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EXISTENCE, UNIQUENESS, AND VARIATIONAL METHODS FOR
SCATTERING BY UNBOUNDED ROUGH SURFACES∗

SIMON N. CHANDLER-WILDE† AND PETER MONK‡

Abstract. In this paper we study, via variational methods, the problem of scattering of time
harmonic acoustic waves by an unbounded sound soft surface. The boundary ∂D is assumed to lie
within a finite distance of a flat plane and the incident wave is that arising from an inhomogeneous
term in the Helmholtz equation whose support lies within some finite distance of the boundary
∂D. Via analysis of an equivalent variational formulation, we provide the first proof of existence
of a unique solution to a three-dimensional rough surface scattering problem for an arbitrary wave
number. Our method of analysis does not require any smoothness of the boundary which can, for
example, be the graph of an arbitrary bounded continuous function. An attractive feature is that all
constants in a priori bounds, for example the inf-sup constant of the sesquilinear form, are bounded
by explicit functions of the wave number and the maximum surface elevation.

Key words. nonsmooth boundary, radiation condition, a priori estimate, inf-sup constant,
Helmholtz equation

AMS subject classifications. 35J05, 35J20, 35J25, 42B10, 78A45

DOI. 10.1137/040615523

1. Introduction. This paper is concerned with the development and analysis
of a variational formulation for scattering by unbounded surfaces, in particular, with
the study of what are termed rough surface scattering problems in the engineering
literature. We shall use the phrase rough surface to denote surfaces which are a (usu-
ally nonlocal) perturbation of an infinite plane surface such that the whole surface
lies within a finite distance of the original plane. Such problems arise frequently in
applications, for example in modeling acoustic and electromagnetic wave propagation
over outdoor ground and sea surfaces, and are the subject of intensive studies in the
engineering literature, with a view to developing both rigorous methods of computa-
tion and approximate, asymptotic, or statistical methods (see, e.g., the reviews and
monographs by Ogilvy [23], Voronovich [26], Saillard and Sentenac [24], Warnick and
Chew [27], and de Santo [13]).

In this paper we will focus on a particular, typical problem of the class, which
models time harmonic acoustic scattering by a sound soft rough surface. In particular,
we seek to solve the Helmholtz equation with wave number k > 0, Δu + k2u = g, in
the perturbed half-plane or half-space D⊂R

n, n = 2, 3. We suppose that the homo-
geneous Dirichlet boundary condition u = 0 holds on ∂D, and a suitable radiation
condition is imposed to select a unique solution to this problem. We shall give in
the next section complete details about our assumptions on D and on the radiation
condition, but we now note that the inhomogeneous term g might be in L2(D) with
bounded support, or be a more general distribution. In addition the boundary ∂D
may or may not be the graph of a function.
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The main results of the paper are the following. In the next section we formulate
the boundary value problem precisely, in the case when g ∈ L2(D) with support
lying within a finite distance of ∂D. We also establish the equivalent variational
formulation that we use and study in this paper. As part of the boundary value
problem formulation we require the radiation condition often used in a formal manner
in the rough surface scattering literature (e.g., [13]) that, above the rough surface and
the support of g, the solution can be represented in integral form as a superposition of
upward traveling and evanescent plane waves. This radiation condition is equivalent
to the upward propagating radiation condition proposed for two-dimensional (2D)
rough surface scattering problems in [11], and has recently been analyzed carefully
in the 2D case by Arens and Hohage [5]. Arens and Hohage also propose a further
equivalent radiation condition (a “pole condition”).

In section 3 we analyze the variational formulation in the long wavelength case,
showing that the sesquilinear form is then elliptic, so that unique existence of solution
and explicit bounds on the solution in terms of the data g follow from the Lax–Milgram
lemma.

In section 4 we show that, for an arbitrary wave number k, the variational prob-
lem and the equivalent boundary value problem remain well-posed in the case when
the rough surface has the property that if x lies in D, then every point above x lies in
D. Our methods of argument, which depend on an a priori estimate established via a
Rellich-type identity, application of the generalized Lax–Milgram theory of Babuška,
and results on approximation of nonsmooth by smooth domains, lead to simple, ex-
plicit lower bounds on the inf-sup constant of the sesquilinear form and corresponding
explicit bounds on the solution in terms of the data g. We note that, in contrast to
earlier uniqueness and existence results for rough surface scattering problems, no ad-
ditional regularity conditions on the boundary are required; our theorem applies, for
example, whenever the boundary ∂D is the graph of a bounded continuous function.

The results and methods of our paper are closest to those of Kirsch [20] and
Elschner [16]. These authors study the same problem tackled in this paper, but con-
sider the 2D diffraction grating case when ∂D= {(x1, f(x1)) : x1 ∈ R} with f periodic
and g quasi-periodic (i.e., g(x)eiαx1 is periodic with the same period as f for some
α ∈ R). The variational formulation we propose for the rough surface scattering prob-
lem is analogous to that considered for the periodic case in [20, 16]. We note, however,
that the periodicity simplifies the mathematical arguments considerably compared to
the case we study; the variational formulation is over a bounded region, part of a sin-
gle period of the domain, so that compact embedding arguments can be applied and
the sesquilinear form which arises satisfies a G̊arding inequality for all wave numbers.
We note, moreover, that the methods of [20, 16] require f to be at least Lipschitz
continuous, and do not lead to explicit bounds on stability constants.

The methods of argument used to prove uniqueness in [20, 16] derive, in part,
from Alber [2] and Cadilhac [7]. In fact the argument outlined in [7] for the 2D
diffraction grating problem could be adapted to prove uniqueness of solution for our
boundary value problem in the case when ∂D is the graph of a sufficiently smooth
function. However, we will prefer to establish uniqueness via an a priori bound which
also leads to an existence result.

In the general 2D case when f is not periodic, existence of a unique solution to the
boundary value problem we study has been established via integral equation methods
in the case that f ∈ C2(R) (∂D is C2), and well-posedness of the integral equation
formulation has been established in a variety of function spaces [11, 10, 9, 3, 4]. The
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extension to the case when ∂D is Lipschitz is outlined in Zhang [28]. To date, however,
the only existence result [8] for the three-dimensional rough surface problem, derived
via integral equation methods, applies only to the Dirichlet boundary value problem
for the Helmholtz equation when the rough surface is the graph of a sufficiently smooth
function with sufficiently small surface slope, and deals only with the case when the
wave number is sufficiently small.

In another, somewhat related body of work existence of solution to the Dirichlet
problem for the Helmholtz equation, with ∂D unbounded, is established by the lim-
iting absorption method, via a priori estimates in weighted Sobolev spaces (see Eidus
and Vinnik [14], Vogelsang [25], Minskii [22], and references therein). The results
obtained apply to the problem considered in this paper, but only if we assume that
the rough surface approaches a flat boundary sufficiently rapidly at infinity and/or
that the sign of x · ν(x) is constant on ∂D outside a large sphere, where ν(x) denotes
the unit normal at x ∈ ∂D. Moreover, this body of work requires that g decrease
sufficiently rapidly at infinity so that a Rellich–Sommerfeld radiation condition is
satisfied.

