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We propose and analyse a hybrid numerical–asymptotic hp boundary element method (BEM) for
time-harmonic scattering of an incident plane wave by an arbitrary collinear array of sound-soft two-
dimensional screens. Our method uses an approximation space enriched with oscillatory basis functions,
chosen to capture the high-frequency asymptotics of the solution. We provide a rigorous frequency-
explicit error analysis which proves that the method converges exponentially as the number of degrees of
freedom N increases, and that to achieve any desired accuracy it is sufficient to increase N in proportion
to the square of the logarithm of the frequency as the frequency increases (standard BEMs require N to
increase at least linearly with frequency to retain accuracy). Our numerical results suggest that fixed accu-
racy can in fact be achieved at arbitrarily high frequencies with a frequency-independent computational
cost, when the oscillatory integrals required for implementation are computed using Filon quadrature. We
also show how our method can be applied to the complementary ‘breakwater’ problem of propagation
through an aperture in an infinite sound-hard screen.

Keywords: high-frequency scattering; hybrid numerical–asymptotic boundary element method;
diffraction; screen; strip; aperture; breakwater.

1. Introduction

The problem of time-harmonic scalar wave scattering of an incident plane wave by a two-dimensional
sound-soft screen, and the related problem of scattering by an aperture in an infinite sound-hard screen,
are amongst the most widely studied scattering problems. They are the simplest canonical problems that
exhibit multiple diffraction, yet have applications in acoustics (see, e.g., Tolstoy, 1989b; Li & Wong,
2005), electromagnetics (see, e.g., Davis & Chew, 2008; Vorobyov & Lytvynenko, 2011) and water
waves (the ‘breakwater’ problem; see, e.g., Biggs et al., 2000, Linton & McIver, 2001, Chapter 4.7).
In this paper, we propose a numerical method (supported by a complete analysis) that we believe to be
the first method of any kind (numerical or analytical) for this problem that is provably effective at all
frequencies. Precisely, we prove that increasing the number of degrees of freedom in proportion to the
square of the logarithm of the frequency is sufficient to maintain any desired accuracy as the frequency
increases. Moreover, our numerical experiments suggest that, in practice, with a fixed number of degrees
of freedom the accuracy stays fixed or even improves as frequency increases.

We consider the two-dimensional problem of scattering of a time-harmonic incident plane wave

ui(x) := eikx·d, x = (x1, x2) ∈ R
2,
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FREQUENCY-INDEPENDENT BEM FOR SCATTERING BY TWO-DIMENSIONAL SCREENS 1699

where k > 0 is the wavenumber (proportional to frequency) and d = (d1, d2) ∈ R
2 is a unit direction

vector, by a sound-soft screen Γ , a bounded and relatively open nonempty subset of Γ∞ := {x ∈ R
2 :

x2 = 0}. Here the propagation domain is the set D := R
2 \ Γ̄ , where Γ̄ denotes the closure of Γ . We also

consider the complementary problem of scattering due to an aperture Γ in a sound-hard screen occupy-
ing Γ∞ \ Γ̄ . In this case the propagation domain is D′ := (R2 \ Γ∞) ∪ Γ . In both cases we assume that
Γ is the union of a finite number of disjoint open intervals, i.e.,

Γ = {(x1, 0) ∈ R
2 : x1 ∈ Γ̃ }, Γ̃ =

ni⋃
j=1

(s2j−1, s2j), (1.1)

where ni � 1 is the number of intervals making up Γ , and 0 = s1 < s2 < · · ·< s2ni = L := diamΓ .
(In the case ni = 1, L simply represents the length of the screen.) For each j = 1, . . . , ni, we set
Γj := (s2j−1, s2j)× {0} ⊂ R

2 and Lj := s2j − s2j−1.
Our analysis is in the context of Sobolev spaces, the notation and basic definitions for which are set

out in Section 2. In what follows, let U+ and U− denote, respectively, the upper and lower half-planes,
i.e., U+ := {x ∈ R

2 : x2 > 0} and U− := R
2 \ Ū+, and let γ± and ∂±

n denote, respectively, the Dirichlet
and Neumann traces from U± onto Γ∞ (defined precisely in Section 2).

For the screen scattering problem, the boundary value problem (BVP) to be solved is the following.

Definition 1.1 (Problem P) Find u ∈ C2(D) ∩ W 1
loc(D) such that

Δu + k2u = 0 in D, (1.2)

u = 0 on Γ , (1.3)

and the scattered field us := u − ui satisfies the Sommerfeld radiation condition (see, e.g., Chandler-
Wilde et al., 2012, (2.9)). By (1.3), we mean, precisely, that γ±(χu)|Γ = 0, for every χ ∈ C∞

0 (R
2)

(where for integer n � 1, C∞
0 (R

n) is the set of those u ∈ C∞(Rn) that are compactly supported).

In Fig. 1 we plot the total field u for Problem P for a particular scattering configuration (with Γ
defined precisely in Section 7), for two different values of k.

For the aperture scattering problem, the BVP to be solved is the following (for definiteness we
assume in this case that d2 < 0, so the incident wave arrives from the region x2 > 0, i.e., from above the
screen).

Definition 1.2 (Problem P′) Find u′ ∈ C2(D′) ∩ W 1
loc(D

′) such that

Δu′ + k2u′ = 0 in D′, (1.4)

∂u′/∂n = 0 on Γ∞ \ Γ̄ (1.5)

and

ud(x) :=
{

u′(x)− (ui(x)+ ur(x)), x ∈ U+,

u′(x), x ∈ U−,
(1.6)

satisfies the Sommerfeld radiation condition, where

ur(x) := eikx·d′
, x ∈ R

2, with d′ := (d1, −d2).

By (1.5) we mean, precisely, that ∂±
n (χu′)|Γ∞\Γ̄ = 0, for every χ ∈ C∞

0 (R
2).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/35/4/1698/1799608 by Bulm
ershe Library user on 10 February 2020



1700 D. P. HEWETT ET AL.

Fig. 1. Total field u, solving Problem P, for d = (1/
√

2, −1/
√

2) with k = 5 (upper) and k = 20 (lower).

The solutions to Problems P and P′ are very closely related: as will be made explicit in Theorem 3.5,
once the solution to one problem is known, the solution to the other follows immediately (this is a
manifestation of Babinet’s principle). In Fig. 2 we plot the total field u′ for the aperture Problem P′ for
the same Γ , d and k as in Fig. 1. We remark that the field ud in Problem P′ can be thought of as a
‘diffracted’ field, being the result of subtracting from the total field u′ the incident and reflected plane
waves ui and ur in the region x2 > 0.

Our approach to solving Problems P and P′ is to reformulate the BVPs as a boundary inte-
gral equation (BIE) on Γ (see Section 3), which we then solve numerically by a hybrid numerical–
asymptotic (HNA) Galerkin boundary element method (BEM). The key idea of the HNA approach is to
use knowledge of the high-frequency asymptotic behaviour of the solution on Γ to incorporate appro-
priate oscillations into the approximation space in such a way that only nonoscillatory functions need
to be approximated numerically, so as to achieve a good approximation for a relatively small number of
degrees of freedom. This approach has been successfully applied to a range of scattering problems, e.g.,
scattering by smooth convex two-dimensional obstacles (Dominguez et al., 2007), convex polygons
(Chandler-Wilde & Langdon, 2007; Hewett et al., 2013) and nonconvex polygons (Chandler-Wilde
et al., 2015), and was the subject of the recent survey paper, Chandler-Wilde et al. (2012). We believe
that the current paper represents the first application of the HNA methodology, supported by a full
numerical analysis, to problems of scattering by screens.

While the numerical method we propose closely resembles that proposed in Hewett et al. (2013)
for scattering by convex polygons, the numerical analysis for the screen problem is significantly more
challenging than that in Hewett et al. (2013) and other previous work. The key difference here is that,
due to the strong singularity induced by the edge of the screen, the solution to our BIE does not lie in
L2(Γ ) (as is the case for all previous numerical analyses of HNA methods), and thus we must derive

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article-abstract/35/4/1698/1799608 by Bulm
ershe Library user on 10 February 2020



FREQUENCY-INDEPENDENT BEM FOR SCATTERING BY TWO-DIMENSIONAL SCREENS 1701

Fig. 2. Total field u′, solving Problem P′, for d = (1/
√

2, −1/
√

2) with k = 5 (upper) and k = 20 (lower).

regularity estimates, best approximation estimates and analyse the BIE (proving continuity and coer-
civity estimates) all in the context of appropriate fractional Sobolev spaces. This requires new ideas
compared to previous work for closed surfaces (Hewett et al., 2013; Chandler-Wilde et al., 2015).

An outline of the paper is as follows: we begin in Section 2 by reviewing details of the Sobolev
spaces in which our analysis holds. In Section 3 we reformulate Problems P and P′ as a BIE on Γ ,
namely a first-kind equation involving the single-layer boundary integral operator Sk . We also state
k-explicit continuity and coercivity estimates for Sk (first stated in Hewett & Chandler-Wilde, 2013
and recently proved in Chandler-Wilde & Hewett, 2013, 2014 for a much more general class of three-
dimensional screens) which are vital for our numerical analysis. Regularity results for the solution of
the BIE are stated in Section 4, where we show how to express the solution as the sum of products
of (known) oscillatory functions with (unknown) nonoscillatory amplitudes, for which we have precise
regularity estimates. Deriving these estimates requires us to establish a bound on the supremum of u
over the whole propagation domain D; because of the strong edge singularity this is considerably more
complicated than the analogous calculations for convex polygons in Hewett et al. (2013), with separate
bounds required close to and away from the screen. The results of Section 4 are used in Section 5 to
design our hp HNA approximation space, for which we prove rigorous best approximation estimates
showing that the number of degrees of freedom required to achieve any prescribed level of accuracy
grows only logarithmically with respect to k as k → ∞. In Section 6 we describe the Galerkin BEM, and
derive error estimates for the Galerkin solution, the k-dependence of which closely mimics that of the
best approximation estimates. Numerical results supporting our theory are provided in Section 7; these
demonstrate that in practice the computational cost required to achieve a fixed accuracy is essentially
independent of the wavenumber k. Implementation details and further numerical results (for single scat-
terers, i.e., ni = 1) can be found in Twigger (2013), and related algorithmic ideas for three-dimensional
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1702 D. P. HEWETT ET AL.

screens can be found in Chandler-Wilde et al. (2012, Section 7.6). We remark that we believe that
essentially the same numerical method proposed here could be extended to different boundary condi-
tions, e.g., Neumann, impedance, as could much of the analysis (in particular, the regularity and best
approximation results), but we leave this to future work.

