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ACOUSTIC SCATTERING BY MILDLY ROUGH UNBOUNDED
SURFACES IN THREE DIMENSIONS∗

SIMON N. CHANDLER-WILDE† , ERIC HEINEMEYER‡ , AND ROLAND POTTHAST‡

Abstract. For a nonlocally perturbed half-space we consider the scattering of time-harmonic
acoustic waves. A second kind boundary integral equation formulation is proposed for the sound-soft
case, based on a standard ansatz as a combined single- and double-layer potential but replacing
the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green’s
function. Due to the unboundedness of the surface, the integral operators are noncompact. In
contrast to the two-dimensional case, the integral operators are also strongly singular, due to the
slow decay at infinity of the fundamental solution of the three-dimensional Helmholtz equation. In
the case when the surface is sufficiently smooth (Lyapunov) we show that the integral operators are
nevertheless bounded as operators on L2(Γ) and on L2(Γ) ∩ BC(Γ) and that the operators depend
continuously in norm on the wave number and on Γ. We further show that for mild roughness, i.e.,
a surface Γ which does not differ too much from a plane, the boundary integral equation is uniquely
solvable in the space L2(Γ)∩BC(Γ) and the scattering problem has a unique solution which satisfies
a limiting absorption principle in the case of real wave number.
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1. Introduction. The simulation of scattering of acoustic or electromagnetic
waves is of great importance for a large number of application areas ranging from
medical imaging to seismic exploration. To carry out this simulation, boundary in-
tegral equation (BIE) methods have become very popular in recent decades. For
scattering by bounded obstacles in two or three dimensions a very complete theory of
the boundary integral equation method has been developed (e.g., [14, 20]), and the
method forms the basis of very effective numerical algorithms (e.g., [12]).

This paper is concerned with the problem of scattering by unbounded surfaces for
which the mathematical theory is much less well developed. More precisely, we are
concerned with what are termed rough surface scattering problems in the engineering
literature. We use the phrase rough surface, as is the practice in this literature,
to denote a surface which is a (usually nonlocal) perturbation of an infinite plane
surface such that the whole surface lies within a finite distance of the original plane.
In particular we have in mind what is the usual case in the engineering literature
where the scattering surface Γ is the graph of some bounded continuous function
f : R

2 → R, i.e.,

Γ :=
{
x = (x1, x2, x3) ∈ R

3 : x3 = f(x1, x2)
}
.(1.1)

We will focus on a typical problem of this type, namely acoustic scattering by a rough,
sound soft surface, the acoustic medium of propagation occupying the perturbed half-
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space

D := {x = (x1, x2, x3) : x3 > f(x1, x2)}(1.2)

above the scattering surface Γ. The paper is concerned, particularly, with the theory
of BIE methods for such problems, in the case when f is a sufficiently smooth function
(Γ is Lyapunov).

Rough surface scattering problems arise frequently in applications, for example
modelling acoustic and electromagnetic wave propagation over outdoor ground and
sea surfaces or, at a very different scale, optical scattering from the surface of ma-
terials in nanotechnology. The mathematical and computational modelling of these
problems has a large literature; see, e.g., the reviews and monographs by Ogilvy [22],
Voronovich [28], Saillard and Sentenac [25], Warnick and Chew [29], and DeSanto
[15]. The simulation of these scattering problems, requiring discretizations of sections
of three-dimensional (3D) surfaces of diameter large compared to the wavelength, is
a substantial scientific computing problem for which BIE methods are very popular,
with many effective, specialized numerical algorithms developed [27, 25, 29, 31].

Although BIE methods are applied widely to rough surface scattering problems,
the mathematical basis of the method is still poorly developed, especially in the 3D
case. In fact, there are a number of severe difficulties in extending the theory of BIE
methods from bounded to unbounded scatterers.

The first of these difficulties is that, due to the slow decay at infinity of the
standard fundamental solution, Φ(x, y), of the Helmholtz equation (like |x−y|−(n−1)/2

in n dimensions), the standard boundary integral operators are not bounded on any
of the standard function spaces when the surface is unbounded. We will see that this
difficulty can be overcome by modifying the usual kernels so as to obtain bounded
integral operators and corresponding novel BIE formulations.

A second difficulty is that of loss of compactness of boundary integral operators
associated with the noncompactness of the unbounded scattering surface. This is a
severe barrier to establishing existence of solution to the BIEs. We recall that, in the
case of scattering by smooth bounded obstacles, compactness arguments (the Riesz–
Fredholm theory) lead directly to proofs of well-posedness for second kind boundary
integral equation formulations (e.g., [14]). In the case of nonsmooth (Lipschitz) ob-
stacles, compactness arguments are no longer sufficient but still play an essential role
in establishing well-posedness (e.g., [26]).

For the two-dimensional (2D) rough surface scattering case much progress has
been made in terms of deriving well-posed BIEs for a variety of acoustic, electromag-
netic, and elastic wave problems [9, 8, 32, 2]. Surprisingly, none of the analysis for
the 2D case extends straightforwardly to three dimensions; indeed most of the 2D
analysis appears to be unsuitable in the 3D case.

In more detail, in the 2D case bounded integral operators have been obtained by
replacing the standard fundamental solution by the Dirichlet or impedance Green’s
function for a half-plane that contains the domain D of propagation (see, e.g., [8, 32]).
This modification leads to kernels of boundary integral operators that are weakly
singular in their asymptotic behavior at infinity so that the integral operators are
bounded on Lp(Γ) for 1 ≤ p ≤ ∞ and on BC(Γ), the space of bounded continuous
functions on Γ. In this paper we will employ the analogous modification for the 3D
case, replacing the standard fundamental solution with the Dirichlet Green’s func-
tion for a half-space that contains D. But this modification leads to kernels of the
integral operators that are strongly rather than weakly singular. As a consequence,
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Fig. 1.1. Geometrical setting of the scattering problem.

the boundary integral operators are no longer well defined as operators on BC(Γ) or
L∞(Γ). We are, however, able to show the boundedness of the operators on L2(Γ)
by more elaborate arguments, expressing each integral operator as the sum of prod-
ucts of convolution and multiplication operators plus a well-behaved remainder, each
multiplication operator a multiplication by an L∞ function. To complete the proof of
boundedness of the integral operators, one of the main results of the paper, we show,
by explicit computations, that the Fourier transform of each convolution kernel is
bounded. We note that our technique of expressing the kernel as the sum of products
of convolution and multiplication operators plus a short-range remainder has been
used previously [27, 31] but as a computational rather than a theoretical tool, as
a device for matrix compression and acceleration of matrix-vector multiplications in
iterative solvers.

To establish existence of solution and well-posedness in the 2D case, generaliza-
tions of part of the Riesz theory of compact operators have been developed [24, 11, 10]
which require only local compactness rather than compactness and enable existence
of solution in BC(Γ) to be deduced from uniqueness of solution. In fact, injectivity
of the second kind BIE in BC(Γ) implies well-posedness in BC(Γ) and in the space
Lp(Γ), 1 ≤ p ≤ ∞ [3]. But this theory does not seem relevant for 3D rough sur-
face scattering problems given that the corresponding boundary integral operators
are not well defined as operators on BC(Γ). In the absence of these tools we will
prove existence of solution to the BIE (and the corresponding scattering problem) by
perturbation arguments, used for the much simpler 2D case in [7]. The perturbation
arguments we employ will prove to be sufficient to establish existence in the case when
Γ is sufficiently close to a flat plane.

The results contained in this paper are as follows. We suppose that the rough
surface is given by (1.1) with f continuously differentiable with Hölder continuous first
derivative (f ∈ BC1,α(R2) for some α ∈ (0, 1]). As mentioned above, we investigate
the mapping properties of the single- and double-layer potentials when the kernel is
the Dirichlet Green’s function for a half-space, consisting of the standard fundamental
solution minus the same function with a point source mirrored in a plane. By Fourier
techniques on a 2D plane and appropriate decompositions of the operators into a local
and a global part we show that these layer potentials exist as bounded operators on
L2(Γ). After these results, of significant interest in their own right, we consider the
problem of acoustic scattering by the rough surface Γ in the case when the surface is
sound soft (the field vanishes on Γ) and the incident field is due to a source distribution
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with compact support in D. We reduce this scattering problem to a second kind
boundary integral equation via an ansatz for the solution as a combined single- and
double-layer potential. (The analogous ansatz was used for the 2D rough surface
scattering case in [32], based on the analogous approach for scattering by bounded
obstacles dating back to [4].) For a flat surface, unique solvability of the BIE is
shown by explicit computation of a symbol. We then prove continuous dependence of
the boundary integral operators on variations of the boundary and use these results
and perturbation arguments to show that the scattering problem has a solution for
all surfaces in a neighborhood of the plane, i.e., for mildly rough unbounded surfaces.
Moreover, we show that the solution we compute by the BIE method satisfies a limiting
absorption principle. For the convenience of the reader our main results are collected
together and precisely stated at the end of section 2.