An attractive feature of our results is the explicit bounds we obtain on the solution
in terms of the data g, which exhibit explicitly dependence of constants on the wave
number and on the geometry of the domain. In part our methods of argument to
obtain our bounds are inspired by the work of Melenk [21] and by the closely related
work of Cummings and Feng [12]. In these publications bounds, exhibiting explicit
dependence on the wave number, are developed for the impedance boundary value
problem for the Helmholtz equation in a bounded domain which is either convex or
smooth and star-like.

In this paper we propose a variational formulation and exploit it as a theoretical
tool to study the well-posedness of the boundary value problem. We anticipate that
the variational formulation will also be very suitable for numerical solution via finite
element discretization, as are similar formulations for the 2D diffraction grating case
[6, 15, 16]. Moreover, the explicit bounds we obtain should be helpful in establishing
the dependence, on the wave number and the domain, of the constants in a priori
error estimates for finite element schemes. These numerical analysis aspects will be
considered in a future paper.

2. The boundary value problem and variational formulation. In this
section we shall define some notation related to the rough surface scattering problem
and write down the boundary value problem and equivalent variational formulation
that will be analyzed in later sections. For x = (x1, . . . , xn) ∈ R

n (n = 2, 3) let
x̃ = (x1, . . . , xn−1) so that x = (x̃, xn). For H ∈ R let UH := {x : xn > H} and
ΓH := {x : xn = H}. Let D ⊂ R

n be a connected open set such that for some
constants f− < f+ it holds that

Uf+ ⊂ D ⊂ Uf− .(2.1)

This definition of D (the domain of the acoustic field) allows the rough surface Γ = ∂D
to be more general than the graph of a function. The variational problem will be posed
on the open set SH := D \ UH , for some H ≥ f+, and we denote the unit outward
normal to SH by ν.

Given a source g ∈ L2(D) of compact support, the problem we wish to analyze
is to find an acoustic field u such that

Δu + k2u = g in D,(2.2)
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u = 0 on Γ,(2.3)

and such that u satisfies an appropriate radiation condition.
This problem has been studied in a rigorous manner by integral equation methods

[10, 9, 30, 3, 4, 28, 8] in the case when Γ is the graph of a sufficiently smooth-bounded
function f so that

Γ =
{
(x̃, xn) : xn = f(x̃), x̃ ∈ R

n−1
}

(2.4)

with f at least bounded and continuous. The most general results are restricted to the
2D case [10, 9, 30, 3, 4, 28]. In the case n = 2 with (2.2) understood in a distributional
sense, a solution u ∈ C1(D) ∩ C(D) is sought such that u is bounded in every strip
SH , H > f+, and such that u satisfies the upward propagating radiation condition
(UPRC) proposed in [10], which states that

u(x) = 2

∫
ΓH

∂Φ(x, y)

∂yn
u(y) ds(y), x ∈ UH ,(2.5)

for all H such that the support of g is contained in SH . Here the fundamental solution
of the Helmholtz equation Φ is given by

Φ(x, y) =

⎧⎪⎨
⎪⎩

i

4
H

(1)
0 (k|x− y|), n = 2,

exp(ik|x− y|)
4π|x− y| , n = 3,

for x, y ∈ R
n, x �= y, where H

(1)
0 is the Hankel function of the first kind of order zero.

Under the assumption that Γ is Lipschitz (i.e., that f ∈ C0,1(Rn−1)), and that Γ is
piecewise Lyapunov, uniqueness of solution is shown in the 2D case in [11].

To show existence of solution to (2.2)–(2.5) one approach is to first convert the
boundary value problem to an equivalent Dirichlet boundary value problem. To do
this we need to split u into an incident and scattered field. Introducing the Dirichlet
Green’s function for the half-space Ua, defined by

Ga(x, y) = Φ(x, y) − Φ(x, y′a),

where y′a is the reflection of y in Γa, we define the incident field ui
a, for a < f−, by

ui
a(x) = −

∫
D

Ga(x, y)g(y) dy.

Then ui
a ∈ H2

loc(Ua) and satisfies (2.2) in a distributional sense in Ua. Choosing
a < f−, we write u as

u = ui
a + us,(2.6)

and seek the scattered field us ∈ C2(D) ∩ C(D) that satisfies

Δus + k2us = 0 in D,

us = G on Γ,

where G := −ui
a|Γ. Then u, given by (2.6), satisfies (2.2)–(2.5) provided us satisfies

(2.5).
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In the case n = 2 and f ∈ C1,1(R) it has been shown, for arbitrary bounded and
continuous data G, that this Dirichlet problem for us has exactly one solution that
satisfies the radiation condition (2.5) [10]. Moreover, in the case that G = −ui

a|Γ it
holds that G(x) = O(|x|−3/2) as |x| → ∞, and it is shown in [9, 3, 4] that us and u
inherit this property; precisely that u(x) = O(|x|−3/2) as |x1| → ∞ with x2 = O(1).
Thus G ∈ L2(Γ) and u ∈ L2(SH) for each H > f−. It follows from local regularity
estimates up to the boundary that u ∈ C1(D). Further, by an application of Green’s
theorem, the Helmholtz equation, and the a priori estimates up to the boundary of
[11, Theorem 3.1], it follows also that u ∈ H1(SH) for every H > f+. This in turn
implies that u|ΓH

∈ H1/2(ΓH) ⊂ L2(ΓH) for every H ≥ f+.
In the case that u|ΓH

∈ L2(ΓH) we can rewrite (2.5) in terms of the Fourier
transform of u|ΓH

. For φ ∈ L2(ΓH), which we identify with L2(Rn−1), we denote by

φ̂ = Fφ the Fourier transform of φ which we define by

Fφ(ξ) = (2π)−(n−1)/2

∫
Rn−1

exp(−ix̃ · ξ)φ(x̃) dx̃, ξ ∈ R
n−1.(2.7)

Our choice of normalization of the Fourier transform ensures that F is a unitary
operator on L2(Rn−1) so that, for φ, ψ ∈ L2(Rn−1),∫

Rn−1

φψ̄dx̃ =

∫
Rn−1

φ̂
¯̂
ψdξ.(2.8)

If FH := u|ΓH
∈ L2(ΓH), then (see [11, 5] in the case n = 2) (2.5) can be rewritten as

u(x) =
1

(2π)(n−1)/2

∫
Rn−1

exp(i[(xn −H)
√
k2 − ξ2 + x̃ · ξ])F̂H(ξ) dξ, x ∈ UH .(2.9)

In this equation
√
k2 − ξ2 = i

√
ξ2 − k2, when |ξ| > k.