Given the wide range of applications of the problem, and the surprising apparent lack of cross-
fertilization of ideas in this area between the acoustics, electromagnetics and water-waves communities,
we feel it beneficial to conclude this introductory section with a brief review of alternative analytical,
numerical and asymptotic methods proposed in the literature to date.

In the case ni = 1, both Problems P and P′ can be solved via separation of variables in elliptical
coordinates, viewing the screen as a degenerate ellipse. This allows the representation of the solution
u as an infinite series of Mathieu functions (see, e.g., Bowman et al., 1969, Chapter 4). However, the
series is not straightforward to evaluate in practice, particularly when k is large, even after an application
of Watson’s transformation (Ursell, 1968; Serdyuk, 2011; Lintner, 2013). There have been many other
attempts to derive exact representations for the solution of this and related problems (see, e.g., Tolstoy,
1989a,b; Serdyuk, 2011 and in particular the review article Li & Wong, 2005), but to the best of our
knowledge none are readily computable across the frequency spectrum.

It is also possible to construct an exact solution for the case where the screen consists of an infi-
nite array of identical evenly spaced components (see, e.g., Dalrymple & Martin, 1990; Abul-Azm &
Williams, 1997), but, other than for this very specific case, no such formula is known for the case
ni > 1. Much effort has gone into the development of embedding schemes that represent the solution for
an arbitrary incident angle in terms of the solution to a small number of problems for specific incident
angles (see, e.g., Biggs et al., 2000; Shanin, 2003), but these approaches still require a solution to those
specific problems. Thus, in general, both Problems P and P′ must be solved either numerically, or else
asymptotically in the high-frequency (k → ∞) or low-frequency (k → 0) limit.

Asymptotic and numerical approaches are usually viewed as being rather complementary. High-
frequency asymptotic approaches (see, e.g., Wolfe, 1970; Goldberg et al., 1997; Hannay & Thain, 2003)
are not error-controllable for fixed k, but their accuracy improves as k increases. In contrast, standard
(piecewise polynomial) numerical schemes (see, e.g., Stephan & Wendland, 1984; Stephan & Suri,
1989) are error-controllable for fixed k, but their computational cost grows at least linearly with respect
to k as k increases. (Acceleration techniques such as the fast multipole method may make ‘brute-force’
numerical calculations feasible at relatively large k, but they do not change the linear growth in com-
putational cost as k increases.) This issue is well documented—see, e.g., Chandler-Wilde et al. (2012)
and the many references therein. But the message of the current paper is that, by carefully hybridizing
the two approaches, one can design numerical methods which perform well across the whole frequency
range.

To the best of our knowledge, the only other numerical scheme for the screen problem that shows
anything approaching similar performance (in terms of k-dependence) to that achieved here is that
proposed by Davis & Chew (2008). They exploit the same decomposition as us (motivated by the
geometrical theory of diffraction), combined with a coordinate transform to concentrate mesh nodes
near strip edges, to derive a numerical solution that is, in their words, ‘error-controllable and exhibits
a bounded error over the full range of frequencies’. The results given in Davis & Chew (2008), for a
single strip of widths ranging from half a wavelength up to 1000 wavelengths, are indeed impressive,
but the method is not supported by analysis. We must also mention schemes proposed by Nye (2002)
and Shanin & Valyaev (2011). A numerical scheme is proposed in Nye (2002, Section 11) for which,
by judiciously subtracting and then adding the geometrical optics (GO) solution, an improvement in
accuracy can be achieved at high frequencies; in this case, however, the dependence of the accuracy and
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FREQUENCY-INDEPENDENT BEM FOR SCATTERING BY TWO-DIMENSIONAL SCREENS 1703

computational cost on the frequency and discretization parameters is not made clear. Shanin & Valyaev
(2011) present a novel method (without analysis) that combines a numerical scheme with an asymptotic
series; they claim that their scheme is more efficient than a (standard) BIE method at high frequencies,
but the accuracy does appear to deteriorate as frequency increases.

In a recent series of papers (Bruno & Lintner, 2012; Bruno & Lintner, 2013; Lintner & Bruno, 2013),
Bruno and Lintner describe a new framework for problems of scattering by open surfaces, including the
sound-soft and sound-hard screen. They introduce new weighted integral operators, and derive second-
kind integral equations for both the sound-soft and sound-hard problems (as opposed to the first-kind
integral equation we solve here). The enhanced regularity allows the application of high-order quadra-
ture rules, and also the use of efficient iterative solvers, leading to significantly reduced computational
cost compared to more classical formulations such as that considered here. In particular, this allows
the solution of problems over a wider range of frequencies (in two dimensions and three dimensions)
than would be possible with more classical approaches, this improvement being particularly noticeable
for the sound-hard case. We note, however, that although the algorithms described in Bruno & Lintner
(2012; 2013) are very efficient, the computational cost still grows rapidly as frequency increases, com-
pared to the frequency-independent computational cost that we see in our scheme.

In future work, it might be of interest to use elements of our approximation space (defined
in Section 5) with the weighted integral operators proposed by Bruno & Lintner (2012) and Lintner
& Bruno (2013), to see what gains in efficiency might be possible. But generalizing our analysis would
require some extra work, because while our best approximation results are independent of the integral
equation formulation, the fact that the Galerkin BEM achieves a quasi-optimal approximation (cf. (6.2))
is not.

2. Sobolev spaces

Our analysis is in the context of Sobolev spaces Hs(Γ ) and H̃ s(Γ ) for s ∈ R. We set out here our
notation and the basic definitions; for more detail, see Chandler-Wilde & Hewett (2013, Section 2).
For s ∈ R and integer n � 1 we define H s(Rn) to be the space of those tempered distributions u on R

n

whose Fourier transform satisfies
∫

Rn(1 + |ξ |2)s |û(ξ)|2 dξ <∞. Our convention regarding the Fourier
transform is that, for u ∈ C∞

0 (R
n), û(ξ) := (2π)−n/2

∫
Rn e−iξ ·xu(x) dx, for ξ ∈ R

n. In line with many other
analyses of high-frequency scattering, e.g., Ihlenburg (1998), we work with wavenumber-dependent
norms. Specifically, we use the norm on H s(Rn) defined by

‖u‖2
Hs

k (R
n) :=

∫
Rn

(k2 + |ξ |2)s |û(ξ)|2 dξ . (2.1)

We emphasize that ‖·‖Hs(Rn) := ‖·‖Hs
1(R

n) is the standard norm on H s(Rn), but that, for k > 0, ‖·‖Hs
k (R

n)

is another, equivalent, norm on H s(Rn). Explicitly,

min{1, ks} ‖u‖Hs(Rn) � ‖u‖Hs
k (R

n) � max{1, ks} ‖u‖Hs(Rn) , for u ∈ H s(Rn).

It is standard that C∞
0 (R

n) is a dense subset of H s(Rn). It is also standard (see, e.g., McLean, 2000) that
H−s(Rn) is a natural isometric realization of (H s(Rn))∗, the dual space of bounded antilinear functionals
on H s(Rn), in the sense that the mapping u → u∗ from H−s(Rn) to (H s(Rn))∗, defined by

u∗(v) := 〈u, v〉H−s(Rn)×Hs(Rn) :=
∫

Rn

û(ξ)v̂(ξ) dξ , v ∈ H s(Rn), (2.2)
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1704 D. P. HEWETT ET AL.

is an isometric isomorphism. The duality pairing 〈·, ·〉H−s(Rn)×Hs(Rn) defined in (2.2) represents the natural
extension of the L2(Rn) inner product in the sense that if uj, vj ∈ L2(Rn) for each j and uj → u and vj → v
as j → ∞, with respect to the norms on H−s(Rn) and Hs(Rn), respectively, then 〈u, v〉H−s(Rn)×Hs(Rn) =
limj→∞(uj, vj)L2(Rn).

We define two Sobolev spaces on Ω when Ω is a nonempty open subset of R
n. First, let

H s(Ω) := {U |Ω : U ∈ H s(Rn)},
where U |Ω denotes the restriction of the distribution U toΩ (cf., e.g., McLean, 2000, p. 66), with norm

‖u‖Hs
k (Ω)

:= inf
U∈H s(Rn), U |Ω=u

‖U‖Hs
k (R

n).

Then C∞
comp(Ω) := {U |Ω : U ∈ C∞

0 (R
n)} is a dense subset of H s(Ω). Second, let H̃ s(Ω) denote the

closure of C∞
0 (Ω) := {U ∈ C∞

0 (R
n) : supp(U)⊂Ω} in the space H s(Rn), equipped with the norm

‖ · ‖H̃ s
k (Ω)

:= ‖ · ‖H s
k (R

n). When Ω is sufficiently regular (e.g., when Ω is C0; cf. McLean, 2000,

Theorem 3.29) we have H̃ s(Ω)= {u ∈ H s(Rn) : supp u ⊂ Ω̄}.
For s ∈ R and Ω any open, nonempty subset of R

n it holds that

H−s(Ω)= (H̃ s(Ω))∗ and H̃s(Ω)= (H−s(Ω))∗, (2.3)

in the sense that the natural embeddings I : H−s(Ω)→ (H̃ s(Ω))∗ and I∗ : H̃s(Ω)→ (H−s(Ω))∗,

(Iu)(v) := 〈u, v〉H−s(Ω)×H̃ s(Ω) := 〈U , v〉H−s(Rn)×H s(Rn),

(I∗v)(u) := 〈v, u〉H̃s(Ω)×H−s(Ω) := 〈v, U〉Hs(Rn)×H−s(Rn),

where U ∈ H−s(Rn) is any extension of u ∈ H−s(Ω) with U |Ω = u, are unitary isomorphisms. Also,

|〈u, v〉H−s(Ω)×H̃ s(Ω)| = |〈v, u〉H̃s(Ω)×H−s(Ω)| � ‖u‖H−s
k (Ω) ‖v‖H̃s

k (Ω)
, u ∈ H−s(Ω), v ∈ H̃ s(Ω). (2.4)

We remark that the representations (2.3) for the dual spaces are well known when Ω is sufficiently reg-
ular. However, it does not appear to be widely appreciated, at least in the ‘numerical analysis for partial
differential equations’ community, that (2.3) holds without any constraint on the geometry ofΩ . A proof
of this general result has been provided recently in Chandler-Wilde & Hewett (2013, Theorem 2.1).