We should point out that a rigorous mathematical theory for BIE methods for
3D rough surface scattering has been developed previously for two special cases, both
instances where the integral equation can be reduced to one on a finite domain so that
compactness arguments can be applied. The first is the case of scattering by a locally
perturbed plane, where the unbounded surface coincides with a plane in the exterior
of some ball. This case can be reduced to a BIE on a finite domain, related to the
local perturbation; we refer the reader to [30, 19, 5] and the references therein. The
second is the case when the surface is a diffraction grating (the function f in (1.1) is
biperiodic) and the incident field is a plane wave. In this case the BIE can be reduced
to one on a finite part of the surface that is a single period; see [21, 17].

Finally, we note that, since our results assume boundary data in the space L2(Γ),
they do not include the interesting and problematic case of plane wave incidence,
which is included in the analogous theory that has been developed for the 2D problem
[8, 32]. For a partial theoretical justification for BIE methods for 3D rough surface
scattering with plane wave incidence, namely a justification, with some provisos, of
Green’s representation formula, see [16].

Notation. Throughout the paper x and y will denote points in R
3 with com-

ponents x = (x1, x2, x3) and y = (y1, y2, y3). The reflection of y ∈ R
3 in the

plane Γ0 :=
{
x ∈ R

3 : x3 = 0
}

will be denoted by y′ := (y1, y2,−y3). By x we
will denote (x1, x2) ∈ R

2, as well as the projection (x1, x2, 0) of x onto the plane
Γ0. Similarly y denotes (y1, y2) and the projection of y onto Γ0. The standard
scalar product in R

2 is denoted by x · y and | · | is the Euclidean norm in R
n. Let

H+ := {z ∈ C : Imz ≥ 0,Rez > 0}. Given an unbounded closed set S ⊂ R
n, n = 2, 3,

BC(S) will denote the set of bounded continuous real- or complex-valued functions
on S, a Banach space with the norm || · ||BC(S) defined by ||F ||BC(S) = supx∈S |F (x)|.
We will employ this notation particularly often in the cases S = Γ ⊂ R

3 and S = R
2.

Similarly, for 0 < α ≤ 1, let BC1,α(R2) denote the set of those bounded continuously
differentiable functions F : R

2 → R that have the property that ∇F is bounded and
uniformly Hölder continuous with index α, so that

||F ||BC1,α(R2) := sup
x∈R2

|F (x)| + sup
x∈R2

|∇F (x)| + sup
x,y∈R2, x�=y

|∇F (x) −∇F (y)|
|x − y|α < ∞.

BC1,α(R2) is a Banach space under the norm || · ||BC1,α(R2). It is convenient also to
have a shorthand for the intersection of the sets L2(Γ) and BC(Γ), so we define

X := L2(Γ) ∩BC(Γ).
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Since L2(Γ) and BC(Γ) are Banach spaces equipped with their respective norms, so
also is X, equipped with the norm || · ||X defined by

||F ||X := max(||F ||L2(Γ), ||F ||BC(Γ)).

2. Scattering by rough surfaces in R
3. Time-harmonic (e−iωt time depen-

dence) acoustic waves are modelled by the Helmholtz equation


u + κ2u = 0,(2.1)

where κ = κ0 + iκ1 denotes the wave number for which we will assume that κ ∈ H+,
i.e., κ0 > 0 and κ1 ≥ 0. We define the domain of propagation D by (1.2), where f ∈
BC1,α(R2) is a strictly positive function, so that there exist constants f+ > f− > 0
with

f− ≤ f(x) ≤ f+, x ∈ R
2.

We denote the boundary of D by Γ, so that Γ is given by (1.1). (For a sketch of the
geometry see Figure 1.1.) Whenever we wish to denote explicitly the dependence of
the domain on the boundary function f we will write Df for D and Γf for Γ. This of
course includes the case of the constant function f ≡ h ∈ R

+ := (0,∞).
We will consider the scattering of an incident acoustic wave ui by the surface Γ.

For the total field

u := ui + us,(2.2)

which is the sum of the incident field and the scattered field us, we assume on Γ the
Dirichlet boundary condition

u(x) = 0, x ∈ Γ.(2.3)

We require that the scattered field is bounded in D, i.e.,

|us(x)| ≤ c, x ∈ D,(2.4)

for some constant c > 0. In the case κ > 0 we also require that u satisfies the
following limiting absorption principle: denoting u temporarily by u(κ) to indicate its
dependence on κ, we suppose that for all sufficiently small ε > 0 a solution u(κ+iε)

exists and that, for all x ∈ D,

u(κ+iε)(x) → u(κ)(x), ε → 0.(2.5)

The limiting absorption principle plays the role of a radiation condition for real κ to
single out the physical solution.

Before proceeding further to define the scattering problem precisely, we want to
take a look, in the important case when the wave number is real, at the fundamental
solution

Φ(x, y) :=
1

4π

eiκ|x−y|

|x− y| , x, y ∈ R
3, x �= y,(2.6)

of the Helmholtz equation in R
3 and the ordinary boundary layer potentials, e.g., the

single-layer potential ∫
Γ

Φ(x, y)ϕ(y) ds(y), x ∈ R
3.(2.7)
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For an unbounded surface Γ the integral (2.7) converges (for κ > 0) only if ϕ decreases
sufficiently rapidly at infinity. This is due to the slow decay of the fundamental
solution in R

3 at infinity. Letting BR(x) := {y ∈ R
3 : |x − y| < R} denote the open

ball of radius R centered at x, an easy calculation yields that, for x ∈ D, p > 0, and
κ > 0, ∫

Γ∩BR(x)

|Φ(x, y)|p ds(y) =

∫
Γ∩BR(x)

1

|x− y|p ds(y) → ∞, R → ∞,

for p ≤ 2. Thus we observe that the trace of Φ(x, ·) on Γ is not integrable; indeed
Φ(x, ·) �∈ Lp(Γ) for p ≤ 2. Thus, for every x ∈ D, the single-layer potential (2.7) is
not well defined for all ϕ ∈ L2(Γ).

In order to get a faster decaying kernel we will, following what has been proposed
for the analogous 2D rough surface scattering case [32], replace Φ(x, y) by an appro-
priate half-space Green’s function for the Helmholtz equation. Specifically, we will
work with the function

G(x, y) := Φ(x, y) − Φ(x, y′),(2.8)

with y′ = (y1, y2,−y3), which is the Dirichlet Green’s function for the half-space
{x : x3 > 0}. Thus we will use layer potentials with Φ(x, y) replaced by G(x, y), so
that we define the single-layer potential operator by

(Sϕ)(x) := 2

∫
Γ

G(x, y)ϕ(y) ds(y), x ∈ Γ,(2.9)

and the double-layer potential operator by

(Kϕ)(x) := 2

∫
Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γ,(2.10)

where the normal ν(y) is directed into D. Whenever we wish to denote explicitly the
dependence of S and K on the boundary function f we will write Sf and Kf for S
and K, respectively.

It is a straightforward calculation (cf. (3.7) below) to see that, for y ∈ Γ,

|G(x, y)| ∼ x3y3|κ|
2π

e−κ1|x−y|

|x− y|2 , |y| → ∞.(2.11)

This decay and the analogous decay at infinity (3.11) that we show for the kernel
of the double-layer potential operator are fast enough for (2.9) and (2.10) to be well
defined as improper integrals, for every x ∈ D̄ and ϕ ∈ C(Γ) ∩ L2(Γ), in particular
in the case κ1 = 0. Further, we will show, via Fourier techniques in section 5, as a
main result of the paper, that this decay is fast enough for S and K to be bounded
operators on L2(Γ).

Because, for x ∈ Γ,∫
Γ∩BR(x)\B1(x)

1

|x− y|2 ds(y) → ∞, R → ∞,

the decay of G(x, y) as y → ∞ is not fast enough when κ > 0 for S to be well defined
as an operator on the space of bounded continuous functions. Thus integral equation
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methods for the 3D rough surface scattering problem are essentially different from the
2D case studied in [7, 9, 8, 32, 3].

Returning to the scattering problem, we wish to develop an analysis that is ap-
plicable whenever the incident wave is due to sources of the acoustic field located
in some compact set M ⊂ D. Since waves with sources in a bounded set M ⊂ R

3

can be represented as superpositions of point sources located in the same set, we will
concentrate on the case when the incident field is due to a point source located at
some point z ∈ D, i.e., ui = Φ(·, z). Thus the following is the specific problem that
we will consider in this paper:

Problem 1 (point source rough surface scattering problem). Let ui = Φ(·, z)
be the incident field due to a point source at z ∈ D. Then we seek a scattered field
us ∈ C2(D) ∩ C(D̄) such that us is a solution to the Helmholtz equation (2.1) in D,
the total field satisfies the sound-soft boundary condition (2.3), and the bound (2.4)
holds. In the case κ > 0, we also require that the limiting absorption principle (2.5)
holds.

We will convert this scattering problem to a boundary value problem. To do
this we will seek the scattered field as the sum of a mirrored point source Φ′(·, z) :=
−Φ(·, z′), where z′ is the reflection of z in the flat plane Γ0, plus some unknown
remainder v, i.e., us = v + Φ′(·, z). Note that Φ′(·, z) is a solution to the scattering
problem in the special case that Γ = Γ0. Using the boundary condition us+ Φ(·, z) = 0
on Γ = ∂D, we obtain the boundary condition on v that

v(x) = −{Φ(x, z) − Φ(x, z′)} = −G(x, z) =: g(x), x ∈ Γ.(2.12)

Clearly, g ∈ BC(Γ) and it follows from (2.11) that g ∈ L2(Γ), so that g ∈ X =
L2(Γ)∩BC(Γ). Thus us satisfies the above scattering problem if and only if v satisfies
the following Dirichlet problem with g given by (2.12).