Equation (2.9) is a representation for u, in the upper half-plane UH , as a super-
position of upward propagating homogeneous and inhomogeneous plane waves. A
requirement that (2.9) holds is commonly used (e.g., [13]) as a formal radiation con-
dition in the physics and engineering literature on rough surface scattering. The
meaning of (2.9) is clear when FH ∈ L2(Rn−1) so that F̂H ∈ L2(Rn−1); indeed the
integral (2.9) exists in the Lebesgue sense for all x ∈ UH . Recently Arens and Hohage
[5] have explained, in the case n = 2, in what precise sense (2.9) can be understood
when FH ∈ BC(ΓH), the space of bounded continuous functions on ΓH , so that F̂H

must be interpreted as a tempered distribution.
The above discussion motivates the following precise formulation of problem (2.2)–

(2.3). Let H1
0 (D) denote the standard Sobolev space, the completion of C∞

0 (D) in the
norm ‖ · ‖H1(D) defined by ‖u‖H1(D) = {

∫
D

(|∇u|2 + |u|2)dx}1/2. The main function
space in which we set our problem will be the Hilbert space VH , defined, for H ≥ f+,
by

VH :=
{
φ|SH

: φ ∈ H1
0 (D)

}
,

on which we impose the wave number dependent scalar product (u, v)VH
:=

∫
SH

(∇u ·
∇v + k2uv̄) dx and norm ‖u‖VH

= {
∫
SH

(|∇u|2 + k2|u|2)dx}1/2.

The boundary value problem. Given g ∈ L2(D), whose support lies in SH , for
some H ≥ f+, find u : D → C such that u|Sa

∈ Va for every a > f+,

Δu + k2u = g in D(2.10)
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in a distributional sense, and the radiation condition (2.9) holds with FH = u|ΓH
.

Remark 2.1. We note that, as one would hope, the solutions of the above problem
do not depend on the choice of H. Precisely, if u is a solution to the above problem
for one value of H ≥ f+ for which supp g ⊂ SH , then u is a solution for all H ≥ f+

with this property. To see that this is true is a matter of showing that if (2.9) holds
for one H with supp g ⊂ SH , then (2.9) holds for all H with this property. It is shown
in Lemma 2.2 that if (2.9) holds, with FH = u|ΓH

, for some H ≥ f+, then it holds for
all larger values of H. One way to show that (2.9) holds also for every smaller value
of H, H̃ say, for which H̃ ≥ f+ and supp g ⊂ SH̃ , is to consider the function

v(x) := u(x)− 1

(2π)(n−1)/2

∫
Rn−1

exp(i[(xn − H̃)
√
k2 − ξ2 + x̃ · ξ])F̂H̃(ξ) dξ, x ∈ UH̃ ,

with FH̃ := u|ΓH̃
, and show that v is identically zero. To see this we note that, by

Lemma 2.2, v satisfies the above boundary value problem with D = UH̃ and g = 0.
That v ≡ 0, then follows from Theorem 4.1.

As indicated in the above discussion, it is known that the above boundary value
problem has a solution in the case n = 2 when Γ is the graph of a sufficiently smooth
function. A main result of this paper is to prove that the boundary value problem
is uniquely solvable, both in two and three dimensions, under much more general
conditions on the boundary Γ. Moreover, we provide explicit estimates of the norm
of the solution in the strip SH as a function of the dimensionless wave number

κ = k(H − f−).(2.11)

We now derive a variational formulation of the boundary value problem above.
To derive this alternative formulation we require a preliminary lemma. In this lemma
and subsequently we use standard fractional Sobolev space notation, except that we
adopt a wave number dependent norm, equivalent to the usual norm, and reducing
to the usual norm if the unit of length measurement is chosen so that k = 1. Thus,
identifying ΓH with R

n−1, Hs(ΓH), for s ∈ R, denotes the completion of C∞
0 (ΓH) in

the norm ‖ · ‖Hs(ΓH) defined by

‖φ‖Hs(ΓH) =

(∫
Rn−1

(k2 + ξ2)s|Fφ(ξ)|2 dξ
)1/2

.

We recall [1] that, for all a > H ≥ f+, there exist continuous embeddings γ+ :
H1(UH \ Ua) → H1/2(ΓH) and γ− : VH → H1/2(ΓH) (the trace operators) such that
γ±φ coincides with the restriction of φ to ΓH when φ is C∞. In the case when H = f+,
when ΓH may not be a subset of the boundary of SH (if part of ∂D coincides with
ΓH) we understand this trace by first extending φ ∈ VH by zero to Uf− \ Ūf+ . We
recall also that if u+ ∈ H1(UH \ Ua), u− ∈ VH , and γ+u+ = γ−u−, then v ∈ Va,
where v(x) := u+(x), x ∈ UH \ Ua, := u−(x), x ∈ SH . Conversely, if v ∈ Va and
u+ := v|UH\Ua

, u− := v|SH
, then γ+v+ = γ−v−. We introduce the operator T , which

will prove to be a Dirichlet to Neumann map on ΓH (see (2.20)) defined by

T := F−1MzF ,(2.12)

where Mz is the operation of multiplying by

z(ξ) :=

{
−i

√
k2 − ξ2 if |ξ| ≤ k,√

ξ2 − k2 for |ξ| > k.
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We shall prove shortly in Lemma 2.4 that T : H1/2(ΓH) → H−1/2(ΓH) and is
bounded.

Lemma 2.2. If (2.9) holds, with FH ∈ H1/2(ΓH), then u ∈ H1(UH\Ua)∩C2(UH),
for every a > H,

Δu + k2u = 0 in UH ,

γ+u = FH , and∫
ΓH

v̄Tγ+u ds + k2

∫
UH

uv̄ dx−
∫
UH

∇u · ∇v̄ dx = 0, v ∈ C∞
0 (D).(2.13)

Further, the restrictions of u and ∇u to Γa are in L2(Γa) for all a > H, and

∫
Γa

[∣∣∣∣ ∂u∂xn

∣∣∣∣
2

− |∇x̃u|2 + k2|u|2
]
ds ≤ 2k

∫
Γa

ū
∂u

∂xn
ds.(2.14)

Moreover, for all a > H, where Fa ∈ H1/2(Γa) denotes the restriction of u to Γa,
(2.9) holds with H replaced by a.

Proof. If FH ∈ L2(ΓH), then, as a function of ξ, exp(i[(xn − H)
√

k2 − ξ2 +x̃ ·
ξ])F̂H(ξ)(1 + ξ2)s ∈ L1(Rn−1) for every x ∈ UH and s ≥ 0. It follows that (2.9)
is well-defined for every x ∈ UH , and that u ∈ C2(UH), with all partial derivatives
computed by differentiating under the integral sign, so that Δu + k2u = 0 in UH .
Thus, for a > H and almost all ξ ∈ R

n−1,

F(u|Γa
)(ξ) = exp

(
i(a−H)

√
k2 − ξ2

)
F̂H(ξ),(2.15)

F
(

∂u

∂xn

∣∣∣∣
Γa

)
(ξ) = i

√
k2 − ξ2 exp

(
i(a−H)

√
k2 − ξ2

)
F̂H(ξ),(2.16)

F(∇x̃u|Γa
)(ξ) = iξ exp

(
i(a−H)

√
k2 − ξ2

)
F̂H(ξ).

Therefore, by the Plancherel identity (2.8), u|Γa , ∇u|Γa
∈ L2(Γa) with∫

Γa

|u|2ds =

∫
Rn−1

| exp
(
2i(a−H)

√
k2 − ξ2

)
| |F̂H(ξ)|2 dξ ≤

∫
ΓH

|FH |2 ds

and ∫
Γa

|∇u|2ds ≤
∫

Rn−1

[|k2 − ξ2| + ξ2]| exp
(
2i(a−H)

√
k2 − ξ2

)
| |F̂H(ξ)|2 dξ,(2.17)

while ∫
Γa

[∣∣∣∣ ∂u∂xn

∣∣∣∣
2

− |∇x̃u|2 + k2|u|2
]
ds = 2

∫
|ξ|<k

(k2 − ξ2)|F̂H(ξ)|2 dξ

and


∫

Γa

ū
∂u

∂xn
ds =

∫
|ξ|<k

√
k2 − ξ2 |F̂H(ξ)|2 dξ.