Sobolev spaces can also be defined, for s � 0, as subspaces of L2(Rn) satisfying constraints on weak
derivatives. In particular, given a nonempty open subset Ω of R

n, let

W 1(Ω) := {u ∈ L2(Ω) : ∇u ∈ L2(Ω)},

where ∇u is the weak gradient. Note that W 1(Rn)= H1(Rn) with

‖u‖2
H1

k (R
n)

=
∫

Rn

(|∇u(x)|2 + k2|u(x)|2) dx.

Further (see, e.g., McLean, 2000, Theorem 3.30), W 1(Ω)= H1(Ω) whenever Ω is a Lipschitz open
set, in the sense of, e.g., Sauter & Schwab (2011) and Chandler-Wilde et al. (2012). It is convenient to
define

W 1
loc(Ω) := {u ∈ L2

loc(Ω) : ∇u ∈ L2
loc(Ω)},
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FREQUENCY-INDEPENDENT BEM FOR SCATTERING BY TWO-DIMENSIONAL SCREENS 1705

where L2
loc(Ω) denotes the set of locally integrable functions u on Ω for which

∫
G |u(x)|2dx<∞ for

every bounded measurable G ⊂Ω .
To define Sobolev spaces on the screen/aperture Γ defined by (1.1) we make the natural asso-

ciations of Γ∞ with R and of Γ ⊂ Γ∞ with Γ̃ ⊂ R and set H s(Γ∞) := H s(R), Hs(Γ ) := Hs(Γ̃ ) and
H̃s(Γ ) := H̃s(Γ̃ ), C∞

0 (Γ∞) := C∞
0 (R), C∞

0 (Γ ) := C∞
0 (Γ̃ ), etc. Recalling that U+ and U− denote the

upper and lower half-planes, respectively, we define trace operators γ± : C∞
comp(U

±)→ C∞
0 (Γ∞) by

γ±u := u|Γ∞ . It is well known that these extend to bounded linear operators γ± : W 1(U±)→ H1/2(Γ∞).
Similarly, we define normal derivative operators ∂±

n : C∞
comp(U

±)→ C∞
0 (Γ∞) by ∂±

n u = ∂u/∂x2|Γ∞ (so
the normal points into U+), which extend (see, e.g., Chandler-Wilde et al., 2012) to bounded linear
operators ∂±

n : W 1(U±;Δ)→ H−1/2(Γ∞)= (H1/2(Γ∞))∗, where W 1(U±;Δ) := {u ∈ H1(U±) :Δu ∈
L2(U±)} andΔu is the (weak) Laplacian. Finally, we denote the duality pairing on H1/2(Γ )× H̃−1/2(Γ )

by 〈·, ·〉Γ .

3. Integral equation formulation

We now consider the reformulation of the BVPs (Problems P and P′) as integral equations on Γ ; for
more detail see Chandler-Wilde & Hewett (2013, Sections 3 and 8). We define the single-layer potential
Sk : H̃−1/2(Γ )→ C2(D) ∩ W 1

loc(R
2) by

Skφ(x) := 〈Φk(x, ·), φ̄〉Γ , x ∈ R
2,

where Φk(x, y) := (i/4)H (1)
0 (k|x − y|). For φ ∈ Lp(Γ ), with p> 1, the following integral representation

holds:

Skφ(x)=
∫
Γ

Φk(x, y)φ(y) ds(y), x ∈ R
2.

We also define the single-layer boundary integral operator Sk : H̃−1/2(Γ )→ H1/2(Γ ) by

Skφ := γ±(χSkφ)|Γ ,

where χ is any element of C∞
0,1(R

2) := {φ ∈ C∞
0 (R

2): φ = 1 in some neighbourhood of Γ }, and either
of the ± traces may be taken. For φ ∈ Lp(Γ ), with p> 1,

Skφ(x)=
∫
Γ

Φk(x, y)φ(y) ds(y), x ∈ Γ . (3.1)

Problems P and P′ are equivalent to the same integral equation involving Sk , as is made clear by the
following theorems, which follow from Chandler-Wilde & Hewett (2013, Theorems 3.8 and 8.6) (see
also Stephan & Wendland, 1984, Theorem 1.7).

Theorem 3.1 Suppose that u is a solution of Problem P. Then the representation formula

u(x)= ui(x)− Sk[∂u/∂n](x), x ∈ D, (3.2)

holds, where [∂u/∂n] := ∂+
n (χu)− ∂−

n (χu) ∈ H̃−1/2(Γ ), and χ is an arbitrary element of C∞
0,1(R

2). Fur-

thermore, φ := [∂u/∂n] ∈ H̃−1/2(Γ ) satisfies the integral equation

Skφ = f , (3.3)
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where f := ui|Γ ∈ H1/2(Γ ). Conversely, suppose that φ ∈ H̃−1/2(Γ ) satisfies (3.3). Then u := ui − Skφ

satisfies Problem P, and [∂u/∂n] = φ.

Theorem 3.2 Suppose that u′ is a solution of Problem P′. Then the representation formula

u′(x)=
{

ui(x)+ ur(x)− Sk{{∂u′/∂n}}(x), x ∈ U+,

Sk{{∂u′/∂n}}(x), x ∈ U−,
(3.4)

holds, where {{∂u′/∂n}}(x) := ∂+
n (χu′)+ ∂−

n (χu′) ∈ H̃−1/2(Γ ), and χ is an arbitrary element of
C∞

0,1(R
2). Furthermore, {{∂u′/∂n}}(x) ∈ H̃−1/2(Γ ) satisfies the integral equation (3.3). Conversely, sup-

pose that φ ∈ H̃−1/2(Γ ) satisfies (3.3). Then u′, defined by u′ := ui + ur − Skφ in U+ and u′ := Skφ in
U−, satisfies Problem P′, and {{∂u′/∂n}} = φ.

The following continuity and coercivity properties of the operator Sk have been proved recently in
Chandler-Wilde & Hewett (2013, 2014).

Lemma 3.3 (Chandler-Wilde & Hewett, 2013, Theorem 5.2) Let s ∈ R. Then Sk : H̃s(Γ )→ Hs+1(Γ ) is
bounded, and for kL � c0 > 0 there exists a constant C0 > 0, depending only on c0 (specifically, C0 =
C log(2 + c−1

0 ), where C is independent of c0), such that

‖Skφ‖Hs+1
k (Γ ) � C0(1 +

√
kL) ‖φ‖H̃s

k (Γ )
, φ ∈ H̃s(Γ ). (3.5)

Lemma 3.4 (Chandler-Wilde & Hewett, 2013, Theorem 5.3) The operator Sk : H̃−1/2(Γ )→ H1/2(Γ )

satisfies

|〈Skφ,φ〉Γ | � 1

2
√

2
‖φ‖2

H̃−1/2
k (Γ )

, k > 0, φ ∈ H̃−1/2(Γ ). (3.6)

These results, combined with the standard Lax–Milgram lemma, imply the unique solvability in
H̃−1/2(Γ ) of the integral equation (3.3) for all k > 0. In particular, we obtain the stability estimate

‖S−1
k ψ‖H̃−1/2

k (Γ )
� 2

√
2 ‖ψ‖H1/2

k (Γ )
, ψ ∈ H1/2(Γ ). (3.7)

Moreover, Theorems 3.1 and 3.2 then imply the unique solvability of the BVPs.

Theorem 3.5 Problems P and P′ each have unique solutions u and u′ for all k > 0, which satisfy

u(x)= u′(x)− ur(x), x ∈ U+,

u(x)= ui(x)− u′(x), x ∈ U−.
(3.8)

4. Analyticity and regularity of solutions

Standard elliptic regularity results imply that the unique solution of Problem P is continuous up to Γ ,
so that u ∈ C(R2). Since u(x)∼ ui(x) as |x| → ∞, it follows that

M (u) := sup
x∈D

|u(x)|<∞.
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In fact, u is Hölder continuous with index 1/2. In particular, defining

�min := min
m∈{1,...,2ni−1}

(sm+1 − sm),

if k�min � c0 for some c0 > 0, then

|u(x)| � CM (u)(kd)1/2, x ∈ D, (4.1)

where d := dist(x,Γ ) and C is a constant that depends only on c0. Since u = 0 on Γ this is clear by
reflection arguments and standard interior elliptic regularity results (e.g., Chandler-Wilde & Zhang,
1998, Lemma 2.1) except in a neighbourhood of the corners of Γ . But near these corners the bound (4.1)
follows from the explicit separation of variables representation for the solution, equation (4.6) (for more
detail see the very similar arguments in Hewett et al., 2013, Lemma 3.5).

Our HNA method for solving (3.3) (as a means of solving the BVPs P and P′) uses an approxima-
tion space (defined explicitly in Section 5) which is adapted to the high-frequency asymptotic behaviour
of the unknown φ = [∂u/∂n] = {{∂u′/∂n}}, which we now consider. We represent the point x ∈ Γ para-
metrically by x(s) := (s, 0), where s ∈ Γ̃ ⊂ [0, L]. Combining the bound (4.1) with elementary bounds
on integral representations for u in the upper and lower half-planes, arguing exactly as in the proof of
Hewett et al. (2013, Theorem 3.2), one can prove the following theorem.

Theorem 4.1 Let k�min � c0 > 0. Then, for any j = 1, . . . , ni, we have the decomposition

φ(x(s))=Ψ (x(s))+ v+
j (s − s2j−1) eiks + v−

j (s2j − s) e−iks, s ∈ (s2j−1, s2j), (4.2)

where Ψ := 2∂ui/∂n, and the functions v±
j (s) are analytic in the right half-plane Re[s]> 0, with

|v±
j (s)| � C1M (u)k|ks|−1/2, Re[s]> 0, (4.3)

where the constant C1 > 0 depends only on c0.

Remark 4.2 The analyticity of the functions v±
j and the bound (4.3) imply that v±

j are nonoscillatory.
Explicitly, by the Cauchy integral formula for derivatives, the derivatives of v±

j satisfy bounds of the

form |v±
j
(n)
(s)| � cnC1M (u)k1/2s−(n+1/2) for s> 0, n ∈ N0 and cn a constant depending only on n. The

lack of oscillation is indicated by the fact that the k-dependence of these bounds is the same for all n.