Problem 2 (BVP). Given g ∈ X, find v ∈ C2(D) ∩ C(D̄), which satisfies the
Helmholtz equation (2.1) in D, the Dirichlet boundary condition v = g on Γ, the bound
(2.4), and, for κ > 0, the limiting absorption principle (2.5).

In this paper we will look for a solution to this boundary value problem as the
combined single- and double-layer potential

v(x) := u2(x) − iη u1(x), x ∈ D,(2.13)

with some parameter η ≥ 0, where for a given function ϕ ∈ X we define the single-
layer potential

u1(x) :=

∫
Γ

G(x, y)ϕ(y) ds(y), x ∈ R
3,(2.14)

and the double-layer potential

u2(x) :=

∫
Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ R

3.(2.15)

Seeking the solution in this form we will see that the boundary condition (2.12) is
satisfied if and only if the BIE

(I + K − iηS)ϕ = 2g(2.16)

holds on Γ, where I is the identity operator.
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The following are the main results in the remainder of the paper. In the next two
sections we examine the kernels of the integral operators K and S and recall relevant
properties of convolution and more general integral operators that we need to study
K and S. The properties we discuss are exploited in section 5. In particular we show
the following result.

Theorem 2.1. The single- and double-layer potential operators S and K, defined
by (2.9) and (2.10), are bounded operators on L2(Γ) and on X.

We also establish that the single- and double-layer potential operators S and K
depend continuously on κ1 = Imκ in the norm topology on the set of bounded linear
operators on L2(Γ); this result is needed to establish the limiting absorption principle.
Moreover, we show, for S and K, continuous dependence in norm on the boundary
Γ, in a sense we make precise.

In the final section, section 6, we establish existence and uniqueness of solution
of the BIE and boundary value problem, at least in certain cases. As the first step we
justify the integral equation (2.16) as a reformulation of the boundary value problem,
showing the following result.

Theorem 2.2. Suppose that v is defined by (2.13)–(2.15) with ϕ ∈ X. Then,
in the case κ1 > 0, v satisfies the boundary value problem if and only if ϕ satisfies
the BIE (2.16). In the case κ1 = 0 (i.e., κ > 0), if v satisfies the boundary value
problem, then ϕ satisfies (2.16). Conversely, if κ > 0, ϕ(κ+iε) ∈ X satisfies the
integral equation (2.16) with κ replaced by κ + iε, for all sufficiently small ε > 0, and
||ϕ− ϕ(κ+iε)||L2(Γ) → 0 as ε → 0, then v satisfies the boundary value problem.

We further establish the following result.
Theorem 2.3. The boundary value problem has at most one solution.
Then we study the invertibility of the operator I + K − iηS, first for the case

when Γ is flat and the operator I + K − iηS is a convolution operator and then for
the case when Γ is mildly rough by perturbation arguments. Our main result is the
following.

Theorem 2.4. Suppose that h > 0 and that either η > 0 or η = 0 and Imκ =
κ1 > 0. Then, provided ‖f−h‖BC1,α(R2) is sufficiently small (so that Γf is sufficiently
close to the flat surface f ≡ h), it holds that the integral equation (2.16) has a unique
solution ϕ ∈ L2(Γ) for every g ∈ L2(Γ), so that (I+K− iηS)−1 exists and is bounded
as an operator on L2(Γ). If, further, g ∈ X, then ϕ ∈ X, so that (I + K − iηS)−1 is
also a bounded operator on X.

Combining these results we have a final corollary concerning the solvability of the
boundary value problem.

Theorem 2.5. If h > 0 and ‖f − h‖BC1,α(R2) is sufficiently small (so that Γf

is sufficiently close to the flat surface f ≡ h), then the boundary value problem has
exactly one solution. Further, for some constant c > 0, independent of g,

|v(x)| ≤ c ||g||X , x ∈ D̄.

3. Properties of the 3D fundamental solution. We start with an investi-
gation of properties of the fundamental solution Φ(x, y) and its derivatives. The key
results are the expansions (3.7) and (3.11) needed to prove mapping properties of the
boundary integral operators S and K in section 5.

For the first derivative of Φ(x, y) with respect to y3 we calculate

∂Φ(x, y)

∂y3
= − iκ

4π

(x3 − y3)

|x− y|2 eiκ|x−y| +
1

4π

(x3 − y3)

|x− y|3 eiκ|x−y|.(3.1)
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The second derivative is given by

∂2Φ(x, y)

∂y2
3

=
1

4π

{
iκ

eiκ|x−y|

|x− y|2 − κ2 (x3 − y3)
2

|x− y|3 eiκ|x−y| − 2iκ
(x3 − y3)

2

|x− y|4 eiκ|x−y|

− eiκ|x−y|

|x− y|3 − iκ
(x3 − y3)

2

|x− y|4 eiκ|x−y| + 3
(x3 − y3)

2

|x− y|5 eiκ|x−y|
}
.(3.2)

For the third derivative with respect to y3 we obtain

∂3Φ(x, y)

∂y3
3

=
3κ2

4π

(x3 − y3)

|x− y|3 eiκ|x−y| + O

(
1

|x− y|4

)
.(3.3)

This holds in the sense that, given c > 0 and a compact subset S of H+, there exists
a constant C > 0 such that∣∣∣∣∂3Φ(x, y)

∂y3
3

− 3κ2

4π

(x3 − y3)

|x− y|3 eiκ|x−y|
∣∣∣∣ ≤ C

|x− y|4

for all x, y ∈ R
3, x �= y, with x3, y3 ∈ [0, c] and all κ ∈ S. The similar equations

below, in particular (3.7) and (3.11), are to be understood in an analogous fashion.
We use Taylor’s expansion for the fundamental solution Φ(x, y) with respect to

variations of x3 and y3. From Taylor’s theorem, if g ∈ C3[0,∞), then

g(s) = g(0) + g′(0)s +
1

2
g(2)(0)s2 +

1

3!

∫ s

0

(s− t)2g(3)(t) dt, s > 0.(3.4)

Applying (3.4) to g(s) := Φ(x,y+se3), where e3 is the unit vector in the x3-direction,
with y = (y1, y2, 0) ∈ Γ0 and s ∈ [0, c] with some constant c, we obtain

Φ(x,y + se3) =
1

4π

eiκ|x−y|

|x− y| − iκ

4π

x3 eiκ|x−y|

|x− y|2 s(3.5)

+
iκ

4π

eiκ|x−y|

|x− y|2
s2

2
+ O

(
1

|x− y|3

)
.

To estimate the properties of single- and double-layer potentials on L2(Γ) we need
to use Taylor’s expansion also with respect to x3. We treat all the terms of (3.5)
separately and obtain, after some calculations,

Φ(x + he3,y + se3) =
1

4π

eiκ|x−y|

|x − y|(3.6)

+
1

4π

iκ eiκ|x−y|

|x − y|2
(h− s)2

2
+ O

(
1

|x − y|3

)
.

Altogether we obtain

G(x + he3,y + se3) = − 1

4π

iκ eiκ|x−y|

|x − y|2 2hs + O

(
1

|x − y|3

)
,(3.7)

in the sense that, given c > 0 and a compact subset S of H+, there exists a constant
C > 0 such that ∣∣∣∣G(x + he3,y + se3) +

2hs

4π

iκ eiκ|x−y|

|x − y|2

∣∣∣∣ ≤ C

|x − y|3
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for all x,y ∈ R
2 with x �= y, all κ ∈ S, and all h, s ∈ [0, c]. Arguing precisely as in [7]

in the case |x− y| > 1, we can also show the bound that (cf. [7, equations (3.6) and
(3.8)]), given a compact subset S ⊂ H+, there exists a constant C > 0 such that

|G(x, y)| ≤ C(1 + x3)(1 + y3)

|x− y|2(3.8)

for all x, y ∈ R
3 with x, y �= 0 and x3, y3 ≥ 0 and all κ ∈ S.

For the normal derivative of G, noting that ∂Φ(x, y′)/∂ν(y) = ∂Φ(x′, y)/∂ν(y)
and introducing the notation ν(y) := (ν1(y), ν2(y)), we derive

4π
∂G(x, y)

∂ν(y)
= − iκ ν(y) · (x − y)

{
eiκ|x−y|

|x− y|2 − eiκ|x−y′|

|x− y′|2

}
(3.9)

+ ν(y) · (x − y)

{
eiκ|x−y|

|x− y|3 − eiκ|x−y′|

|x− y′|3

}

− iκ
ν3(y)(x3 − y3)

|x− y|2 eiκ|x−y| +
ν3(y)(x3 − y3)

|x− y|3 eiκ|x−y|

− iκ
ν3(y)(x3 + y3)

|x− y′|2 eiκ|x−y′| +
ν3(y)(x3 + y3)

|x− y′|3 eiκ|x−y′|.