Thus (2.14) holds and ∫
UH\Ua

|u|2 dx ≤ (a−H)

∫
ΓH

|FH |2 ds.(2.18)
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Further, from (2.17) it follows that∫
UH\Ua

|∇u|2 dx ≤ (a−H)k2

∫
|ξ|<k

|F̂H(ξ)|2 dξ(2.19)

+

∫
|ξ|>k

ξ2 1 − exp(−2[a−H]
√
ξ2 − k2 )√

ξ2 − k2
|F̂H(ξ)|2 dξ

≤
∫

Rn−1

(4(a−H)k2 +
√

2|ξ|)|F̂H(ξ)|2 dξ,

since 1−e−z ≤ z for z ≥ 0 and
√
ξ2 − k2 ≥ |ξ|/

√
2 for ξ2 ≥ 2k2. Thus u ∈ H1(UH\Ua)

if FH ∈ H1/2(ΓH). That u|ΓH
= FH is clear when FH ∈ C∞

0 (ΓH), and γ+u = FH

for all FH ∈ H1/2(ΓH) follows from the continuity of γ+, (2.18) and (2.19), and the
density of C∞

0 (ΓH) in H1/2(ΓH). Similarly, in the case that FH ∈ C∞
0 (ΓH) so that

u ∈ C∞(UH), it is easily seen that

Tγ+u = −∂u/∂xn|ΓH
,(2.20)

and (2.13) follows by Green’s theorem. The same equation for the general case follows
from the density of C∞

0 (ΓH) in H1/2(ΓH), (2.18) and (2.19), and the continuity of
the operator T .

That (2.9) holds with H replaced by a, for all a > H, is clear from (2.15).
Now suppose that u satisfies the boundary value problem. Then u|Sa

∈ Va for
every a > f+ and, by definition, since Δu + k2u = g in a distributional sense,∫

D

[gv̄ + ∇u · ∇v̄ − k2uv̄]dx = 0, v ∈ C∞
0 (D).(2.21)

Applying Lemma 2.2, and defining w := u|SH
, it follows that∫

SH

[gv̄ + ∇w · ∇v̄ − k2wv̄] dx +

∫
ΓH

v̄Tγ−w ds = 0, v ∈ C∞
0 (D).

From the denseness of {φ|SH
: φ ∈ C∞

0 (D)} in VH and the continuity of γ− and T , it
follows that this equation holds for all v ∈ VH .

Let ‖ · ‖2 and (·, ·) denote the norm and scalar product on L2(SH) so that ‖v‖2 =√∫
SH

|v|2 dx and

(u, v) =

∫
SH

uv dx,

and define the sesquilinear form b : VH × VH → C by

b(u, v) = (∇u,∇v) − k2(u, v) +

∫
ΓH

γ−v̄Tγ−u ds.(2.22)

Then we have shown that if u satisfies the boundary value problem, then w := u|SH

is a solution of the following variational problem: find u ∈ VH such that

b(u, v) = −(g, v), v ∈ VH .(2.23)

Conversely, suppose that w is a solution to the variational problem and define
u(x) to be w(x) in SH and to be the right-hand side of (2.9), with FH := γ−w, in
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UH . Then, by Lemma 2.2, u ∈ H1(UH \Ua) for every a > H with γ+u = FH = γ−w.
Thus u|Sa ∈ Va, a ≥ f+. Further, from (2.13) and (2.23) it follows that (2.21) holds
so that Δu + k2u = g in D in a distributional sense. Thus u satisfies the boundary
value problem.

We have thus proved the following theorem.
Theorem 2.3. If u is a solution of the boundary value problem, then u|SH

satisfies the variational problem, Conversely, if u satisfies the variational problem,
FH := γ−u, and the definition of u is extended to D by setting u(x) equal to the
right-hand side of (2.9), for x ∈ UH , then the extended function satisfies the boundary
value problem, with g extended by zero from SH to D.

It remains to prove the mapping properties of T .
Lemma 2.4. The Dirichlet-to-Neumann map T defined by (2.12) is a bounded

linear map from H1/2(ΓH) to H−1/2(ΓH) with ‖T‖ = 1.
Proof. From the definitions of T and the Sobolev norms we see that, as a map

from H1/2(ΓH) to H−1/2(ΓH),

‖T‖ = max
ξ∈Rn−1

|
√
k2 − ξ2|

|
√
k2 + ξ2|

= 1.

While the variational formulation (2.23) does not appear to have been studied
previously, the analogous weak formulation for the 2D diffraction grating case has
recently been studied in [16], as mentioned in the introduction. The diffraction grating
case, with f periodic and g quasi-periodic with the same period, is significantly simpler
because the variational problem can be formulated on a bounded domain (one period
of the strip SH) and the corresponding sesquilinear form on this bounded domain
satisfies a G̊arding inequality. Standard methods of analysis thus apply, in particular,
existence follows from uniqueness via the Fredholm alternative. But we note that, even
in the diffraction grating case, establishing uniqueness for arbitrary Lipschitz domains
D (f Lipschitz) requires careful and ingenious arguments [16] which are not required
for scattering by bounded domains. Indeed, uniqueness does not hold in all cases in
which ∂D is not the graph of a function, as is shown by the example in Gotlib [18].

3. Analysis of the variational problem for low frequency. In this section
we shall derive preliminary results and bounds used throughout, and will analyze
(2.23) when k is sufficiently small that b is VH -elliptic (we shall give an explicit bound
for k to guarantee this). An attraction of our results for low wave number, in contrast
to our results in section 4 for larger wave number, is that we require no additional
assumption on the domain, except that κ, given by (2.11), be sufficiently small. We
note also that the bounds we establish for κ small in Theorem 3.1 are somewhat
sharper than those which can be established as valid for general κ by the techniques
of the next section. From the point of view of numerical solution by, e.g., finite
element methods, the ellipticity we establish for small k is of course highly desirable,
guaranteeing, by Céa’s lemma, unique existence and stability of the numerical solution
method.

Let V ∗
H denote the dual space of VH , i.e., the space of continuous antilinear func-

tionals on VH . Then our analysis will also apply to the following slightly more general
problem: given G ∈ V ∗

H find u ∈ VH such that

b(u, v) = G(v), v ∈ VH .(3.1)

We shall prove the following theorem.
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Theorem 3.1. Suppose the wave number k satisfies k <
√

2/(H − f−) (equiv-
alently κ <

√
2). Then the sesquilinear form b is VH-elliptic so that the variational

problem (3.1) is uniquely solvable, and the solution satisfies the estimate

‖u‖VH
≤ C‖G‖V ∗

H
,(3.2)

where the constant C satisfies

C ≤ 1 + κ2/2

1 − κ2/2
.