Remark 4.3 Note that by the correspondence (3.8) we can bound M (u) above and below by a multiple
of M (u′), precisely M (u′)/2 � M (u)� 2M (u′).

Remark 4.4 For the screen Problem P, the representation (4.2) can be interpreted in terms of high-
frequency asymptotic theory as follows. The first term, Ψ , is the GO approximation to φ = [∂u/∂n],
representing the direct contribution of the incident and reflected waves. (Using this approximation
alone in the representation (3.2) gives the ‘physical optics’ approximation of u in D.) The second and
third terms in (4.2) represent the combined contribution of all the diffracted waves (including multiply
diffracted waves that have travelled arbitrarily many times along and between the different components
of the screen) propagating right (oscillating like eiks and with a singularity at s2j−1) and left (oscillating
like e−iks and with a singularity at s2j), respectively, along the screen segment Γj. A similar interpre-
tation holds for the aperture Problem P′. Comparing (4.3) to Hewett et al. (2013, (3.5)), we see that
for |s|> 1/k our functions v±

j satisfy an identical bound to the comparable functions for the problem of
scattering by convex polygons; for |s|< 1/k, however, the singularity is stronger for the screen problem,
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with the exponent of −1/2 in (4.3) comparing to an exponent in the interval (−1/2, 0) for scattering by
convex polygons, with the exact value dependent on the corner angle. This makes clear the fact, alluded
to in Section 1, that v±

j �∈ L2(Γ ) (unlike the comparable functions for scattering by convex polygons).

The dependence of the constant M (u) in (4.3) on the wavenumber k is not yet fully understood.
The following lemma provides an upper bound on M (u) which implies that M (u)=O (k) as k → ∞.
However, we do not believe this bound is sharp; in Hewett et al. (2013, Theorem 4.3) it is shown for the
case of scattering by a starlike sound-soft polygon that M (u)=O (

k1/2 log1/2 k
)

as k → ∞, uniformly
with respect to the angle of incidence, with numerical results therein suggesting the plausibility of the
hypothesis M (u)=O (1) as k → ∞. Such a hypothesis is also plausible for the screen problem, and
consistent with the numerical results in Section 7, but we cannot yet prove this.

Lemma 4.5 Let Γ be of the form (1.1) and let k�min � c0 > 0. Then there exists a constant C2 > 0,
depending only on c0, such that

M (u)� C2(1 + kL).

The remainder of this section consists entirely of the proof of Lemma 4.5; readers more interested
in the numerical method may skip immediately to Section 5. The proof of Lemma 4.5 comprises three
stages. First, in Proposition 4.7, we derive a pointwise bound on |u(x)| which is valid in the whole
domain D, but which is nonuniform. This bound follows from the following lemma, a proof of which
can be found in Chandler-Wilde & Hewett (2013, Lemma 7.1)—see also Chandler-Wilde & Hewett
(2014) for slightly sharper bounds.

Lemma 4.6 Let k > 0 and let Γ be of the form (1.1), with Γ∞, D and L defined as in Section 1.

(i) Let d ∈ R
2 with |d| � 1. Then there exists C> 0, independent of d, k and Γ , such that

‖eikd·(·)‖H1/2
k (Γ )

� C(1 +
√

kL).

(ii) Let x ∈ D and d := dist(x,Γ ). Then there exists C> 0, independent of x, k and Γ , such that

‖Φk(x, ·)‖H1/2
k (Γ )

� C

(
1 + 1√

kL

) (
1 + 1√

kd

)
log

(
2 + 1

kd

)
log1/2(2 + kL).

From Lemma 4.6, Theorem 3.1 and (3.7), one can derive the following result (cf. Chandler-Wilde
& Hewett, 2013, Corollary 7.2). Note that the bound (4.4) blows up as x approaches Γ (i.e., as d → 0).

Proposition 4.7 The solution u of Problem P satisfies the pointwise bound

|u(x)| � C

(
1 + 1√

kL

)(
1 + 1√

kd

)
log

(
2 + 1

kd

)
log1/2(2 + kL)(1 +

√
kL), x ∈ D, (4.4)

where d = dist(x,Γ ), and C> 0 is independent of x, k and Γ .

The second stage in the proof of Lemma 4.5 involves the derivation of a uniform bound on |u(x)|
valid on a neighbourhood of Γ . We begin by using a separation of variables argument to bound |u(x)|
close to Γ in terms of the L2 norm of the scattered field in a neighbourhood of Γ .
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Lemma 4.8 Let Γ be of the form (1.1), and let u be the corresponding solution of Problem P, with
us = u − ui. Let ε∗ := min{�min/2,π/(3k)}, where �min is defined as at the start of this section. Then

|u(x)| � 32

3
√
π(

√
2 − 1)

(1 + k(1 + (k�min)
−1) ‖us‖L2((Γ )ε∗ )), x ∈ (Γ )ε∗/32, (4.5)

where for E ⊂ R
2 and ε > 0, (E)ε := {x ∈ R

2 : dist(x, E)� ε}.

Proof. First pick j ∈ {1, . . . , ni} and let ej := (s2j−1, 0) and e′
j := (s2j, 0) denote, respectively, the left

and right end points of the segment Γj. Let (r, θ) be polar coordinates centred at ej, such that Γj is
described by the set {(r, θ) : 0< r< Lj, θ = 0 or θ = 2π}. Then, for any 0< R< �min (so that we avoid
the singularities at the end points of the segments), the restriction of u to BR(ej) (the ball of radius R
centred at ej) can be written, using separation of variables, as

u(r, θ)=
∞∑

n=1

an(R)Jn/2(kr) sin

(
nθ

2

)
, 0< r< R, 0 � θ � 2π , (4.6)

where

an(R)= 1

πJn/2(kR)

∫ 2π

0
u(R, θ) sin

(
nθ

2

)
dθ .

For any 0< R̃< R we can derive an identical formula to (4.6) with R replaced by R̃. Comparing the
two formulae on the ball BR̃(ej)⊂ BR(ej), it follows that, in fact, an(R̃) takes the same value (which we
denote simply by an) for all 0 � R̃ � R. To bound |an| we then note that

3anR2

8
=

∫ R

R/2
an(R̃)R̃ dR̃ =

∫ R

R/2

∫ 2π

0

u(R̃, θ) sin (nθ/2)

πJn/2(kR̃)
R̃ dθdR̃,

and hence

|an| � 8

3πR2

√∫ R

R/2

∫ 2π

0

| sin (nθ/2)|2
|Jn/2(kR̃)|2 R̃ dθdR̃

√∫ R

R/2

∫ 2π

0
|u(R̃, θ)|2R̃ dθdR̃ = 8Kn

3
√
πkR2

‖u‖L2(AR/2,R)
,

Kn :=
√∫ kR

kR/2(z dz/|Jn/2(z)|2) and AR/2,R is the annulus defined by AR/2,R := {(r, θ) : R/2< r< R,
0 � θ � 2π}. To bound Kn, we note that (cf., e.g., Chandler-Wilde & Langdon, 2007, (3.12))

cos z � Jν(z)Γ (1 + ν)

(z/2)ν
� 1, 0 � z � π/2, ν >−1/2, (4.7)

where Γ (·) in (4.7–4.9) denotes the Gamma function. Hence if 0< kR � π/3 (so that 1/2 � cos z � 1
for kR/2 � z � kR), then

|Kn| � 21+n/2Γ (1 + n/2)

√∫ kR

kR/2
z1−n dz � 21+nΓ (1 + n/2)√

n
(kR)1−n/2. (4.8)
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Thus

|an| � 24+nΓ (1 + n/2)(kR)−n/2

3
√
πR

√
n

‖u‖L2(AR/2,R)
, (4.9)

and, using (4.7) again,

|anJn/2(kr)| � 16(2r/R)n/2

3
√
πR

√
n

‖u‖L2(AR/2,R)
.

Then, for x ∈ BR/2(ej),

|u(x)| = |u(r, θ)| � 16

3
√
πR

∞∑
n=1

(2r/R)n/2 ‖u‖L2(AR/2,R)
= 16

3
√
πR

(
(2r/R)1/2

1 − (2r/R)1/2

)
‖u‖L2(AR/2,R)

.

In particular, for x ∈ BR/4(ej) we have

|u(x)| � 16

3
√
π(

√
2 − 1)R

‖u‖L2(AR/2,R)
.

Recalling that u = ui + us, and noting that ‖ui‖L2(AR/2,R) �
√

3πR/2, this implies that

|u(x)| � 8√
3(

√
2 − 1)

+ 16

3
√
π(

√
2 − 1)R

‖us‖L2(AR/2,R)
, x ∈ BR/4(ej). (4.10)

To satisfy both R � π/(3k) and R< �min, it suffices to set, e.g., R = Rj := min{�min/2,π/(3k)}. A similar
estimate to (4.10) can be obtained in a neighbourhood of the right end point e′

j.
Now let xj denote an interior point of Γj and let (r, θ) be polar coordinates centred at xj, so that

Γj is a subset of the lines θ = 0 and θ = π . By a similar analysis to that presented above, but with the
separation of variables carried out only in a half disc 0 � θ � π or π � θ � 2π and n/2 replaced by n
etc., we can show that if 0< R � π/(3k) and R<min{|x − ej|, |x − e′

j|}, then

|u(x)| � 4
√

2√
3

+ 16

3
√
πR

‖us‖L2(ÃR/2,R)
, x ∈ BR/4(xj), (4.11)

where ÃR/2,R := {(r, θ) : R/2< r< R, 0 � θ � π} is a semiannulus centred at xj.
To combine these results, we note that if min{|x − ej|, |x − e′

j|}> Rj/4, then we can take R = Rj/4
in (4.11). Then the union of the balls BRj/16(xj) over all such xj, together with the balls BRj/4(ej) and
BRj/4(e

′
j), certainly covers an (Rj/32)-neighbourhood of Γj. Hence we can conclude that

|u(x)| � 8√
3(

√
2 − 1)

+ 16

3
√
π(

√
2 − 1)Rj

‖us‖L2((Γj)Rj )
, x ∈ (Γj)Rj/32, (4.12)

from which the result follows, since 1/Rj � 2k(1 + (k�min)
−1). �

To use Lemma 4.8 we require an estimate of ‖us‖L2((Γ )ε∗ ), which is provided by the following
result.
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Lemma 4.9 Let ε > 0. Then there exists a constant C> 0, independent of ε, k and Γ , such that

‖Skφ‖L2((Γ )ε)
� C

√
kε(1 + kε)k−1 log (2 + (kL)−1)(1 + (kL)1/2) ‖φ‖H̃−1/2

k (Γ )
, φ ∈ H̃−1/2(Γ ).