We proceed as in (3.6) and calculate

eiκ|x−y|

|x− y|2 =
eiκ|x−y|

|x − y|2 +
iκeiκ|x−y|

|x − y|3
(x3 − y3)

2

2
+ O

(
1

|x − y|4

)
.(3.10)

We use this to transform (3.9) into

4π
∂G(x + he3,y + se3)

∂ν(y)
= −κ2ν(y) · (x − y)

|x − y|
eiκ|x−y|

|x − y|2 2hs(3.11)

− iκν3(y)
eiκ|x−y|

|x − y|2 2h + O

(
1

|x − y|3

)
,

this equation holding in the same sense as (3.7).

4. Convolution and related integral operators. To establish that S and K
are bounded operators on L2(Γ) and on X we need tools from the theory of convolution
operators and the Fourier and Hankel transforms. In this section we briefly recall the
relevant results and compute explicitly certain Fourier transforms that we will need.
The results in the first three paragraphs are contained, for example, in [23].

For 
 ∈ L1(R2) ∪ L2(R2) we define the Fourier transform of 
, F
, by

(F
)(k) =
1

2π

∫
R2

e−ik·y
(y) dy, k ∈ R
2.(4.1)

In the case 
 ∈ L1(R2) the integral (4.1) exists in the ordinary Lebesgue sense, and
F
 ∈ BC(R2). If 
 ∈ L2(R2), then the integral (4.1) exists for almost all k ∈ R

2 as
the limit

lim
R→∞

1

2π

∫
R2∩BR(0)

e−ik·y
(y) dy,
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and F
 ∈ L2(R2), with ||F
||L2(R2) = ||
||L2(R2). Further, the mapping F : L2(R2) →
L2(R2) is surjective and thus an isometric isomorphism. If 
 ∈ L1(R2)∩L2(R2), then
the two interpretations of (4.1) coincide and F
 ∈ X0 := L2(R2) ∩BC(R2).

For 
, ψ ∈ L2(R2) we define 
 ∗ ψ, the convolution of 
 and ψ, by

(
 ∗ ψ)(x) :=

∫
R2


(x − y)ψ(y) dy, x ∈ R
2.

The integral is defined in the ordinary Lebesgue sense, and 
 ∗ ψ ∈ BC(R2). If also
F
 ∈ L∞(R2), then 
 ∗ ψ ∈ X0, with


 ∗ ψ = 2πF−1((F
)(Fψ))(4.2)

so that the convolution operator L, defined by Lψ = 
 ∗ ψ, maps L2(R2) to L2(R2)
and is bounded, with norm

||L||L2(R2)→L2(R2) ≤ 2π||F
||L∞(R2).

We shall need in our arguments to also consider integral operators with kernels of
a more general type. Suppose that l : R

2 × R
2 → C is such that l(x, ·) is measurable

for all x ∈ R
2, and let L be the integral operator with kernel l, so that

(Lψ)(x) =

∫
R2

l(x,y)ψ(y) dy, x ∈ R
2.(4.3)

One case of relevance to our later arguments is that in which

l(x,y) = m1(x)
(x − y)m2(y),(4.4)

with m1,m2 ∈ BC(R2), 
 ∈ L2(R2), F
 ∈ L∞(R2). In this case, if ψ ∈ L2(R2),
then (4.3) exists in the Lebesgue sense for all x ∈ R

2, Lψ ∈ X0, and L is a bounded
operator on L2(R2) with norm

||L||L2(R2)→L2(R2) ≤ 2π||m1||BC(R2) ||F
||L∞(R2) ||m2||BC(R2).(4.5)

Clearly, L is also a bounded operator on L2(R2) if it is a sum of operators of this
form.

Another case of relevance is that in which

|l(x,y)| ≤ 
(x − y),(4.6)

with 
 ∈ Lp(R2), for some p ∈ [1,∞). In this case, if ψ is continuous and compactly
supported, then (4.3) exists in the Lebesgue sense for all x ∈ R

2, Lψ ∈ Ls(R2), for
s ≥ 1, and, from Young’s inequality [23], it follows that

||Lψ||Ls(R2) ≤ ||
||Lp(R2) ||ψ||Lr(R2),(4.7)

where r−1 = 1+s−1−p−1. Since the set of continuous compactly supported functions
is dense in Lr(R2), we can extend the domain of L by density so that L is a bounded
operator from Lr(R2) to Ls(R2) with norm ≤ ||
||Lp(R2). Further, if 
 ∈ L1(R2) and
ψ ∈ L∞(R2), then, trivially, (4.3) exists in the Lebesgue sense for all x ∈ R

2 and (4.7)
holds.
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We will use the bound (4.7) particularly often in the case 
 ∈ L1(R2), in which
case it implies that

||L||Lq(R2)→Lq(R2) ≤ ||
||L1(R2),(4.8)

for 1 ≤ q ≤ ∞. A further consequence of (4.7) is the following result that will be used
to prove Lemma 5.1.

Lemma 4.1. Suppose that L is the integral operator given by (4.3), and that the
bound (4.6) holds with 
 ∈ L1(R2) ∩ Lp(R2), for some p ∈ (1, 2). Then, for some
n ∈ N, Ln is a bounded operator from L2(R2) to L∞(R2).

Proof. Note first that 
 ∈ L1(R2)∩Lp(R2) implies that 
 ∈ Lp̃(R2) for 1 < p̃ < p.
Let ω := p/(p− 1) > 2. Define the finite or infinite sequence (rj) iteratively by

r0 := 2, rj+1 :=

(
1

p
+

1

rj
− 1

)−1

=
rj

1 − rj
ω

, j = 0, 1, 2, . . . ,(4.9)

continuing the definition (4.9) for as long as rj < ω. Let J ⊂ N0 := N∪{0} denote the
set of indices j for which rj is defined. We will show that the set J is finite, so that
J = {0, 1, . . . , N} with rN ≥ ω. Then, by (4.7), it follows that L is a bounded operator
from Lrj−1(R2) to Lrj (R2) for j = 1, . . . , N . Further, defining p̃ := rN/(rN − 1), we
observe that 1 < p̃ < p and 1

p̃ + 1
rN

= 1, so that, by (4.7), L is a bounded operator from

LrN (R2) to L∞(R2), and so LN+1 is a bounded operator from L2(R2) to L∞(R2).

We complete the proof by showing that J is finite. Suppose otherwise. Then
rj < ω for all j ∈ J = N0. It follows from (4.9), by induction, that the sequence (rj)
is monotonically increasing. Thus the sequence (rj) is convergent to some limit r,
with 2 ≤ r ≤ ω. Rearranging (4.9) and taking limits, we see that (1 − r/ω)r = r, so
that r = 0, a contradiction.

Examining (3.7) and (3.9) we see that large parts of the kernels of the operators
S and K have the form (4.4), where, moreover, 
 has certain symmetries that simplify
the calculation of its Fourier transform. For the remainder of this section, for y ∈ R

2

let r := |y| and ŷ := y/|y|. The specific symmetries that arise are those where 
 has
the form


(y) = F (r)Y j
n (ŷ),(4.10)

with n = 0 or 1, and j = 0, . . . , n, where the functions Y j
n are spherical harmonics of

order n defined on the unit circle Ω ⊂ R
2 by

Y 0
0 (ŷ) := 1, Y 0

1 (ŷ) := cos θ, Y 1
1 (ŷ) := sin θ, ŷ = (cos θ, sin θ) ∈ Ω.(4.11)

Integrating the product of the Jacobi–Anger expansion [13, equation (3.66)] (a Fourier
series of eirk·ŷ) with the spherical harmonics of order n over the unit circle we deduce
the Funk–Hecke formulae in R

2,

∫
Ω

e−irk·ŷ Y j
n (ŷ) ds(ŷ) = 2π in Jn(rk) Y j

n (k̂),(4.12)

where we define k := |k| and k̂ := k/k and Jn denotes the Bessel function of order n.
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If 
 ∈ L1(R2) ∪ L2(R2) has the form (4.10), then it holds for almost all k ∈ R
2 that

(F
)(k) = lim
R→∞

1

2π

∫
|y|<R

e−ik·y
(y) dy

=
1

2π
lim

R→∞

∫ R

0

(∫
Ω

e−irk·ŷ Y j
n (ŷ) ds(ŷ)

)
F (r) r dr

= inY j
n (k̂) lim

R→∞

∫ R

0

F (r)Jn(kr) r dr(4.13)

=
inY j

n (k̂)√
k

Hn

(√
· F (·)

)
(k),(4.14)

where Hn denotes the Hankel transform of order n, i.e.,

(HnF )(k) := lim
R→∞

∫ R

0

F (r) Jn(kr)
√
kr dr, k ∈ R

+, n ∈ N.(4.15)

We note that (4.13) can be used to extend the domain of the Fourier transform.
Precisely, whenever 
 has the form (4.10) and the limit (4.13) exists, (4.13) can be
used to define a Fourier transform of 
, this definition coinciding with the usual one
if 
 ∈ L1(R2) ∪ L2(R2). An example is the function 
 defined, for some h > 0, by