In particular, the scattering problem (2.23) is uniquely solvable and the solution sat-
isfies the bound

k‖u‖VH
≤ κ√

2

1 + κ2/2

1 − κ2/2
‖g‖2.(3.3)

In order to prove Theorem 3.1 we establish a sequence of lemmas which are of
some independent interest and are used extensively in the rest of the paper. The first
two concern the Dirichlet to Neumann map T and the trace operator γ− and will be
proved using the Fourier transform (2.7).

Lemma 3.2. For all φ, ψ ∈ H1/2(ΓH),∫
ΓH

φTψ ds =

∫
ΓH

ψTφ ds.

For all φ ∈ H1/2(ΓH),

�
∫

ΓH

φ̄ Tφ ds ≥ 0, 
∫

ΓH

φ̄ Tφ ds ≤ 0.

Proof. Let φ̂ = Fφ, ψ̂ = Fψ. Then F(Tφ) = zφ̂. Thus, using the Plancherel

identity (2.8) and since ˆ̄ψ(ξ) = ψ̂(−ξ) and z is even,∫
ΓH

ψ Tφds =

∫
Rn−1

ψ̂(−ξ)z(ξ)φ̂(ξ) dξ =

∫
Rn−1

ψ̂(ξ)z(ξ)φ̂(−ξ) dξ =

∫
ΓH

φTψ ds.

In particular, putting ψ = φ̄,∫
ΓH

φ̄ Tφ ds =

∫
Rn−1

z(ξ)|φ̂(ξ)|2 dξ

=

∫
|ξ|>k

√
ξ2 − k2|φ̂(ξ)|2 dξ − i

∫
|ξ|<k

√
k2 − ξ2|φ̂(ξ)|2 dξ,

from which the second result follows.
The above lemma implies that b(·, ·) has the following important symmetry prop-

erty.
Corollary 3.3. For all u, v ∈ VH ,

b(v, u) = b(ū, v̄).
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Lemma 3.4. For all u ∈ VH ,

‖γ−u‖H1/2(ΓH) ≤ ‖u‖VH

and

‖u‖2 ≤ H − f−√
2

∥∥∥∥ ∂u

∂xn

∥∥∥∥
2

.

Proof. For u ∈ C∞
0 (D) ⊂ C∞

0 (Uf−) and defining û(ξ, xn) = (Fu(·, xn))(ξ), we
have

|û(ξ,H)|2 =

∫ H

f−

∂

∂xn
|û(ξ, xn)|2 dxn = 2�

∫ H

f−

û(ξ, xn)
∂

∂xn
û(ξ, xn) dxn.

Thus, if S = R
n−1 × (f−, H),

‖u‖2
H1/2(ΓH) =

∫
Rn−1

|
√
ξ2 + k2| |û(ξ,H)|2 dξ

≤ 2

∫
S

|
√
ξ2 + k2| |û(ξ, xn)|

∣∣∣∣ ∂

∂xn
û(ξ, xn)

∣∣∣∣ dξ dxn

≤ 2

{∫
S

|ξ2 + k2| |û(ξ, xn)|2 dξ dxn

}1/2
{∫

S

∣∣∣∣ ∂

∂xn
û(ξ, xn)

∣∣∣∣
2

dξ dxn

}1/2

.

Now, by Parseval’s theorem,∫
S

ξ2 |û(ξ, xn)|2 dξ dxn =

∫
S

|F(∇x̃u(·, xn))(ξ)|2 dξ dxn

=

∫
S

|∇x̃u(x)|2 dx.

Applying Parseval’s theorem again, and since 2
√
ab ≤ a + b for a, b ≥ 0,

‖u‖2
H1/2(ΓH) ≤ 2

{∫
S

{
k2|u(x)|2 + |∇x̃u(x)|2

}
dx

∫
S

∣∣∣∣ ∂

∂xn
u(x)

∣∣∣∣
2

dx

}1/2

≤ ‖u‖2
VH

.

Further, using the fact that u ∈ C∞
0 (Uf−), for x ∈ S,

|u(x)|2 =

∣∣∣∣∣
∫ xn

f−

∂

∂xn
u(x) dxn

∣∣∣∣∣
2

≤ (xn − f−)

∫ H

f−

∣∣∣∣ ∂

∂xn
u(x)

∣∣∣∣
2

dxn

so that, since
∫H

f−
(xn − f−) dxn = (H − f−)2/2,

∫
S

|u(x)|2 dx ≤ (H − f−)2

2

∫
S

∣∣∣∣ ∂

∂xn
u(x)

∣∣∣∣
2

dx.(3.4)

Since the set {v|SH
: v ∈ C∞

0 (D)} is dense in VH these bounds hold for all
u ∈ VH .

We are now in a position to prove that the sesquilinear form b(., .) is bounded,
establishing an explicit value for the bound.
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Lemma 3.5. For all u, v ∈ VH ,

|b(u, v)| ≤ 2‖u‖VH
‖v‖VH

so that the sesquilinear form b(., .) is bounded.
Proof. From the definition of the sesquilinear form b(., .) and the Cauchy–Schwarz

inequality, we have

|b(u, v)| ≤ ‖∇u‖2‖∇v‖2 + k2‖u‖2‖v‖2 + ‖γ−u‖H1/2(ΓH)‖T‖ ‖γ−v‖H1/2(ΓH).

Applying the Cauchy–Schwarz inequality and Lemmas 2.4 and 3.4 we obtain the
desired estimate.

Our last lemma of this section shows that the sesquilinear form b(., .) is VH -elliptic
provided the wave number k is not too large.

Lemma 3.6. For all u ∈ VH ,

� b(u, u) ≥ 1 − κ2/2

1 + κ2/2
‖u‖2

VH
.

Proof. By Lemma 3.2,

� b(u, u) ≥ ‖u‖2
VH

− 2k2‖u‖2
2.

The result follows from Lemma 3.4, implying that ‖u‖2
VH

≥ k2(2/κ2 + 1)‖u‖2
2.

Using Lemmas 3.5 and 3.6 we can now prove Theorem 3.1.
Proof. By Lemma 3.6 and under the assumption of the theorem that k <

√
2/(H−

f−) we see that b(., .) is VH -elliptic. Lemma 3.5 shows that b(., .) is bounded and hence
by the Lax–Milgram lemma the existence of a unique solution u to (3.1) is assured.
The estimate (3.2) also follows from the Lax–Milgram lemma. In the particular case
that G(v) := −(g, v), for some g ∈ L2(SH), we have further, by the Cauchy–Schwarz
inequality and Lemma 3.4, that

‖G‖V ∗
H

= sup
v∈VH

|(v, g)|
‖v‖VH

≤ sup
v∈VH

‖v‖2‖g‖2

‖v‖VH

≤ H − f−√
2

‖g‖2,

and (3.3) follows.