(4.13)

Proof. Arguing as in the proof of Chandler-Wilde & Hewett (2013, Lemma 5.1 and Theorem 5.2), one
can show that for any ε > 0 (see also Chandler-Wilde & Hewett, 2014 for slightly sharper bounds)

‖Skφ(·, x2)‖L2(Γ̃ε)
� C log (2 + (kA)−1)(1 + (kA)1/2 + (k|x2|)1/2 log (2 + kA)) ‖φ‖H̃−1

k (Γ ) ,

where A = L + ε, Γ̃ε := {x ∈ R : dist(x, Γ̃ ) < ε}, x2 ∈ R, and C> 0 is independent of k, Γ and ε. From
this one can show that

‖Skφ(·, x2)‖L2((Γ̃ )ε)
� C(1 + kε) log (2 + (kL)−1)(1 + (kL)1/2) ‖φ‖H̃−1

k (Γ ) , |x2| � ε,

where again C is independent of k, Γ and ε. The estimate (4.13) then follows from integrating over
x2 ∈ (−ε, ε) and noting that ‖φ‖H̃−1

k (Γ ) � k−1/2 ‖φ‖H̃−1/2
k (Γ )

. �

Combining Lemmas 4.8 and 4.9 gives the following proposition.

Proposition 4.10 Under the assumptions of Lemma 4.8, we have

|u(x)| � C(1 + (k�min)
−1) log (2 + (kL)−1)(1 + kL), x ∈ (Γ )ε∗/32, (4.14)

where C> 0 is independent of x, k and Γ .

Proof. Noting that us = −Sk[∂u/∂n], and that [∂u/∂n] = S−1
k ui|Γ , the result follows from Lem-

mas 4.6(i), 4.8 and 4.9, the stability estimate (3.7), and the fact that kε∗ � π/3. �

The third and final stage in the proof of Lemma 4.5 involves combining Propositions 4.7 and 4.10
to obtain a bound which holds uniformly throughout D. Specifically, we combine (4.14), which holds in
the region d < ε∗/32, with (4.4), applied in the region d � ε∗/32. Noting that in the latter case we have
(kd)−1 � 32/(kε∗)� C(1 + (k�min)

−1), we can obtain the following estimate in which the constant C is
independent of both k and Γ :

|u(x)| � C

(
1 + 1

k�min

)
log

(
1 + 1

k�min

)
(1 + kL), x ∈ D.

The statement of Lemma 4.5 then follows immediately.

5. hp approximation space and best approximation results

Our numerical method for solving the integral equation (3.3) uses an HNA approximation space based
on Theorem 4.1. Rather than approximating φ itself using piecewise polynomials (as in conventional
methods), we use the decomposition (4.2), with the factors v+

j and v−
j replaced by piecewise polyno-

mials. The advantage of our approach is that, as is quantified by Theorem 4.1, the functions v±
j are

nonoscillatory (cf. Remark 4.2), and can therefore be approximated much more efficiently than the full
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Fig. 3. Illustration of the overlapping geometrically graded meshes used to approximate the amplitudes v±
j in (5.2), in the case

where Γ comprises two components, Γ1 and Γ2.

(oscillatory) solution φ. Explicitly, the function we seek to approximate is

ϕ(s) := 1

k
(φ(x(s))− Ψ (x(s))), s ∈ Γ̃ ⊂ (0, L), (5.1)

which represents the difference between φ and its GO approximation Ψ (recall Remark 4.4), scaled by
1/k so that ϕ is nondimensional (cf. Chandler-Wilde & Langdon, 2007). By (4.2) we know that

ϕ(s)= 1

k
(v+

j (s − s2j−1) eiks + v−
j (s2j − s) e−iks), s ∈ (s2j−1, s2j), j = 1, . . . , ni, (5.2)

with the factors v±
j enjoying the analyticity properties described in Theorem 4.1. Our hybrid approxi-

mation space represents ϕ on each segment Γj in the form (5.2), with the factors v+
j and v−

j replaced by
piecewise polynomials on overlapping meshes, graded towards the singularities at s = s2j−1 and s = s2j,
respectively. For an illustration of the resulting mesh structure on Γ , see Fig. 3. We denote our approx-
imation space by VN ,k ⊂ H̃−1/2(Γ ), where N denotes the total number of degrees of freedom in the
method (to be elucidated later), and the subscript k serves to indicate that our hybrid approximation
space depends explicitly on the wavenumber k.

To describe in more detail the meshes we use, we consider the case of a geometric mesh on the inter-
val [0, l], l> 0, refined towards 0. The meshes for approximating v±

j on each segment Γj are constructed
from this basic building block by straightforward coordinate transformations. Given n � 1 (the number
of layers in the mesh), let Gn(0, l) denote the set of mesh points {xi}n

i=0 defined by

x0 := 0, xi := σ n−il, i = 1, 2, . . . , n, (5.3)

where 0<σ < 1 is a grading parameter. A smaller value of σ represents a more severe grading—in all
of our experiments we take σ = 0.15, as in Hewett et al. (2013). Given a vector p ∈ (N0)

n, let Pp,n(0, l)
denote the space of piecewise polynomials on the mesh Gn(0, l) with the degree vector p, i.e.,

Pp,n(0, l) := {ρ : [0, l] → C : ρ|(xi−1,xi) is a polynomial of degree less than or equal to (p)i, i = 1, . . . , n}.
For reasons of efficiency and conditioning it is common to decrease the order of the approximating
polynomials towards the singularity. Specifically, we shall consider degree vectors p of the form

(p)i :=
⎧⎨
⎩p −

⌊
α(n + 1 − i)

n
p

⌋
, 1 � i � n − 1,

p, i = n,
(5.4)

for some α ∈ [0, 1] and some integer p � 0 (the highest polynomial degree on the mesh). The choice
α = 0 corresponds to a constant degree across the mesh (this was the only choice considered in Hewett
et al., 2013) while for α ∈ (0, 1] the degree decreases linearly in the direction of refinement.
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For each j = 1, . . . , ni, let n±
j � 1 and p±

j ∈ (N0)
n±

j denote, respectively, the number of layers and the
degree vector associated with the approximation of the factor v±

j in (5.2). The total number of degrees
of freedom in VN ,k is then

N := dim(VN ,k)=
ni∑

j=1

⎛
⎝ n+

j∑
m=1

((p+
j )m + 1)+

n−
j∑

m=1

((p−
j )m + 1)

⎞
⎠ . (5.5)

The regularity results provided by Theorem 4.1 allow us to prove that, under certain assumptions,
the best approximation error in approximating ϕ by an element of VN ,k decays exponentially as p,
the maximum degree of the approximating polynomials, increases. Our best approximation results in
the space H̃−1/2(Γ̃ ) are stated in the following theorem, which is the main result of this section. For
simplicity of presentation, we assume that the mesh parameters are the same in each of the meshes used
to approximate the different components v±

j (similar estimates hold in the more general case).

Theorem 5.1 Let k�min � c0 > 0. Suppose that n±
j = n and p±

j = p for each j = 1, . . . , ni, where n and
p are defined by (5.4) with n � cp for some constant c> 0. Then, for any 0< ε < 1/2, there exists a
constant C3 > 0, depending only on ε, σ , ni and c0, and a constant τ > 0, depending only on ε, σ , α and
c, such that

inf
v∈VN ,k

‖ϕ − v‖H̃−1/2
k (Γ )

� C3M (u)k−1(kL)ε e−pτ . (5.6)

The proof of Theorem 5.1 occupies the rest of this section. It relies on a number of intermediate
results, which we now state. The first of these is a standard application of the Riesz–Thorin interpolation
theorem (Stein & Weiss, 1971, Chapter V, Theorem 1.3).

Lemma 5.2 For 1 � q � 2 the Fourier transform extends uniquely from L2(R) ∩ L1(R) to a bounded
linear operator from Lq(R) to Lr(R), where 1/q + 1/r = 1 (with r = ∞ if q = 1). Furthermore, with
θ := 2/q − 1, it holds that

‖φ̂‖Lr(R) � (2π)−θ/2 ‖φ‖Lq(R) , φ ∈ Lq(R).

The following result is essentially stated in Chandler-Wilde et al. (2012, equation (A.7)), but we
need to restate it here as we are working with a k-dependent norm and want k-explicit estimates.

Lemma 5.3 For 1 � q � 2 and s< 1/2 − 1/q, Lq(R) can be continuously embedded in H s(R), with

‖φ‖H s
k (R)

� c(s, k, θ) ‖φ‖Lq(R) , φ ∈ Lq(R), (5.7)

where θ is as defined in Lemma 5.2 and

c(s, k, θ)=
(

1

2π

∫ ∞

−∞
(k2 + ξ 2)s/θ dξ

)θ/2

.