(y) := Wh(|y|), Wh(r) :=
1

4π

eiκ
√
r2+4h2

√
r2 + 4h2

, r > 0.(4.16)

The relevance of this example is that, defining xh := (0, 0, 2h), 
 = Φ(·, xh) is the trace
of Φ(·, xh) on the plane Γ0. It is not difficult to see, from the asymptotic behavior
of the Bessel function Jn in (4.20), that, for F = Wh, the limit (4.13) is well defined
except for k = κ in the case κ > 0. Explicitly, from (4.14) with n = 0 and the Hankel
transforms in section 8.2 of [18], namely formula (24) for κ1 > 0 and formulae (41)
and (50) for κ1 = 0, we find after some elementary calculations that, for all k ∈ R

2

with k = |k| �= κ,

(F
)(k) = (FΦ(·, xh))(k) =

∫ ∞

0

Wh(r)J0(kr)r dr =
1

4π

e−2h
√
k2−κ2

√
k2 − κ2

,(4.17)

where the square root is chosen so that its argument lies in [−π/2, 0].
We now use the representation (4.13) to calculate the Fourier transforms of parts

of the kernels of the operators S and K. We suppose that 
 is given by (4.10), with
n = 0 or 1 and

F (r) :=
eiκr

β + r2
, r ≥ 0,(4.18)

for some β > 0. The relevance of this example to the operators S and K is that the
explicitly written terms on the right-hand side of (3.7) and (3.9) all take the form
(4.4) if 
 is given by (4.10) and (4.18) with β = 0 and if x + he3 and y + se3 lie on Γ.

Clearly, 
 ∈ L2(R2) (for β > 0). We will show also that the Fourier transform of

 is bounded, so that the operation of convolution with 
 is bounded on L2(R2). To
this end we show that the improper integral

I(k) :=

∫ ∞

0

F (r)Jn(kr) r dr(4.19)

is bounded on [0,∞).
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With the help of the asymptotic expansion of the Bessel function (see, e.g., [1]),

Jn(z) =

√
2

πz
cos

(
z − nπ

2
− π

4

){
1 + O

(
1

z

)}
, |z| → ∞,(4.20)

we see that eizJn(z) is bounded in 0 ≤ arg z ≤ θ for every θ ∈ (0, π/2). Since
Re(i(κ−k)z) = −(κ0−k)Imz−κ1Rez and F (z) is a holomorphic function in Re z > 0,
we see that for 0 ≤ k < κ0 we may transform the integral

I(k) =

∫ ∞

0

ei(κ−k)z

β + z2
eikzJn(kz) z dz(4.21)

into

I(k) =

∫
γ

ei(κ−k)z

β + z2
eikzJn(kz) z dz(4.22)

with γ = {(1 + i)t : t ≥ 0}. This integral is bounded for 0 ≤ k ≤ κ0/2.
For k ≥ κ0/2 we can use (4.20) and that Jn(z) is continuous and thus, by (4.20),

bounded on [0,∞) to estimate that, for some constants C1 and C2,∣∣∣∣
∫ ∞

0

F (r)Jn(kr) r dr

∣∣∣∣ ≤ C1 + C2

∫ ∞

1

1

r3/2
dr.(4.23)

We conclude that I is bounded on [0,∞) for n = 0, 1, so that, by (4.13), F
 ∈ L∞(R2)
for n = 0, 1.

We will be interested in the last section of the paper, in order to establish a
limiting absorption principle, in the dependence of 
 on κ1. Denote, temporarily, 

and I by 
κ1 and Iκ1 to indicate their dependence on κ1. Then, from (4.22), since
eizJn(z) is bounded on γ = {(1 + i)t : t ≥ 0}, we see that, for some constant C > 0,

|Iκ1(k) − I0(k)| ≤ C

∫ ∞

0

e−κ0t/2(1 − e−κ1t) dt

for 0 ≤ k ≤ κ0/2, κ1 ≥ 0, so that Iκ1
(k) → I0(k) as κ1 → 0, uniformly on [0, κ0/2].

Similarly, using (4.21) and (4.20) (cf. (4.23)), we can show that Iκ1(k) → I0(k) as
κ1 → 0, uniformly on [κ0/2,∞]. Thus the following lemma holds.

Lemma 4.2. If 
 is given by (4.10) and (4.18) with β > 0 and n = j = 0, or n = 1
and j = 0, or 1, then F
 ∈ L∞(R2) so that the convolution integral operator L, with
kernel 
(x − y), is a bounded operator on L2(R2). Further, denoting 
 and L by 
κ1

and Lκ1
to indicate their dependence on κ1, we have that ||F
κ1 − F
0||L∞(R2) → 0

as κ1 → 0, so that Lκ1 tends to L0 in norm as κ1 → 0.

5. Properties of single- and double-layer potentials. In this section we
prove that the single- and double-layer operators are well defined when considered as
operators on L2(Γ). We further investigate the jump relations for unbounded regions
and show continuity properties of the boundary operators with respect to variations
of the boundary.

We first prove Theorem 2.1, stated at the end of section 2. To prove this result
we split the operators into a local and a global part with the help of an appropriate
cut-off function. To this end let χ : [0,∞) → R be a continuous function with

χ(t) :=

{
0, t < 1/2,

1, t ≥ 1,
and 0 ≤ χ(t) ≤ 1 ∀t ≥ 0.(5.1)
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Let A with kernel a denote one of the operators S or K, respectively. We define the
global part

(A1ϕ)(x) :=

∫
Γ

χ(|x− y|)a(x, y)ϕ(y) ds(y), x ∈ Γ,(5.2)

and the local part

(A2ϕ)(x) :=

∫
Γ

(
1 − χ(|x− y|)

)
a(x, y)ϕ(y) ds(y), x ∈ Γ.(5.3)

This yields the decomposition A = A1 +A2, and we can study the mapping properties
of A1 and A2 as operators on L2(Γ) and on X separately. We start by proving the
following lemma.

Lemma 5.1. A2 is a bounded operator on Lq(Γ) for 1 ≤ q ≤ ∞, is a bounded
operator from L∞(Γ) to BC(Γ), and is a bounded operator on X. Further, for some
n ∈ N, An

2 is a bounded operator from L2(Γ) to X.
Proof. The kernel a2 of A2 has compact support and is weakly singular. Precisely,

since (cf. [7, equation (4.23)])

|ν(y) · (x− y)| ≤ |x − y|1+α||f ||BC1,α(R2), x, y ∈ Γ,(5.4)

it holds in the double-layer case A = K that, for some constant C > 0,

|a2(x, y)| ≤ C
(x − y), x, y ∈ Γ, x �= y,(5.5)

where


(y) :=

{
|y|α−2, |y| ≤ 1,

0, |y| > 1.
(5.6)

The same bound holds (but is not sharp) in the single-layer case A = S.
Since 
 ∈ Lp(R2), for 1 ≤ p < 2/(2 − α), we see from (4.8) that A2 is a bounded

operator on Lq(Γ) for 1 ≤ q ≤ ∞. Since a2(x, y) is also continuous for x �= y, it
follows, moreover, that A2 maps L∞(Γ) to BC(Γ). Thus A2 is a bounded operator
on X. By Lemma 4.1, Am

2 is a bounded operator from L2(Γ) to L∞(Γ), for some
m ∈ N, so that Am+1

2 is a bounded operator from L2(Γ) to X.
We now consider the global part and prove a lemma on the mapping properties

of A1. Together, Lemmas 5.1 and 5.2 provide a proof of Theorem 2.1.
Lemma 5.2. A1 is a bounded operator on L2(Γ) and is a bounded operator from

L2(Γ) to X.
Proof. From the decompositions (3.7) and (3.11) it follows that the kernel a1 of

A1 can be written, in both the cases A = S and A = K, in the form

a1(x, y) = l∗(x,y) + l(x,y),(5.7)

where l∗ is a sum of terms each of the form (4.4), with m1,m2 ∈ BC(R2) and 
 given
by (4.10) and (4.18) with β = 1, and with n = 0 or 1. Further, l∗ can be chosen so
that l satisfies the bound, for some constant C > 0,

|l(x,y)| ≤ C
̃(x − y), x,y ∈ R
2,(5.8)
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where 
̃(y) := (1 + |y|)−3, so that 
̃ ∈ L1(R2). In detail, in the case A = S we see
from (3.7) that an appropriate choice is to take

l∗(x,y) = − iκf(x)f(y)

2π

eiκ|x−y|

1 + |x − y|2 ,(5.9)

while, in the case A = K we see from (3.11) that we can take

l∗(x,y) = −κ2f(x)f(y)

2π
ν(y) · x − y

|x − y|
eiκ|x−y|

1 + |x − y|2 − iκf(x)ν3(y)

2π

eiκ|x−y|

1 + |x − y|2 .

(5.10)

It follows from (4.5) and Lemma 4.2 applied to the integral operator with kernel l∗,
and (4.8) applied to the integral operator with kernel l, that A1 is a bounded operator
on L2(Γ).