4. Analysis of the variational problem at arbitrary frequency. The ses-
quilinear form b(., .) is not VH -elliptic if the wave number k is large. In this section we
shall establish, with no restriction on the wave number but some additional constraint
on the domain, that the boundary value problem and the equivalent variational prob-
lem are uniquely solvable by using the generalized Lax–Milgram theory of Babuška.
The domains D for which we will establish this result are those which, in addition to
our assumption throughout that Uf+ ⊂ D ⊂ Uf− , satisfy the condition that

x ∈ D ⇒ x + sen ∈ D for all s > 0,(4.1)

where en denotes the unit vector in the direction xn. Condition (4.1) is satisfied if Γ
is the graph of a continuous function, but certainly does not require that this be the
case. Nor does (4.1) impose any regularity on ∂D. Our main result in this section is
the following.
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Theorem 4.1. If (4.1) holds, then the variational problem (3.1) has a unique
solution u ∈ VH for every G ∈ V ∗

H and

‖u‖VH
≤ C‖G‖V ∗

H
,(4.2)

where

C = 1 +
√

2κ (κ + 1)2.

In particular, the boundary value problem and the equivalent variational problem (2.23)
have exactly one solution, and the solution satisfies the bound

k‖u‖VH
≤ κ√

2
(κ + 1)

2 ‖g‖2.

To apply the generalized Lax–Milgram theorem (e.g., [19, Theorem 2.15]) we need
to show that b is bounded, which we have done in Lemma 3.5; to establish the inf-sup
condition that

β := inf
0 �=u∈VH

sup
0 �=v∈VH

|b(u, v)|
‖u‖VH

‖v‖VH

> 0;(4.3)

and to establish a “transposed” inf-sup condition. It follows easily from Corollary 3.3
that this transposed inf-sup condition follows automatically if (4.3) holds.

Lemma 4.2. If (4.3) holds, then for all nonzero v ∈ VH ,

sup
0 �=u∈VH

|b(u, v)|
‖u‖VH

> 0.

Proof. If (4.3) holds and v ∈ VH is nonzero, then

sup
0 �=u∈VH

|b(u, v)|
‖u‖VH

= sup
0 �=u∈VH

|b(v̄, u)|
‖u‖VH

≥ β‖v‖VH
> 0.

This proves the lemma.
The following result follows from [19, Theorem 2.15] and Lemmas 3.5 and 4.2.
Corollary 4.3. If (4.3) holds, then the variational problem (3.1) has exactly

one solution u ∈ VH for all G ∈ V ∗
H . Moreover,

‖u‖VH
≤ β−1‖G‖V ∗

H
.

To show (4.3) we will establish an a priori bound for solutions of (3.1), from which
the inf-sup condition will follow by the following easily established lemma (see [19,
Remark 2.20]).

Lemma 4.4. Suppose that there exists C > 0 such that for all u ∈ VH and G ∈ V ∗
H

satisfying (3.1) it holds that

‖u‖VH
≤ C‖G‖V ∗

H
.(4.4)

Then the inf-sup condition (4.3) holds with β ≥ C−1.
The following lemma reduces the problem of establishing (4.4) to that of estab-

lishing an a priori bound for solutions of the special case (2.23).
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Lemma 4.5. Suppose there exists C̃ > 0 such that for all u ∈ VH and g ∈ L2(SH)
satisfying (2.23) it holds that

‖u‖VH
≤ k−1C̃ ‖g‖2.(4.5)

Then, for all u ∈ VH and G ∈ V ∗
H satisfying (3.1), the bound (4.4) holds with

C ≤ 1 + 2 C̃.

Proof. Suppose u ∈ VH is a solution of

b(u, v) = G(v), v ∈ VH ,(4.6)

where G ∈ V ∗
H . Let b0 : VH × VH → C be defined by

b0(u, v) = (∇u,∇v) + k2(u, v) +

∫
ΓH

γ−v Tγ−u ds, u, v ∈ VH .

It follows from Lemma 3.2 that b0 is VH -elliptic, in fact that

� b0(v, v) ≥ ‖v‖2
VH

, v ∈ VH .

Thus the problem of finding u0 ∈ VH such that

b0(u0, v) = G(v), v ∈ VH ,(4.7)

has a unique solution which satisfies

‖u0‖VH
≤ ‖G‖V ∗

H
.(4.8)

Furthermore, defining w = u− u0 and using (4.6) and (4.7), we see that

b(w, v) = b(u, v) − b(u0, v) = G(v) − (G(v) − 2k2(u0, v)) = 2k2(u0, v)

for all v ∈ VH . Thus w satisfies (2.23) with g = −2k2u0. It follows, using (4.8), (4.5),
and Lemma 3.4, that

‖w‖VH
≤ 2kC̃‖u0‖2 ≤ 2C̃‖G‖V ∗

H
.(4.9)

The bound (4.4), with C ≤ 1 + 2 C̃, follows from (4.8) and (4.9).
Following these preliminary lemmas we turn now to establishing the a priori

bound (4.5), at first just for the case when Γ is the graph of a smooth function. We
recall that ν is the outward unit normal to SH and νn = ν · en is the nth (vertical)
component of ν.

Lemma 4.6. Suppose Γ is given by (2.4) with f ∈ C∞(Rn−1). Let H ≥ f+,
g ∈ L2(SH) and suppose w ∈ VH satisfies

b(w, φ) = −(g, φ) for all φ ∈ VH .(4.10)

Then

‖w‖VH
≤ k−1C̃‖g‖2,
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where C̃ = κ√
2
(κ + 1)2.

Proof. The proof of this lemma is motivated by [21, 12], where a Rellich identity
is used to prove estimates for solutions of the Helmholtz equation posed on bounded
domains, by the proofs of the basic inequalities for rough surface scattering problems
in [11, 29], and by the estimates derived for the diffraction grating problem in [16].

Let r = |x̃|. For A ≥ 1 let φA ∈ C∞
0 (R) be such that 0 ≤ φA ≤ 1, φA(r) = 1 if

r ≤ A and φA(r) = 0 if r ≥ A + 1 and finally such that ‖φ′
A‖∞ ≤ M for some fixed

M independent of A.

Extending the definition of w to D by defining w in UH by (2.9) with FH := γ−w,
it follows from Theorem 2.3 that w satisfies the boundary value problem with g
extended by zero from SH to D. By standard local regularity results [17] it holds,
since g ∈ L2(D), w = 0 on Γ, and the boundary is smooth, that w ∈ H2

loc(D). Further,
w ∈ H2(Ub \Uc) for c > b > f+ (though w ∈ H2(Sc) is not clear without some further
constraint on the behavior of Γ at infinity). Moreover, by Lemma 2.2, w is given by
the right-hand side of (2.9) in Ub for all b > H if H is replaced in (2.9) by b and Fb

denotes the restriction of w to Γb. Thus w satisfies the boundary value problem with
H replaced by b for all b > H, and so, by Theorem 2.3,∫

Sb

(∇w · ∇v̄ − k2wv̄) dx = −
∫

Γb

γ−v̄ Tγ−w ds−
∫
Sb

v̄g dx(4.11)

for all b ≥ H.

In view of this regularity and since w satisfies the boundary value problem, we
have, for all a > H,

2�
∫
Sa

φA(r)(xn − f−)g
∂w

∂xn
dx

= 2�
∫
Sa

φA(r)(xn − f−)(Δw + k2w)
∂w

∂xn
dx

=

∫
Sa

{
2�

{
∇ ·

(
φA(r)(xn − f−)

∂w

∂xn
∇w

)}
− 2φA(r)

∣∣∣∣ ∂w∂xn

∣∣∣∣
2

−(xn − f−)φA(r)
∂|∇w|2
∂xn

−2φ′
A(r)(xn − f−)

x̃

|x̃| · �
(
∇x̃w

∂w

∂xn

)
+ k2(xn − f−)φA(r)

∂|w|2
∂xn

}
dx.