Proof. By the density of C∞
0 (R) in Lq(R) it suffices to prove (5.7) for φ ∈ C∞

0 (R). Let φ ∈ C∞
0 (R),

let 1< q � 2 (the case q = 1 requires an obvious trivial modification of the proof), let r be such that
1/q + 1/r = 1, and let θ = 2/q − 1 as in Lemma 5.2. Provided that s< 1/2 − 1/q, we have s/θ <−1/2,
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1714 D. P. HEWETT ET AL.

so that the function (k2 + ξ 2)s is in L1/θ (R), and Hölder’s inequality gives

‖φ‖2
H s

k (R)
=

∫
R

(k2 + ξ 2)s|φ̂(ξ)|2 dξ �
(∫

R

(k2 + ξ 2)s/θ dξ

)θ (∫
R

(|φ̂(ξ)|2)r/2 dξ

)2/r

= c(s, k, θ)2(2π)θ‖φ̂‖2
Lr(R)

� c(s, k, θ)2‖φ‖2
Lq(R),

the final inequality following from an application of Lemma 5.2. �

Corollary 5.4 For 1< q � 2, Lq(R) can be continuously embedded in H−1/2(R) with

‖φ‖H−1/2
k (R)

� k1/q−1 max{1, 1/
√
(2π − 1)(q − 1)} ‖φ‖Lq(R) , φ ∈ Lq(R). (5.8)

Proof. The result follows from Lemma 5.3 with s = −1/2, combined with an explicit estimate of
c(−1/2, k, θ). To derive this estimate we first note that

c(−1/2, k, θ)=
(

1

2π

∫ ∞

−∞
(k2 + ξ 2)−1/(2θ) dξ

)θ/2

= k−1/2+θ/2
(

1

π

∫ ∞

0
(1 + t2)−1/(2θ) dt

)θ/2

� k−1/2+θ/2
(

1

π

(∫ 1

0
dt +

∫ ∞

1
t−1/θ dt

))θ/2

= k−1/2+θ/2
(

1

π(1 − θ)

)θ/2

= k1/q−1

(
q

2π(q − 1)

)1/q−1/2

. (5.9)

Now define q∗ := π/(π − 1/2). For q∗ � q � 2 we have q/(2π(q − 1))� 1. For 1< q< q∗ we can
estimate q/(2π(q − 1))� 1/((2π − 1)(q − 1)). Inserting these estimates into (5.9), and noting that 0 �
1/q − 1/2< 1/2, we obtain (5.8). �

Theorem 5.5 Suppose that a function g(z) is analytic in Re [z]> 0 and satisfies the bound

|g(z)| � Ĉ|z|−1/2, Re [z]> 0,

for some Ĉ> 0. Given l> 0, α ∈ [0, 1] and integers n � 1 and p � 0, let the degree vector p be defined
by (5.4), and suppose that n � cp for some constant c> 0. Then, for any 0< ε < 1/2, there exists a
constant C> 0, depending only on ε and σ (with C → ∞ as ε→ 0 or ε→ 1/2), and a constant τ > 0,
depending only on ε, σ , α and c (with τ → 0 as ε→ 0), such that

inf
v∈Pp,n(0,l)

‖g − v‖H̃−1/2
k (0,l) � CĈk−1/2(kl)ε e−pτ . (5.10)

Proof. Our aim is to use Corollary 5.4 to derive a best approximation error estimate in the H̃−1/2
k norm

in terms of estimates in Lq norms, 1< q< 2. For the sharpest results (in terms of k-dependence) one
might want to take q = 2 in Corollary 5.4. However, this is not possible because g cannot be assumed
to be square integrable at s = 0; this is why we assume that 1< q< 2.
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We begin by defining a candidate approximant V ∈Pp,n(0, l), which we take to be 0 on (0, x1), and
on (xi−1, xi), i = 2, . . . , n, to be equal to the L∞ best approximation to g|(xi−1,xi) in P(p)i(xi−1, xi), where
Pp(a, b) denotes the space of polynomials of degree less than or equal to p on the interval (a, b). Then
by Corollary 5.4 we have

inf
v∈Pp,n(0,l)

‖g − v‖H̃−1/2
k (0,l) � ‖g − V‖H̃−1/2

k (0,l) � k1/q−1 max{1, 1/
√
(2π − 1)(q − 1)} ‖g − V‖Lq(0,l) ,

(5.11)

and it simply remains to estimate ‖g − V‖Lq(0,l). To do this we first note that

‖g − V‖Lq(0,x1)
� Ĉ

(∫ x1

0
s−q/2

)1/q

= ĈD1l1/q−1/2 e−nϑ , (5.12)

where ϑ := (1/q − 1/2)| log σ |> 0 and

D1 := σ 1/2−1/q

(1 − q/2)1/q
.

For any i = 2, . . . , n, g is analytic in an ellipse containing the interval (xi−1, xi), and, using standard
polynomial approximation results for analytic functions (see, e.g., Hewett et al., 2011, Lemma A.2 or
Stenger, 1993, Theorem 2.1.1), one can show that

‖g − V‖L∞(xi−1,xi)
� Ĉcσ x−1/2

i−1 e−(p)iη, i = 2, . . . , n,

where cσ := 2
√

2/ρσ > 0 and η := log ρσ > 0, with ρσ := (1 + σ 1/2(2 − σ)1/2)/(1 − σ). Hence

‖g − V‖Lq(xi−1,xi)
� Ĉcσ (xi − xi−1)

1/q−1/2

(
xi − xi−1

xi−1

)1/2

e−(p)iη

= Ĉcσ ((1 − σ)l)1/q−1/2

(
1 − σ

σ

)1/2

e−(n−i)ϑ−(p)iη. (5.13)

Now, since

(p)i �
(

1 − α + α(i − 1)

n

)
p, i = 2, . . . , n,

the sum

S :=
n∑

i=2

(e−(n−i)ϑ−(p)iη)q = eqϑ
n∑

i=2

e−q((n+1−i)ϑ+(p)iη)

satisfies the estimate

S � eq(ϑ−(1−α)pη)
n∑

i=2

e−q((n+1−i)ϑ+(i−1)μ),

where μ := αpη/n. We then write

(n + 1 − i)ϑ + (i − 1)μ= (1/2)(n + 1 − i)ϑ + nψ(i),
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1716 D. P. HEWETT ET AL.

where ψ(i) := (1/n)((n + 1 − i)(ϑ/2)+ (i − 1)μ). Since ψ(i) is affine, we have

ψ(i)� min {ψ(1),ψ(n + 1)} = min {ϑ/2,μ} =: ν,

which gives

S � eq(ϑ−(1−α)pη−nν)
n∑

i=2

e−(q/2)(n+1−i)ϑ � eqϑ/2

1 − e−qϑ/2
e−q(1−α)pηe−qnν .

Combining this estimate with (5.12) and (5.13) gives

‖g − V‖Lq(0,l) � Ĉl1/q−1/2(D1e−nϑ + D2e−(1−α)pηe−nν), (5.14)

where

D2 := 2
√

2(1 − σ)1/qσ−(1/(2q)−1/4)

σ (
√
σ + √

2 − σ)(1 − σ (1/2−q/4))1/q
.

Finally, using (5.14) in (5.11), assuming n � cp, and letting ε := 1/q − 1/2 ∈ (0, 1/2), gives (5.10) with

C = max{1, 1/
√
(2π − 1)(q − 1)}(D1 + D2), τ = min{cϑ , (1 − α)η + cϑ/2, η}.

Note that D1 → ∞ and ϑ → 0 as q → 2, i.e., as ε→ 0. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Recalling (5.2), the result follows from Theorems 4.1 and 5.5, with, e.g., C3 =
2niC1C, where C and τ are the constants obtained from applying Theorem 5.5 to v±

j . �

Remark 5.6 We remark that Theorem 5.5 could also be used to achieve best approximation results
in H−1/2 for the problem of sound-soft scattering by a convex polygon, as considered in Hewett et al.
(2013) (where best approximation results are derived only in L2).

6. Galerkin method

Having designed an approximation space VN ,k which can efficiently approximate ϕ, we now select
an element of VN ,k using the Galerkin method. That is, we seek ϕN ∈ VN ,k ⊂ H̃−1/2(Γ ) such that
(recall (3.3) and (5.2))

〈SkϕN , v〉Γ = 1

k
〈f − SkΨ , v〉Γ for all v ∈ VN ,k . (6.1)

We note that since ϕN , v ∈ VN ,k ⊂ L2(Γ ), the duality pairings in (6.1) can be evaluated simply as inner
products in L2(Γ ) (see the discussion after (2.2) and the implementation details in Section 7). Existence
and uniqueness of the Galerkin solution ϕN is guaranteed by the Lax–Milgram lemma and Lemmas 3.3
and 3.4. Furthermore, by Céa’s lemma we have the quasi-optimality estimate

‖ϕ − ϕN‖H̃−1/2
k (Γ )

� C0(1 + √
kL)

2
√

2
inf

v∈VN ,k

‖ϕ − v‖H̃−1/2
k (Γ )

, (6.2)

where C0 is the constant from Lemma 3.3. Combined with Theorem 5.1, this gives the following
theorem.
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Theorem 6.1 Under the assumptions of Theorem 5.1 we have

‖ϕ − ϕN‖H̃−1/2
k (Γ )

� C4M (u)k−1(1 + (kL)1/2+ε) e−pτ , (6.3)

where C4 = C0C3/
√

2 and C3 is the constant from Theorem 5.1. Combined with Lemma 4.5 this implies
the following k-explicit estimate, in which C5 = 3C4C2:

‖ϕ − ϕN‖H̃−1/2
k (Γ )

� C5k−1(1 + (kL)3/2+ε) e−pτ . (6.4)

An approximation uN to the solution u of the BVP P can be found by inserting the approximation
[∂u/∂n] ≈Ψ + kϕN into the formula (3.2), i.e.,

uN (x) := ui(x)−
∫
Γ

Φk(x, y)(Ψ (y)+ kϕN (y)) ds(y), x ∈ D.

We then have the following (nonuniform) error estimate.

Theorem 6.2 Under the assumptions of Theorem 5.1 we have, for x ∈ D and d = dist(x,Γ ),

|u(x)− uN (x)|
‖u‖L∞(D)

� C6

(
1 + 1√

kd

)
log

(
2 + 1

kd

)
log1/2(2 + kL)(1 + (kL)1/2+ε) e−pτ , (6.5)

where C6 = (1 + 1/
√

k�min)C4C, and C is the constant from Lemma 4.6(ii).