Note, from the above representation (5.7), that also

|a1(x, y)| ≤ 
∗(x − y), x, y ∈ Γ,

for some 
∗ ∈ L2(R2); this is true since 
̃ ∈ L2(R2) and since each term of (5.9) and
(5.10) can be bounded in this way. It follows from (4.7) that A1 maps L2(Γ) to L∞(Γ);
in fact, since also a1 is continuous, it holds that A1 maps L2(Γ) to BC(Γ).

Remark 5.3. For C2 > C1 > 0 let

B = B(C1, C2) :=
{
f ∈ BC1,α(R2) : C1 ≤ f(y), y ∈ R

2, ‖f‖BC1,α(R2) ≤ C2

}
.

(5.11)

We note that, given C2 > C1 > 0 and κ0 > 0, we can choose C > 0 such that the
estimates (5.5) and (5.8) hold for all f ∈ B and all κ1 ≥ 0. (For (5.8) this follows
from (3.7) and (3.11).) This observation will be helpful in establishing continuous
dependence of A on f and on κ1.

Combining the above lemmas we deduce Theorem 2.1 and have also the following
corollary.

Corollary 5.4. For all sufficiently large n ∈ N it holds that An is a bounded
map from L2(Γ) to X.

As part of the proof of Theorem 2.2 we need to show that our modified single- and
double-layer potentials u1 and u2, over the unbounded surface Γ, behave in a similar
way to the corresponding standard layer potentials supported on a smooth bounded
surface. This is done in the following theorem, in which M := {x : 0 < x3 < f(x)}
denotes the region between Γ and Γ0.

Theorem 5.5. Let u1 and u2 denote the single- and double-layer potentials with
density ϕ ∈ X, defined by (2.14) and (2.15), respectively. The following hold:

(i) For n = 1, 2, un ∈ C2(D ∪M) and Δun + k2un = 0 in D ∪M .
(ii) u1 and u2 can be continuously extended from D to D̄ and from M to M̄ , with

limiting values

u1,±(x) =

∫
Γ

G(x, y)ϕ(y) ds(y), x ∈ Γ,(5.12)

and

u2,±(x) =

∫
Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y) ± 1

2
ϕ(x), x ∈ Γ,(5.13)
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where un,±(x) := limε→0+ un(x ± εν(x)), for n = 1, 2 and x ∈ Γ, and ν(x) denotes
the unit normal at x ∈ Γ directed into D.

(iii) Given constants C2 > C1 > 0 and a compact subset S of H+, there exists a
constant C > 0 such that

|un(x)| ≤ C||ϕ||X , x ∈ D ∪M, n = 1, 2,(5.14)

for all ϕ ∈ X, κ ∈ S, and f ∈ B = B(C1, C2).
(iv) Given constants C2 > C1 > 0 and ε > 0 and a compact subset S of H+, there

exists a constant C > 0 such that

|un(x)| ≤ C||ϕ||L2(Γ), n = 1, 2,(5.15)

for all x ∈ D ∪M with |x3 − f(x1, x2)| > ε, all ϕ ∈ X, all κ ∈ S, and all f ∈ B =
B(C1, C2).

Proof. We first show that u ∈ C(D ∪M) and establish (ii) and (iii). We use the
cut-off function χ given by (5.1). Let u denote one of u1 and u2, and let a denote the
kernel of u so that a(x, y) := G(x, y) and a(x, y) := ∂G(x, y)/∂ν(y) in the respective
cases. We have, for x ∈ D ∪M , that

u(x) =

∫
Γ

χ(|x− y|)a(x, y)ϕ(y) ds(y) +

∫
Γ

[
1 − χ(|x− y|)

]
a(x, y)ϕ(y) ds(y).

The first term has a continuous kernel that is bounded at infinity by the estimate
(3.7) or (3.9) and, since ϕ ∈ L2(Γ), is continuous in {x : x3 > 0}. The second term
is clearly continuous in D ∪M ; to see that it can be continuously extended up to Γ
from above and below and to compute its limiting values we observe that, keeping x
within some ball centered at some x0 ∈ Γ, it holds that the integrand is supported in
a finite patch of the surface. We can extend this surface patch to a bounded obstacle
with boundary of class C1,α and, since ϕ ∈ C(Γ), use the jump relations for bounded
obstacles as presented in [14].

To show that the first term satisfies the bound (5.14) we recall that G satisfies the
bound (3.8) and point out that, by interior elliptic regularity estimates for solutions
of the Helmholtz equation (e.g., [9, Lemma 2.7]), it follows that ∇yG(x, y) satisfies
the same bound for all κ ∈ S (with a different constant C), provided x3, y3 > 0 and
|x− y| > 1/4; further we calculate directly that C can be chosen so that this bound
also holds for 0 < |x − y| ≤ 1/4. Thus, for some constant C ′ > 0, whether a is the
kernel of the single- or double-layer potential, it holds for all κ ∈ S that

|χ(|x− y|)a(x, y)| ≤ C ′ (1 + x3)(1 + y3)

1 + |x− y|2 , x, y ∈ R
3, x3, y3 ≥ 0.(5.16)

Applying the Cauchy–Schwarz inequality we have that the first term is bounded, for
x ∈ {x : x3 > 0}, by C ′(1 + f+)I(x)‖ϕ‖L2(Γ), where

[I(x)]2 = (1 + x3)
2

∫
Γ

ds(y)

(1 + |x− y|2)2

≤ (1 + x3)
2(1 + ||∇f ||BC(Γ))

1/2

∫
R2

dy

(1 + |x − y|2 + (x3 − f(y))2)2
.

Thus, for some constant c > 0 it holds, for all x ∈ {y : y3 > 0} and all f ∈ B, that
[I(x)]2 ≤ cF (x3), where

F (x3) := (1 + x3)
2

∫ ∞

0

r dr

(1 + x2
3 + r2)2

=
(1 + x3)

2

x2
3

∫ ∞

0

s ds

(x−2
3 + 1 + s2)2

.

Clearly, F is bounded on [0,∞). Thus the first term satisfies the bound (5.14).
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To treat the second term we argue analogously to the corresponding 2D case [7].
We remark that 1−χ(|x−y|) is zero for |x−y| ≥ 1. We consider only the double-layer
case u = u1. (The argument is similar but simpler in the single-layer case.) Directly
from the definitions (see (3.9)) we see that there exists a constant C > 0 such that

|(1 − χ(|x− y|))a(x, y)| ≤ C
|ν(y) · (x− y)|

|x− y|3 , x ∈ D ∪M, y ∈ Γ,

for all κ ∈ S and all f ∈ B. Define x∗ := (x, f(x)) ∈ Γ, δ := |f(x) − x3|, and note
that, by the triangle inequality,

(
|x − y|2 + δ2

)1/2 ≤ |x− y| + |f(x) − f(y)| ≤
(
1 + ||∇f ||BC(Γ)

)
|x− y|.

Using this inequality, and (5.4) to bound |ν(y) ·(x∗−y)|, we see that, for some C ′ > 0,

|(1 − χ(|x− y|))a(x, y)| ≤ C ′ |x − y|1+α + δ

(|x − y|2 + δ2)
3/2

, x ∈ D ∪M, y ∈ Γ,

for all κ ∈ S and f ∈ B. Thus, defining C ′′ = C ′ (1 + ||∇f ||BC(Γ))
1/2, the second

term is bounded by

C ′′ ||ϕ||BC(Γ)

∫
|y|<1

|y|1+α + δ

(|y|2 + δ2)
3/2

dy ≤ 2πC ′′ ||ϕ||BC(Γ)

∫ 1

0

r1+α + δ

r2 + δ2
dr,

for all κ ∈ S and f ∈ B, so that the second term satisfies the bound (5.14).
To establish (iv) we modify the argument used to show (iii). We have remarked

above that both G(x, y) and ∇yG(x, y) satisfy the bound (3.8). Thus (cf. (5.16)), for
every ε > 0 there exists Cε > 0 such that

|a(x, y)| ≤ Cε
(1 + x3)(1 + y3)

1 + |x− y|2(5.17)

for all x, y ∈ R
3 with x3, y3 ≥ 0 and |x− y| ≥ ε and all κ ∈ S. Applying the Cauchy–

Schwarz inequality, as in the proof of (5.14), we see that it holds, for some constant
C ′

ε > 0, that

|un(x)| ≤ C ′
ε(1 + f+)I(x)‖ϕ‖L2(Γ), n = 1, 2,

for all x ∈ D ∪M with |x3 − f(x1, x2)| ≥ ε and all κ ∈ S and f ∈ B. In view of the
bound on I(x) already shown above, we see that we have established (5.15).

We complete the proof by establishing (i). This is clear when ϕ is compactly
supported. The general case follows from the density in L2(Γ) of the set of those
elements of X that are compactly supported, from the bound (5.15), and from the fact
that limits of uniformly convergent sequences of solutions of the Helmholtz equation
satisfy the Helmholtz equation (e.g., [9, Remark 2.8]).