Using the divergence theorem and integration by parts,

2�
∫
Sa

φA(r)(xn − f−)g
∂w

∂xn
dx

= (a− f−)

∫
Γa

φA(r)

{∣∣∣∣ ∂w∂xn

∣∣∣∣
2

− |∇x̃w|2 + k2 |w|2
}

ds

−
∫

Γ

(xn − f−)φA(r)

{
νn|∇w|2 − 2�

(
∂w

∂xn

∂w

∂ν

)}
ds

+

∫
Sa

{
φA(r)

(
|∇w|2 − k2|w|2 − 2

∣∣∣∣ ∂w∂xn

∣∣∣∣
2
)

− 2φ′
A(r)(xn − f−)�

(
∂w

∂xn

∂w

∂r

)}
dx.
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Using the fact that w = 0 on Γ so that ∇w = (∂w/∂ν)ν and

∂w

∂xn
= en · ∇w = en · ν ∂w

∂ν
= νn

∂w

∂ν
,

and rearranging terms we find that

−
∫

Γ

φA(r)(xn − f−)νn

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds + 2

∫
Sa

φA(r)

∣∣∣∣ ∂w∂xn

∣∣∣∣
2

dx

= (a− f−)

∫
Γa

φA(r)

{∣∣∣∣ ∂w∂xn

∣∣∣∣
2

− |∇x̃w|2 + k2 |w|2
}

ds

+

∫
Sa

{
φA(r)

(
|∇w|2 − k2|w|2

)
− 2φ′

A(r)(xn − f−)�
(

∂w

∂xn

∂w

∂r

)}
dx

−2�
∫
Sa

φA(r)(xn − f−)g
∂w

∂xn
dx.(4.12)

We now wish to let A → ∞. The only problem is the term involving φ′
A which we

estimate as follows. Let Sb
a = {x ∈ Sa : |x̃| < b} for b ≥ 1. Then∣∣∣∣

∫
Sa

{
2φ′

A(r)(xn − f−)�
(

∂w

∂xn

∂w

∂r

)}
dx

∣∣∣∣ ≤ 2M(a− f−)

∫
SA+1
a \SA

a

|∇w|2 dx → 0

as A → ∞, where the convergence follows from the fact that w ∈ H1(SH). In addition
since w ∈ H2(Ub \ Uc), for c > a > b > f+, ∇w|ΓH

∈ (H1/2(ΓH))n. Thus, taking
the limit as A → ∞ in (4.12), and applying the Lebesgue dominated convergence and
monotone convergence theorems, we see that

−
∫

Γ

(xn − f−)νn

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds + 2

∫
Sa

∣∣∣∣ ∂w∂xn

∣∣∣∣
2

dx

= (a− f−)

∫
Γa

{∣∣∣∣ ∂w∂xn

∣∣∣∣
2

− |∇x̃w|2 + k2 |w|2
}

ds

+

∫
Sa

(
|∇w|2 − k2|w|2 − 2�

(
(xn − f−)g

∂w

∂xn

))
dx.(4.13)

Now, since w satisfies the boundary value problem, including the radiation condition
(2.9), applying Lemma 2.2 it follows that

∫
Γa

{∣∣∣∣ ∂w∂xn

∣∣∣∣
2

− |∇x̃w|2 + k2 |w|2
}

ds ≤ 2k
∫

Γa

w
∂w

∂xn
ds

= −2k
∫

Γa

γ−wTγ−w ds(4.14)

on applying the Plancherel identity (2.8), noting (2.15) and (2.16). Further, setting
v = w in (4.11), we get∫

Sb

(
|∇w|2 − k2|w|2

)
dx = −

∫
Γb

γ−wTγ−w ds−
∫
Sb

gw dx(4.15)
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for b ≥ H, so that, by Lemma 3.2,∫
Sb

[|∇w|2 − k2|w|2] dx ≤ −�
∫
Sb

gw dx(4.16)

and

−2k
∫

Γb

γ−wTγ−w ds = 2k
∫
Sb

gw dx.(4.17)

Using (4.17) in (4.14) and then using the resulting equation and (4.16) in (4.13) and
noting that supp g ⊂ SH , we get that

−
∫

Γ

(xn − f−)νn

∣∣∣∣∂w∂ν
∣∣∣∣
2

ds + 2

∫
SH

∣∣∣∣ ∂w∂xn

∣∣∣∣
2

dx ≤ 2(a− f−)k
∫
SH

gw̄ dx

−�
∫
SH

[
gw̄ + 2(xn − f−)g

∂w̄

∂xn

]
dx.

Since this equation holds for all a > H and νn < 0 on Γ, it follows by the Cauchy–
Schwarz inequality that

2

∥∥∥∥ ∂w

∂xn

∥∥∥∥
2

2

≤
(

2κ‖w‖2 + ‖w‖2 + 2(H − f−)

∥∥∥∥ ∂w

∂xn

∥∥∥∥
2

)
‖g‖2.

Now using Lemma 3.4 to estimate ‖w‖2 we obtain∥∥∥∥ ∂w

∂xn

∥∥∥∥
2

≤ (H − f−)

(
1√
2
κ +

1

2
√

2
+ 1

)
‖g‖2(4.18)

and use of Lemma 3.4 again shows that

‖w‖2 ≤ (H − f−)2
(

1

2
κ +

1

4
+

1√
2

)
‖g‖2.

Using the above inequality in (4.16) shows that

‖w‖2
VH

≤ 2k2‖w‖2
2 + ‖g‖2‖w‖2

≤ (H − f−)2

4

(
κ2

2
(2κ + 1 + 2

√
2)2 + 2κ + 1 + 2

√
2

)
‖g‖2

2.

Thus, for κ ≥ 1,

‖w‖2
VH

≤ (H − f−)2

2
(κ + 1)4‖g‖2

2.

The same bound holds for κ < 1 by Theorem 3.1.
Remark 4.7. The above argument works under milder assumptions on the bound-

ary Γ, in particular that Γ is the graph of a function f ∈ C2(Rn−1), so that Γ is of
class C2. This assumption is enough [17] to deduce the necessary local regularity result
that w ∈ H2

loc(D).
Combining Lemmas 4.6, 4.5, and 4.4 with Corollary 4.3, we have the following

result.
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Lemma 4.8. If Γ satisfies the conditions of Lemma 4.6, then the variational
problem (3.1) has a unique solution u ∈ VH for every G ∈ V ∗

H and the solution
satisfies the estimate (4.2).

Remark 4.9. The above result, combined with Lemma 4.4, implies that β, the inf-
sup constant for b(·, ·), satisfies β−1 ≤ C = O(k3) as k → ∞. This high power of the
wave number is, we suspect, not optimal. For an interior problem in a smooth starlike
and bounded domain in R

2 or R
3 with impedance boundary data it is known that the

constant in the corresponding bound satisfies the estimate C = O(k) (for example,
this can be proved by combining estimate (2) of Theorem 1 of [12] with the argument
of Lemma 4.5, involving a function corresponding to u0). For a somewhat analogous
one-dimensional problem the inf-sup constant is also O(k) as k → ∞ (Theorem 4.2
of [19]).