Proof. Noting that |u(x)− uN (x)| = k|Sk(ϕ − ϕN )(x)| � k ‖Φk(x, ·)‖H1/2
k (Γ )

‖ϕ − ϕN‖H̃−1/2
k (Γ )

, the
result follows from Lemma 4.6(ii) and (6.3). �

An object of interest in applications is the far-field pattern of the scattered field. An asymptotic
expansion of the representation (3.2) reveals that (cf. Colton & Kress, 1992)

us(x)∼ eiπ/4

2
√

2π

eikr

√
kr

F(x̂) as r := |x| → ∞,

where x̂ := x/|x| ∈ S
1, the unit circle, and

F(x̂) := −
∫
Γ

e−ikx̂·y
[
∂u

∂n

]
(y) ds(y), x̂ ∈ S

1. (6.6)

An approximation FN to the far-field pattern F can be found by inserting the approximation [∂u/∂n] ≈
Ψ + kϕN into the formula (6.6), i.e.,

FN (x̂) := −
∫
Γ

e−ikx̂·y(Ψ (y)+ kϕN (y)) ds(y), x̂ ∈ S
1. (6.7)

Theorem 6.3 Under the assumptions of Theorem 5.1 we have

‖F − FN‖L∞(S1) � C7(1 + (kL)2+ε) e−pτ , (6.8)

where C7 = 3C5C and C is the constant from Lemma 4.6(i).
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Proof. Noting that |F(x̂)− FN (x̂)| = k|〈e−ikx̂·(·),ϕ − ϕN 〉Γ | � k‖e−ikx̂·(·)‖H1/2
k (Γ )

‖ϕ − ϕN‖H̃−1/2
k (Γ )

, the
result follows from Lemma 4.6(i) and (6.4). �

Similarly, approximations u′
N and F ′

N to the solution u′ of the BVP P′ and the far-field pattern F ′

associated with the diffracted field ud can be found using (3.4), and estimates similar to (6.5) and (6.8)
can be proved.

Remark 6.4 The algebraically k-dependent factors in the error estimates (6.3–6.5) and (6.8) can be
absorbed into the exponentially decaying factors by allowing p to grow in proportion to log k as k → ∞
(cf. Hewett et al., 2013, Remark 6.5). Therefore, since N ∼ p2, our estimates show that to maintain
any desired accuracy it is sufficient to increase N in proportion to log2 k as k → ∞, as claimed in
Section 1. In fact, our numerical results in Section 7 suggest that in practice this logarithmic increase
is not required, and that when computing u or F with a fixed number of degrees of freedom, accuracy
actually improves as frequency increases.

7. Numerical results

We present numerical computations of the Galerkin approximation ϕN , as defined by (6.1), for the
screen/aperture shown in Figs 1 and 2. Our results confirm our theoretical predictions, demonstrating
the efficacy and efficiency of our method, and its robustness across a wide range of frequencies.

The screen Γ we consider has multiple components of different lengths and different separations,
and is defined explicitly by (1.1) with ni = 5, s1 = 0, s2 = 2π , s3 = 21π/10, s4 = 5π/2, s5 = 14π/5, s6 =
7π/2, s7 = 4π , s8 = 6π , s9 = 61π/10 and s10 = 10π . Hence L1 = 2π , L2 = 2π/5, L3 = 7π/10, L4 =
2π and L5 = 39π/10, so that the smallest component has length 2π/5, the longest has length 39π/10
and the sum of the lengths of all of the components is

∑ni
i=1 Lj = 9π = 9kλ/2 (where λ= 2π/k is the

wavelength). Below we present results for values of k ranging from k = 10 (in which case the smallest
segment is two wavelengths long) up to k = 10240 (in which case the longest segment is nearly 20000
wavelengths long). The plots in Figs 1 and 2 show the total fields for the ‘nongrazing’ incident direction
d = (1/

√
2, −1/

√
2); in our examples below, we also consider the ‘grazing’ incident direction d =

(1, 0).
To describe our implementation of the HNA approximation space of Section 5, we write ϕN ∈ VN ,k

as

ϕN (·)=
N∑
�=1

v�χ�(·), (7.1)

where N is given by (5.5), v�, �= 1, . . . , N are the unknown coefficients to be determined and χ�,
�= 1, . . . , N are the HNA basis functions, which we now define. Each basis function χ� is supported on
an interval (a, b)⊂ (s2j−1, s2j) for some j ∈ {1, . . . , ni}, and takes the form

χ�(s)=
√

2q + 1

b − a
Pq

(
2

(
s − a

b − a

)
− 1

)
eρiks, s ∈ (a, b),

where Pq, q � p denotes the Legendre polynomial of order q, and either ρ = 1 and a = s2j−1 + xm,
b = s2j−1 + xm+1, for some j ∈ {1, . . . , ni} and m ∈ {0, . . . , n+

j } (in which case χ� is one of the basis
functions used to approximate the amplitude v+

j in (5.2); see Fig. 3), or else ρ = −1 and a = s2j − xm+1,
b = s2j − xm, for some j ∈ {1, . . . , ni} and m ∈ {0, . . . , n−

j } (in which case χ� is one of the basis functions
used to approximate the amplitude v−

j in (5.2); again, see Fig. 3), with xm, m = 0, . . . , n±
j defined as
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in (5.3). This choice means that 〈χj,χj〉Γ = 1, j = 1, . . . , N and that 〈χj,χm〉Γ = 0, j |= m, unless χj and
χm are supported on nonidentical overlapping intervals. Substituting (7.1) into (6.1) produces the linear
system

N∑
�=1

〈Skχ�,χm〉Γ v� = 1

k
〈f − SkΨ ,χm〉Γ , m = 1, . . . , N . (7.2)

To construct (7.2) it is necessary to evaluate oscillatory integrals. Owing to the linear nature of the
screen, these are computed efficiently using Filon quadrature, as described in Chandler-Wilde et al.
(2012, Section 4) and Twigger (2013, Section 4). In all our experiments we take α = 1 and n+

j = n−
j =

2(p + 1), j = 1, . . . , ni. Experiments in Twigger (2013, Section 3) for the case ni = 1 suggest that, for
the examples considered therein, these choices are appropriate in terms of attempting to minimize the
number of degrees of freedom required to achieve a prescribed level of accuracy. Using (5.5), the total
number of degrees of freedom is then N = 20 for p = 0, N = 70 for p = 1, N = 130 for p = 2, N = 220
for p = 3, N = 320 for p = 4, N = 450 for p = 5, N = 590 for p = 6 and N = 760 for p = 7 (these values
are the same for all values of k). In each case, the linear system (7.2) is inverted using a standard direct
solver.

Theorem 6.1 predicts exponential decay of ‖ϕ − ϕN‖H̃−1/2
k (Γ )

as p increases, for fixed k, and more-
over that increasing p proportionally to log k as k increases should be sufficient to maintain accuracy. In
practice, it is not straightforward to compute ‖·‖H̃−1/2

k (Γ )
; instead, we compute ‖ · ‖Γ , defined by

‖φ‖Γ :=
√

|〈Skφ,φ〉Γ |, φ ∈ H̃−1/2(Γ ),

which defines an equivalent norm on H̃−1/2(Γ ) and is easier to compute (see, e.g., the discussion in
Śmigaj et al., 2014, pp. A:29–A:30). Specifically, it follows from (3.5) and (3.6) that

1√
2
√

2
‖φ‖H̃−1/2

k (Γ )
� ‖φ‖Γ �

√
C0(1 +

√
kL)‖φ‖H̃−1/2

k (Γ )
, φ ∈ H̃−1/2(Γ ),

and hence combining the right inequality with Theorem 6.1 we expect

‖ϕ − ϕN‖Γ � C5

√
C0(1 +

√
kL)k−1(1 + (kL)3/2+ε) e−pτ . (7.3)

In fact, we will see below that as k increases with p fixed, ‖ϕ − ϕN‖Γ actually decreases, suggesting
that we can maintain accuracy as k → ∞ with a fixed number of degrees of freedom. Similarly, we will
see that the relative error, ‖ϕ − ϕN‖Γ /‖ϕ‖Γ , grows only very slowly as k increases with N fixed. We
will also compute the solution in the domain and the far-field pattern, making comparison with the error
estimates (6.5) and (6.8).

Since N depends only on p, and the values of p are more intuitively meaningful, we introduce the
additional notation ψp(s) := ϕN (s). We begin in Fig. 4 by plotting |ψ7(s)| (sampled at 500000 evenly
spaced points on the boundary) for both grazing and nongrazing incidence, for k = 10 and k = 2560.
There is a singularity in the solution ϕ at the edge of each component of the screen. These singularities
are evident in Fig. 4 as is the increased oscillation for larger k. (The apparent shaded region is an artefact
of very high oscillation.)

In Fig. 5 we plot the error ep := ‖ψ7 − ψp‖Γ and the relative error rp := ‖ψ7 − ψp‖Γ /‖ψ7‖Γ against
p, for grazing and nongrazing incidence, for a range of values of k. We take the ‘exact’ reference
solutions to be those computed with p = 7, as plotted for k = 10 and k = 2560 in Fig. 4.
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Fig. 4. Boundary solution for grazing and nongrazing incidence, with k = 10 and k = 2560.

Figure 5 shows exponential decay as p increases for both incident angles and for all values of k, as
predicted by (7.3). A further key question is how the accuracy depends on k. For both incident angles,
the plots in the upper half of Fig. 5 suggest that the errors decrease as k increases, whilst the plots
in the lower half of Fig. 5 suggest that the relative errors increase only very slowly as k increases.
To investigate this further, in Table 1 we show results for the two angles of incidence for p = 5 (and
hence N = 450), for a wider range of values of k. We tabulate errors ep, relative errors rp and also
N/(

∑ni
j=1 Lj/λ)= 2N/9k, the average number of degrees of freedom per wavelength. As k increases

the absolute error ep decreases, as shown in Fig. 5, and the relative error rp increases only very slowly,
while the average number of degrees of freedom per wavelength decreases in proportion to k−1. We also
tabulate log2(ep(2k)/ep(k)), where ep(k) refers to the absolute error ep for a particular value of k. This
is an estimate of the order of convergence, μ, on a hypothesis that ep(k)∼ kμ as k → ∞. The values of
μ ∈ (−0.91, −0.60) for k � 20 are considerably lower than might be anticipated from the estimate (7.3),
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Fig. 5. Errors and relative errors in the boundary solution.

suggesting that our estimates are not sharp in terms of their k-dependence. In particular, the results are
consistent with the conjecture that M (u)=O(1) (as discussed just before Lemma 4.5).