We continue this section by proving that the single- and double-layer potential
operators depend continuously on variations in the boundary Γ. In the statement
of the following theorem, B = B(C1, C2) is the set defined in Remark 5.3 for some
constants C2 > C1 > 0. We use the notation Af for either S or K defined on a surface
Γf given by some f ∈ B. With the help of the isomorphism

If : L2(Γf ) → L2(R2), (Ifϕ)(y) = ϕ((y, f(y))), y ∈ R
2,(5.18)
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we associate Af with the element Ãf = IfAfI
−1
f of the set of bounded linear operators

on L2(R2) for each f ∈ B. Denoting the kernel of Ãf by af , we see that, where
x = (x, f(x)), y = (y, f(y)), and a(x, y) := G(x, y) or a(x, y) := ∂G(x, y)/∂ν(y), in
the respective cases Af = S and Af = K, it holds that

af (x,y) = a(x, y)Jf (y), Jf (y) :=
√

1 + |∇f(y)|2.

Theorem 5.6. The single- and double-layer potential operators depend continu-
ously on the boundary Γf of the unbounded domain Df in the sense that

sup
f,g∈B

‖f−g‖BC1,α(R2)≤ε

‖Ãf − Ãg‖L2(R2)→L2(R2) → 0, ε → 0.(5.19)

Proof. Similarly to how we proceeded when proving Theorem 2.1, we decompose
the operator Ãf − Ãg into a global and a local part, i.e., Ãf − Ãg = A1 + A2 with
A1, A2 defined similarly to (5.2) and (5.3). We now carry out the proof for the case
of the single-layer operator. The necessary changes for the double-layer operator are
straightforward.

The global operator. The kernel of the global operator A1 is given by

a1(x,y) := χ(|x − y|)[af (x,y) − ag(x,y)].(5.20)

We use the expansion (5.7) and (5.9), denoting l by lf , to indicate its dependence on
f . We obtain

a1(x,y) =
iκ

2π

eiκ|x−y|

1 + |x − y|2
{
f(x)[f(y) − g(y)] + [f(x) − g(x)]g(y)

}
Jf (y)

+
(
lf (x,y) − lg(x,y)

)
Jf (y)

+
( iκg(x)g(y)

2π

eiκ|x−y|

1 + |x − y|2 + lg(x,y)
)
(Jf (y) − Jg(y))(5.21)

for x,y ∈ R
2, x �= y.

The integral operator whose kernel is the first term of (5.21) can be bounded
using Lemma 4.2 and (4.5). Similarly, the integral operator whose kernel is the last
term of (5.21) can be bounded using Lemma 4.2, (4.5), (5.8), and (4.8), noting that
Remark 5.3 guarantees the uniformity of (5.8) for f ∈ B. To bound the integral
operator whose kernel is the second term of (5.21), we construct, for every η ∈ (0, 1),
a function 
η ∈ L1(R2) such that∣∣∣(lf (x,y) − lg(x,y)

)
Jf (y)

∣∣∣ ≤ 
η(x − y), x,y ∈ R
2,(5.22)

whenever f, g ∈ B and ‖f−g‖BC1,α(R2) is sufficiently small, and such that ||
η||L1(R2) →
0 as η → 0, and then we use the estimate (4.8). Together, the bounds on the three
parts of A1 show (5.19) for the global part of the operator.

The construction of 
η is as follows. We choose (possible by Remark 5.3) a
constant C > 0 so that (5.8) holds for all f ∈ B. We choose another constant C ′ > 0
that is a bound for ||Jf ||L∞(R2) for f ∈ B. Then, where 
̃ ∈ L1(R2) is defined as in
Lemma 5.2, we set


η(y) :=

{
η3, η < |y| < η−1,

2C C ′
̃(y) otherwise.
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Clearly, this satisfies that ||
η||L1(R2) → 0 as η → 0. Since, for every η ∈ (0, 1),
|lf (x,y) − lg(x,y)| → 0 as ‖f − g‖BC1,α(R2) → 0, uniformly in f and g for f, g ∈ B,
and uniformly in x and y for η ≤ |x−y| ≤ η−1, the bound (5.22) holds for all f, g ∈ B
with ‖f − g‖BC1,α(R2) sufficiently small.

The local operator. For the local operator we argue in a similar way as for the
global operator, in particular in a similar way as for the integral operator correspond-
ing to the second term in (5.21). In particular, where a2 is the kernel of the local
operator, it holds for every η > 0 that |a2(x,y)| → 0 as ‖f − g‖BC1,α(R2) → 0, uni-
formly in f and g for f, g ∈ B, and uniformly in x and y for |x − y| ≥ η, and (5.5)
takes the role of (5.8).

We have just established continuous dependence of the single- and double-layer
potential operators on the boundary Γf . To show later that the limiting absorption
condition (2.5) is satisfied in the case κ > 0 we need to also establish continuous
dependence on κ, which we do by similar arguments.

Lemma 5.7. Denote S and K temporarily by Sκ1 and Kκ1 to indicate their
dependence on κ1. Then, where Aκ1

denotes either Sκ1
or Kκ1

, it holds that

||Aκ1 −A0||L2(Γ)→L2(Γ) → 0(5.23)

as κ1 → 0.

Proof. As we did when proving Theorem 2.1 we split Aκ1 into global and local
parts, as Aκ1 = A1 + A2, with A1, A2 defined by (5.2) and (5.3). As in the proofs of
Lemma 5.1 and 5.2 we denote the kernel of Aj by aj .

To show (5.23) for the local part A2 we note that a2(x, y) depends continuously
on κ1, uniformly in x and y for |x − y| ≥ η and every η > 0, and that, by Remark
5.3, the bound (5.5) holds uniformly in κ1 for κ1 ∈ [0, 1]. We then argue as for the
local part in the proof of Theorem 5.6, showing that the kernel of the local part of
Aκ1 − A0 is bounded by an L1 convolution kernel 
(x − y) with ||
||L1(R2) → 0 as
κ1 → 0. Finally, we apply (4.8).

To show (5.23) for the global part A2 we use the representation (5.7) for a1(x, y),
which splits a1 into a weakly singular part l(x,y), bounded by (5.8), and a strongly
singular part l∗(x,y), given explicitly by (5.9) or (5.10). To show (5.23) for the weakly
singular part of A2 we argue exactly as we did in the proof of Theorem 5.6, noting
that, by Remark 5.3, (5.8) holds uniformly in κ1 for κ1 ∈ [0, 1], and that l(x,y)
depends continuously on κ1, uniformly in x and y for η ≤ |x − y| ≤ η−1, for every
η ∈ (0, 1). That (5.23) holds for the strongly singular part of A2 follows from Lemma
4.2 and (4.5).

6. Uniqueness and existence results. In this section we prove, for the case
when the surface is mildly rough, uniqueness and existence for our integral equation
formulation and for the boundary value problem and the scattering problem defined in
section 2. As the first step in this argument we prove Theorem 2.2 on the equivalence
of the integral equation (2.16) and the boundary value problem.

Proof of Theorem 2.2. Let v be the combined single- and double-layer potential
v, defined in (2.13), with density ϕ ∈ X. By Theorem 5.5, v ∈ C2(D) ∩ C(D̄) and
satisfies the Helmholtz equation in D. Further, due to the jump relations (5.12) and
(5.13), v = g ∈ X on Γ if and only if the density ϕ satisfies the boundary integral
equation (2.16). Applying Theorem 5.5 again, we see that v satisfies the bound (2.4).
This yields the equivalence statement for κ1 > 0.

For real κ, in addition, we need to show the limiting absorption principle (2.5).
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Let a(x, y) = ∂G(x, y)/∂ν(y) − iηG(x, y), so that

v(x) =

∫
Γ

a(x, y)ϕ(y) ds(y), x ∈ D.(6.1)

Suppose, as stated in the theorem, that ϕ(κ+iε) ∈ X satisfies the integral equation
(2.16) with κ replaced by κ + iε, for all sufficiently small ε > 0, and that ||ϕ −
ϕ(κ+iε)||L2(Γ) → 0 as ε → 0. Let a(κ+iε) denote a with κ replaced with κ + iε, and

define v(κ+iε) by (6.1) with a, ϕ replaced by a(κ+iε), ϕ(κ+iε), respectively. We have
shown in the previous paragraph that v(κ+iε) satisfies Problem 2 (with κ replaced
by κ + iε). To show the limiting absorption principle (2.5) we need to show that
v(κ+iε)(x) → v(x) as ε → 0. We have

v(κ+iε)(x) − v(x) =

∫
Γ

(
a(κ+iε)(x, y) − a(x, y)

)
ϕ(κ+iε)(y) ds(y)

+

∫
Γ

a(x, y)
(
ϕ(κ+iε)(y) − ϕ(y)

)
ds(y).

We see that the second term tends to zero as ε → 0 by the bound (5.15). Clearly,
a(κ+iε)(x, y) − a(x, y) → 0 as ε → 0 for every y ∈ Γ. Thus, applying the Cauchy–
Schwarz inequality and then the dominated convergence theorem, noting that the
bound (5.17) holds uniformly in κ, we see that the first term tends to 0 as
ε → 0.

We obtain uniqueness of solution for the boundary value problem (proving The-
orem 2.3) as follows. Due to [6, Theorem 1] (see also [24, Theorem 3.1]), a solution
u ∈ C2(G) ∩ C(G) to the Helmholtz equation (2.1) with Im(κ) > 0 on an open set
G ⊂ R

n which satisfies the growth condition |u(x)| ≤ Ceθ|x|, with some constant
θ < Im(κ), and the boundary condition u(x) = 0 for x ∈ ∂G will vanish identically on
G. This result directly implies uniqueness for the scattering problem and the bound-
ary value problem for κ1 > 0. For κ1 = 0 uniqueness is a consequence of the limiting
absorption principle we require, i.e., of the convergence (2.5).

