spaces have physical implications!
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What else have we done?

I haven’t talked today about:

Hypersingular integral equations for sound hard fractal screens

Proving that H̃±1/2(Γ◦) = H
±1/2

Γ
for non-C0 screens, e.g.

BVP Formulations that are equivalent to BIE-V for each choice of V

Interpreting BIE-V as an equation Sψ = −PV ∗ui, where S : V → V ∗

“Swiss Cheese” screens!

See the references, or talk to me or Dave, for details.



Many Open questions

At what rate do prefractal solutions converge?
Numerical analysis in the joint limit of prefractal level and mesh refinement?
Regularity results for fractal solution?
Curved screens?
Maxwell case?

Inverse problems? ...
. . .



A Final Reference

Lord Rayleigh, “Theory of Sound”, 2nd Ed., Vol. II, Macmillan, New York, 1896:
the 19th century mathematics of screens and apertures

, pp.139-140.

This is precisely BIE-V, admittedly not worrying about fractals or function spaces!
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Example 4: “Swiss cheese” aperture in sound soft screen

Infinite sound soft (u = 0) screen with circular aperture of radius one:

Take a sequence of points x1, x2, x3, ... that are dense in the aperture

Fill in a circle of radius rj centred on xj .
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Infinite sound soft (u = 0) screen with circular aperture of radius one:
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Example 4: “Swiss cheese” aperture in sound soft screen

Infinite sound soft (u = 0) screen with circular aperture of radius one:

Take a sequence of points x1, x2, x3, ... that are dense in the aperture

Fill in a circle of radius rj centred on xj .

Question: Is the transmitted field zero or non-zero in the limit? (The
limiting aperture is a so-called Swiss cheese.)



Example 4: “Swiss cheese” aperture in sound soft screen

Infinite sound soft (u = 0) screen with circular aperture of radius one:

Take a sequence of points x1, x2, x3, ... that are dense in the aperture

Fill in a circle of radius rj centred on xj .

Argument A: Limiting Swiss cheese aperture has area

A ≥ π(1− r2
1 − r2

2...). If A > 0 then sound transmitted?



Example 4: “Swiss cheese” aperture in sound soft screen

Infinite sound soft (u = 0) screen with circular aperture of radius one:

Take a sequence of points x1, x2, x3, ... that are dense in the aperture

Fill in a circle of radius rj centred on xj .

Argument B: Limiting aperture has empty interior and u is continuous
so u = 0 also on the aperture and so no transmitted wave?
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