In Table 1 we also show the condition number (COND) of the N-dimensional linear system (7.2),
and we further investigate the dependence of the condition number on both k and p in Fig. 6. For fixed
k, the condition number grows exponentially with respect to p (note the logarithmic scale on the vertical
axis). This rapid growth in the condition number as p increases is not surprising: for weakly singular
BIEs of the first kind, the condition number for standard hp Galerkin BEM, with a geometrically graded
mesh (as used here), is known to grow exponentially with respect to the number of unknowns (see, e.g.,
Heuer et al., 1998). For fixed p, the condition number decreases slowly as k increases (and hence as
the average number of degrees of freedom per wavelength decreases), and we note that the condition
numbers we encountered in our experiments were not so large as to cause problems for our direct solver.
Furthermore, as remarked in Section 1, our best approximation results (though not our full analysis) hold
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Table 1 Errors ep and relative errors rp for nongrazing (d = (1/
√

2, −1/
√

2)) and grazing (d =
(1, 0)) incidence, with p = 5 (and hence N = 450)

d k
N∑ni

j=1 Lj/λ
ep μ rp COND rel cpt

(
1√
2

,
−1√

2

)
10 10.00 9.25 × 10−4 −1.03 2.18 × 10−3 1.50 × 109 1.00

20 5.00 4.51 × 10−4 −0.77 2.01 × 10−3 1.03 × 109 0.98
40 2.50 2.64 × 10−4 −0.87 2.49 × 10−3 7.12 × 108 0.98
80 1.25 1.45 × 10−4 −0.69 2.88 × 10−3 4.97 × 108 0.99

160 0.63 8.99 × 10−5 −0.80 3.72 × 10−3 3.50 × 108 1.00
320 0.31 5.16 × 10−5 −0.74 4.32 × 10−3 2.47 × 108 0.99
640 0.16 3.08 × 10−5 −0.74 5.08 × 10−3 1.75 × 108 1.00

1280 0.08 1.85 × 10−5 −0.67 6.48 × 10−3 1.23 × 108 1.00
2560 0.04 1.16 × 10−5 −0.91 7.64 × 10−3 8.72 × 107 1.00
5120 0.02 6.18 × 10−6 −0.83 9.14 × 10−3 6.17 × 107 1.01

10240 0.01 3.47 × 10−6 1.01 × 10−2 4.36 × 107 1.01

(1, 0) 10 10.00 3.39 × 10−4 −0.38 4.52 × 10−4 1.50 × 109 1.00
20 5.00 2.60 × 10−4 −0.61 5.84 × 10−4 1.03 × 109 1.01
40 2.50 1.70 × 10−4 −0.60 6.43 × 10−4 7.12 × 108 0.99
80 1.25 1.12 × 10−4 −0.71 7.13 × 10−4 4.97 × 108 0.98

160 0.63 6.84 × 10−5 −0.69 7.31 × 10−4 3.50 × 108 0.99
320 0.31 4.23 × 10−5 −0.68 7.59 × 10−4 2.47 × 108 0.99
640 0.16 2.64 × 10−5 −0.72 7.97 × 10−4 1.75 × 108 1.00

1280 0.08 1.60 × 10−5 −0.62 8.13 × 10−4 1.23 × 108 1.00
2560 0.04 1.04 × 10−5 −0.73 8.92 × 10−4 8.72 × 107 1.00
5120 0.02 6.27 × 10−6 −0.73 9.02 × 10−4 6.17 × 107 1.01

10240 0.01 3.78 × 10−6 9.14 × 10−4 4.36 × 107 1.00

Fig. 6. Condition number of the N-dimensional linear system (7.2).
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Fig. 7. Errors in domain solution on a rectangle surrounding the screen.

regardless of the BIE used, so using our approximation space within a better conditioned BIE such as
the second-kind formulations proposed in Bruno & Lintner (2012) and Lintner & Bruno (2013) might
lead to reduced condition numbers.

Finally, in the last column of Table 1 we show the relative computing time (rel cpt) required for
setting up and solving the linear system (we solve the system directly), measured with respect to the
time required for k = 10. We emphasize the fact that the computing time is independent of k, reflecting
that all of the integrals are evaluated using Filon quadrature in a k-independent way.

We now turn our attention to the approximation of u(x), x ∈ D and of the far-field pattern F (often the
quantities of real interest in scattering problems). To investigate the accuracy of uN (x), we compute the
error in this solution at 89600 evenly spaced points (corresponding to 10 points per wavelength for k =
640) around the perimeter of the rectangle with corners at (−π ,π), (11π ,π), (11π , −π), (−π , −π),
which surrounds the screen. This thus includes points in the illuminated and shadow regions. To allow
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Fig. 8. Far-field patterns, |F7(t)| ≈ |F(t)|, k = 1280.

easy comparison between different discretizations, noting again that for each example N depends only
on p, we denote the solution on this rectangle (with a slight abuse of notation) by up(t) := uN (x(t)),
t ∈ [0, 28π ], where x(t) represents an arc-length parametrization of the rectangle perimeter.

In Fig. 7 we plot for each incident angle and for k = 10, 40, 160 and 640 the maximum abso-
lute error, maxt∈[0,28π] |u7(t)− up(t)|, and the relative maximum absolute error, maxt∈[0,28π] |u7(t)−
up(t)|/maxt∈[0,28π] |u7(t)|. For each example the exponential decay as p increases is clear (note the log-
arithmic scale on the vertical axes), as predicted by (6.5). Moreover, for each fixed value of p the errors
appear to be decreasing as k increases; this is better than the mild growth with k of the bound (6.5).
These relative errors are smaller than those on the boundary in Fig. 5.

Finally, we compute our approximation (6.7) to the far-field pattern. Again, with a slight abuse of
notation, we define Fp(t) := FN (x̂(t)), t ∈ [0, 2π ], where t = 0 corresponds to the direction from which
ui is incident and x̂(t) is a point at angular distance t (measured anticlockwise) around the unit circle.
Plots of |F7(t)| (the magnitude of the far-field pattern computed with our finest discretization) for each
of the two incident directions, for k = 1280, are shown in Fig. 8. For nongrazing incidence, the peaks
corresponding to the geometric shadow (i.e., the forward-scattering direction) and the specular reflection
are indicated (compare Fig. 8 with Fig. 1). We also show the points at which x̂(t) ∈ Γ∞. For grazing
incidence, the shadow peak is much lower than for nongrazing incidence; in the grazing case, there is
no reflected peak.

In Fig. 9 we plot approximations to ‖F7 − Fp‖L∞(S1) and ‖F7 − Fp‖L∞(S1)/‖F7‖L∞(S1) for k = 20, 80,
320 and 1280, for each of the two incident directions. To approximate the L∞ norm, we compute F7 and
Fp at 50000 evenly spaced points on the unit circle. The exponential decay as p increases, as predicted
by Theorem 6.3, can be clearly seen (again, note the logarithmic scale on the vertical axes).

For fixed p the errors ‖F7 − Fp‖L∞(S1) increase slowly as k increases. To investigate this behaviour
more carefully, in Table 2 we show results for the two angles of incidence for p = 5 (and hence N = 450),
for a wider range of values of k. We also tabulate log2(fp(2k)/fp(k)), where fp(k) refers to the absolute
error ‖F7 − Fp‖L∞(S1) for a particular value of k. This is an estimate of the order of convergence, ζ ,
on a hypothesis that fp(k)∼ kζ as k → ∞. The values of ζ ∈ (0.02, 0.75) for nongrazing incidence, and
ζ ≈ 0.5 for grazing incidence, are considerably lower than might be anticipated from the estimate (6.8),
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Fig. 9. Errors in the far-field pattern (note the different scales on the upper and lower plots).

suggesting that our estimates are not sharp in terms of their k-dependence. In particular, the results are
again consistent with the conjecture that M (u)=O(1) (as discussed just before Lemma 4.5). In the
last column of Table 2, we show how ‖F7‖L∞(S1) grows with k. For nongrazing incidence, ‖F7‖L∞(S1)

grows approximately linearly with k, and so the relative error ‖F7 − Fp‖L∞(S1)/‖F7‖L∞(S1) decreases as
k increases. For grazing incidence, ‖F7‖L∞(S1) grows almost exactly like k1/2, the same rate as ‖F7 −
Fp‖L∞(S1), and hence the relative error remains approximately constant as k increases.

In summary, our numerical examples demonstrate that the predicted exponential convergence of our
hp scheme is achieved in practice. The k-explicit error bounds (6.4), (6.5) and (6.8) predict at worst
mild growth in errors as k increases, which can be controlled by a logarithmic growth in the degrees
of freedom N . But our numerical results support the conjecture that this mild growth is pessimistic,
and that for a fixed number of degrees of freedom the accuracy of our numerical approximation to the
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Table 2 Errors and relative errors in the far-field pattern, for various k, with
p = 5 (and hence N = 450)

d k ‖F7 − Fp‖L∞(S1) ζ
‖F7 − Fp‖L∞(S1)

‖F7‖L∞(S1)

‖F7‖L∞(S1)(
1√
2

,
−1√

2

)
10 1.60 × 10−2 0.75 3.99 × 10−5 4.02 × 102

(nongrazing) 20 2.69 × 10−2 0.28 3.36 × 10−5 8.01 × 102

40 3.27 × 10−2 0.23 2.05 × 10−5 1.60 × 103

80 3.84 × 10−2 0.62 1.20 × 10−5 3.20 × 103

160 5.90 × 10−2 0.27 9.23 × 10−6 6.39 × 103

320 7.14 × 10−2 0.04 5.59 × 10−6 1.28 × 104

640 7.33 × 10−2 0.02 2.89 × 10−6 2.54 × 104

1280 7.43 × 10−2 0.42 1.51 × 10−6 4.94 × 104

2560 9.95 × 10−2 1.12 × 10−6 8.85 × 104

(1, 0) 10 1.56 × 10−2 0.87 2.79 × 10−4 5.61 × 101

(grazing) 20 2.87 × 10−2 0.64 3.61 × 10−4 7.93 × 101

40 4.47 × 10−2 0.61 3.98 × 10−4 1.12 × 102

80 6.80 × 10−2 0.55 4.28 × 10−4 1.59 × 102

160 9.94 × 10−2 0.51 4.43 × 10−4 2.24 × 102

320 1.41 × 10−1 0.53 4.46 × 10−4 3.17 × 102

640 2.04 × 10−1 0.51 4.55 × 10−4 4.49 × 102

1280 2.90 × 10−1 0.51 4.57 × 10−4 6.34 × 102

2560 4.13 × 10−1 0.50 4.61 × 10−4 8.97 × 102

domain solution and the far-field pattern stays fixed or even improves as the wavenumber k increases.
We suspect that the apparent lack of sharpness in k-dependence of our error bounds is due at least in part
to a lack of sharpness in k-dependence of the estimate in Lemma 4.5 for M (u), of our best approximation
estimate (5.6) and of the quasi-optimality estimate (6.2).
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