We proceed now to establish that Lemmas 4.6 and 4.8 hold for much more general
boundaries, namely those satisfying (4.1). To establish this we first prove the following
technical lemma.

Lemma 4.10. If (4.1) holds, then, for every φ ∈ C∞
0 (D), there exists f ∈

C∞(Rn−1) such that

suppφ ⊂ D′ := {x ∈ R
n : xn > f(x̃), x̃ ∈ R

n−1}

and Uf+ ⊂ D′ ⊂ D.
Proof. Let S := suppφ \ Uf+ . Then either S = ∅, in which case f(x̃) ≡ f+ has

the properties claimed, or S �= ∅.
Thus, suppose S �= ∅ and let δ := dist(S, ∂D)/2. Then δ > 0 and, defining

G := {x + sen : x ∈ S, s ≥ 0}, dist(G, ∂D) = dist(S, ∂D) = 2δ. Let Gδ := {x ∈ R
n :

dist(x,G) < δ} and let A and Aδ denote the projections of G and Gδ, respectively,
onto the Ox1 · · ·xn−1 plane.

Let N ∈ N and Sj ⊂ R
n−1, j = 1, . . . , N , be such that each Sj is measurable and

nonempty, Sj ∩ Sm = ∅ for j �= m,

Aδ ⊂
N⋃
j=1

Sj ,

and diam(Sj) ≤ δ/2, j = 1, . . . , N . For j = 1, . . . , N choose x̃j ∈ Sj and let

fj := inf{xn ∈ R : x = (x̃j , xn) ∈ Gδ ∪ Γf+
}.

Then f− ≤ fj ≤ f+, j = 1, . . . , N . Define f̃ : R
n−1 → R by

f̃(x̃) :=

{
fj if x̃ ∈ Sj , j = 1, . . . , N,
f+ otherwise.

Then f̃ ∈ L∞(Rn−1); in fact f̃ is a simple function and f− ≤ f̃(x̃) ≤ f+, x̃ ∈ R
n−1.

Choose ε with 0 < ε < δ/2 and let J ∈ C∞
0 (Rn−1) be such that J ≥ 0, J(x̃) = 0 if

|x̃| ≥ ε, and
∫

Rn−1 J(x̃) dx̃ = 1. Define f ∈ C∞(Rn−1) by

f(x̃) :=

∫
Rn−1

J(x̃− ỹ)f̃(ỹ) dỹ, x̃ ∈ R
n−1,

and let D′ be defined as in the statement of the lemma. Then f and D′ have the
properties claimed.
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To see that this is true note first that

min
|ỹ−x̃|<ε

|f̃(ỹ)| ≤ f(x̃) ≤ max
|ỹ−x̃|<ε

|f̃(ỹ)|, x̃ ∈ R
n−1,(4.19)

so that Uf+
⊂ D′. If x̃ ∈ A, then |ỹ− x̃| < ε implies that ỹ ∈ Aδ and so (4.19) implies

that

f(x̃) ≤ max
j=1,...,N, |x̃j−x̃|<ε+δ/2

fj

so that f(x̃) ≤ fm for some m for which |x̃m − x̃| < ε + δ/2. Now let x = (x̃, fm),
y = (x̃m, fm). Then |x− y| = |x̃− x̃m| < ε + δ/2 and dist(y,G) = δ so that

dist(x,G) ≥ dist(y,G) − |x− y| ≥ δ − (ε + δ/2) > 0.

Thus x �∈ G and so (x̃, f(x̃)) �∈ G. Thus S ⊂ G ⊂ D′ and so suppφ ⊂ Uf+ ∪ S ⊂ D′.
Arguing similarly, for all x̃ ∈ R

n−1, either f(x̃) = f+, in which case (x̃, xn) ∈ D
for xn > f(x̃), or f(x̃) ≥ fm for some m for which |x̃m − x̃| < ε + δ/2. In this latter
case, defining x = (x̃, fm) and y = (x̃m, fm), it holds that

dist(x,G) ≤ dist(y,G) + |x− y| ≤ δ + ε + δ/2 < 2δ

so that x ∈ D and hence (x̃, f(x̃)) ∈ D. Thus, for all x̃ ∈ R
n−1, (x̃, xn) ∈ D for

xn > f(x̃), i.e., D′ ⊂ D.
With this preliminary lemma we can proceed to show that Lemma 4.6 holds

whenever (4.1) holds.
Lemma 4.11. Suppose (4.1) holds, H ≥ f+, g ∈ L2(SH), and w ∈ VH satisfies

b(w, φ) = −(g, φ) for all φ ∈ VH .(4.20)

Then

‖w‖VH
≤ k−1C̃‖g‖2,

where C̃ = κ√
2
(κ + 1)2.

Proof. Let Ṽ := {φ|SH
: φ ∈ C∞

0 (D)}. Then Ṽ is dense in VH . Suppose w
satisfies (4.20) and choose a sequence (wm) ⊂ Ṽ such that ‖wm − w‖VH

→ 0 as
m → ∞. Then wm = φm|SH

, with φm ∈ C∞
0 (D), and, by Lemma 4.10, there exists

fm ∈ C∞(Rn−1) such that suppφm ⊂ Dm and Uf+ ⊂ Dm ⊂ D, where Dm := {x ∈
R

n : xn > fm(x̃), x̃ ∈ R
n−1}. Let V

(m)
H and bm denote the space and sesquilinear

form corresponding to the domain Dm. That is, where S
(m)
H := Dm \ UH , V

(m)
H is

defined by V
(m)
H := {φ|

S
(m)

H

: φ ∈ H1
0 (Dm)} and bm is given by (2.22) with SH and

VH replaced by S
(m)
H and V

(m)
H , respectively. Then S

(m)
H ⊂ SH and, if vm ∈ V

(m)
H

and v denotes vm extended by zero from S
(m)
H to SH , it holds that v ∈ VH . Via this

extension by zero, we can regard V
(m)
H as a subspace of VH and regard wm as an

element of V
(m)
H .

For all v ∈ V
(m)
H ⊂ VH , we have

bm(wm, v) = b(wm, v) = −(g, v) − b(w − wm, v).
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By Lemma 4.8, there exist unique w′
m, w′′

m ∈ V
(m)
H such that

bm(w′
m, v) = −(g, v), v ∈ V

(m)
H ,

and

bm(w′′
m, v) = −b(w − wm, v), v ∈ V

(m)
H .

Clearly wm = w′
m + w′′

m and, by Lemma 4.6,

‖w′
m‖

V
(m)

H

≤ k−1C̃‖g‖2

while, by Lemmas 4.8 and 3.4,

‖w′′
m‖

V
(m)

H

≤ 2C‖w − wm‖VH
.

Thus

‖w‖VH
= lim

m→∞
‖wm‖

V
(m)

H

≤ k−1C̃‖g‖2.

Theorem 4.1 now follows by combining Lemmas 4.11, 4.5, and 4.4 with Corollary
4.3.
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