Next we turn to establishing existence of solution in the mildly rough case. But
first we prove a preliminary lemma which shows that to establish unique solvability
of the integral equation in the space X it is enough to study solvability in L2(Γ).

Lemma 6.1. Suppose that the integral equation (2.16) has exactly one solution
ϕ ∈ L2(Γ) for every g ∈ L2(Γ). Then also (2.16) has exactly one solution ϕ ∈ X for
every g ∈ X, so that (I + K − iηS)−1 exists and is bounded as an operator on X.

Proof. If the assumptions of the lemma hold, then (2.16) has exactly one solution
ϕ ∈ L2(Γ) for every g ∈ X ⊂ L2(Γ). Further, defining A = K − iηS, it holds that
ϕ = Aϕ + 2g and, by induction, that, for every n ∈ N,

ϕ = Anϕ + 2(An−1 + · · · + A0)g.

Now, by Theorem 2.1, A is a bounded operator on X and, by Corollary 5.4, An is a
bounded operator from L2(Γ) to X for some n ∈ N. Thus ϕ ∈ X. We have shown that
(2.16) has exactly one solution ϕ ∈ X for every g ∈ X, so that (I +K− iηS)−1 exists
as an operator on X. Since X is a Banach space it follows as a standard corollary of
the open mapping theorem that (I + K − iηS)−1 is bounded.

As a corollary of Theorems 2.2 and 2.3 and Lemmas 5.7 and 6.1 we have the
following result.
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Corollary 6.2. If (I +K− iηS)−1 exists as a bounded operator on L2(Γ), then
the boundary value problem and scattering problem have exactly one solution.

Proof. In the case κ1 > 0 this result is clear from Theorems 2.2 and 2.3 and
Lemma 6.1.

In the case κ1 = 0 we note that, by Lemma 5.7 and standard operator perturba-
tion arguments (e.g., [23]), if (I +K − iηS)−1 exists as a bounded operator on L2(Γ)
for κ = κ0 > 0, then (I + K − iηS)−1 exists and is a bounded operator on L2(Γ)
for κ = κ0 + iκ1, 0 ≤ κ1 ≤ c, for some c > 0. Moreover, (I + K − iηS)−1 depends
continuously in the norm topology on κ1 for κ1 ∈ [0, c]. Thus, provided g ∈ L2(Γ)
depends continuously in norm on κ1, for κ1 ∈ [0, c], it holds that (I + K − iηS)−1g
depends continuously in norm on κ1 ∈ [0, c] in L2(Γ). If g is given by (2.12), then,
from the continuity of Φ(x, y) as a function of κ1, uniformly in x, y ∈ R

3, x �= y, the
bound (3.8), and the dominated convergence theorem, it follows that g ∈ L2(Γ) de-
pends continuously in norm on κ1 for κ1 ∈ [0, c]. Thus the result follows by Theorems
2.2 and 2.3 and Lemma 6.1.

To make use of this result it remains to establish that (I +K − iηS) is invertible
as an operator on L2(Γ). We will show this first for the case of a flat surface Γh ={
y = (y, h) : y ∈ R

2
}
, with h > 0. In this case the kernels of K and S depend only on

the difference x − y, and thus, identifying Γh with R
2, the operators are convolution

operators on L2(R2).
In terms of the function Wh defined by (4.16), it follows from (3.9) that we can

write the kernel of the double-layer potential operator as Ph(x − y), where Ph(y) :=
ph(|y|) and

ph(r) := − iκh

π

eiκ
√
r2+4h2

(
√
r2 + 4h2 )2

+
h

π

eiκ
√
r2+4h2

(
√
r2 + 4h2 )3

= − ∂

∂h
{Wh(r)}, r > 0.

The kernel of the single-layer potential operator is Qh(x−y), where Qh(y) := qh(|y|)
and

qh(r) := 2

{
1

4π

eiκr

r
− 1

4π

eiκ
√
r2+4h2

√
r2 + 4h2

}
= 2W0(r) − 2Wh(r), r > 0.

Hence, the integral equation (2.16) is transformed into

ϕ(x) +

∫
R2

{
Ph(x − y) − iη Qh(x − y)

}
ϕ(y) dy = 2g(x), x ∈ R

2.(6.2)

To prove invertibility in L2(Γh) we compute the 2D Fourier transforms of Ph and
Qh. From (4.13), for almost all k ∈ R

2, where k := |k|,

(FPh)(k) = −
∫ ∞

0

∂Wh(r)

∂h
J0(kr)r dr.

To evaluate this integral we reverse the order of integration and differentiation and
use (4.17) to get that, for almost all k ∈ R

2,

(FPh)(k) = − ∂

∂h

{
1

4π

e−2h
√
k2−κ2

√
k2 − κ2

}
=

1

2π
e−2h

√
k2−κ2

.(6.3)

The interchange of integration and differentiation with respect to h is certainly jus-
tified whenever k > 0 and k �= κ. For then the integral (4.17) is well defined, and,
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using (4.20), we see that for every H > 0 there exists a constant C > 0 such that

∣∣∣∣∂Wh(r)

∂h
J0(kr)r

∣∣∣∣ =

∣∣∣∣∣ ∂∂h
{

1

4π

eiκ
√
r2+4h2

√
r2 + 4h2

}
J0(kr)r

∣∣∣∣∣ ≤ C

r3/2
(6.4)

for r ≥ 1 and 0 ≤ h ≤ H.
The Fourier transform of Qh can also be evaluated using (4.17). We obtain that

(FQh)(k) =
1

2π

{
1√

k2 − κ2
− e−2h

√
k2−κ2

√
k2 − κ2

}
(6.5)

for all k ∈ R
2 with k �= κ. We combine the Fourier transforms of Ph and Qh to derive

for the Fourier transform of the kernel Rh := Ph − iη Qh of K − iηS the formula
(FRh)(k) = r̂h(k), for almost all k ∈ R

2, where

r̂h(k) :=
1

2π

{
e−2h

√
k2−κ2 − iη

1 − e−2h
√
k2−κ2

√
k2 − κ2

}
, k ≥ 0.(6.6)

From (4.2) we see that, for ψ ∈ L2(R2),

(I + K − iηS)ψ = F−1((1 + 2πFRh)(Fψ)).

Since F is an isomorphism on L2(R2) it follows that the inverse of I +K − iηS exists
as a bounded operator from L2(Γh) into L2(Γh) if and only if

ess. inf
k∈R2

|1 + 2π (FRh)(k)| = inf
k≥0

|1 + 2π r̂h(k)| > 0.(6.7)

We need to investigate K(k) := 1 + 2π r̂h(k) = A(h
√
k2 − κ2), for k ≥ 0, where

A(z) := 1 + e−2z − ihη

z

(
1 − e−2z

)
.(6.8)

We recall that (see (4.17)) the square root is to be taken with
√
k2 − κ2 ∈ V := {z ∈

C : Rez ≥ 0, Imz ≤ 0}. Indeed, in the case that κ1 > 0, so that Im(k2 − κ2) < 0,
it is clear that

√
k2 − κ2 lies in the interior of V . Now A is an entire function (the

singularity at 0 is removable) so that K is continuous on [0,∞). Further, K(k) → 1
as k → ∞. Thus, to show (6.7) it is enough to show that K(k) �= 0 for k ≥ 0, which
holds if A(z) �= 0 for z ∈ V ; indeed, in the case κ1 > 0, we need only show that
A(z) �= 0 for all z in the interior of V .

So suppose η ≥ 0, and consider first the case when z = z0 − iz1, with z0 > 0,
z1 ≥ 0. It holds that

A(z) = −i
(
1 + e−2z

)(hη tanh z

z
+ i

)
,

and straightforward calculations yield

Im

(
tanh z

z

)
=

z0 sin(2z1) + z1 sinh(2z0)

2[sinh2 z0 + cos2 z1](z2
0 + z2

1)
≥ 0,

since | sin t| ≤ t ≤ sinh t for t ≥ 0. Thus (6.7) holds if η ≥ 0 and κ1 > 0.
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In the case κ1 = 0 we need to show, additionally, that A(z) �= 0 when z = −iz1

with z1 ≥ 0, in order to establish that A(z) �= 0 for all z ∈ V . Now A(0) = 2 − 2iηh
and, for z1 > 0, from (6.8), A(−iz1) = 2 cos z1 − 2ihη

z1
sin z1. Thus, provided η > 0,

A(−iz1) �= 0 for z1 ≥ 0, so A(z) �= 0 for z ∈ V . Thus (6.7) holds if η > 0.
We have proven, in the case η > 0 and in the case η = 0, κ1 > 0, that (6.7)

holds, and thus we have shown the invertibility of I + K − iηS and the boundedness
of the inverse operator in L2(Γh). Thus we have established the solvability of (2.16)
in the space L2(Γ) for flat surfaces. If Γf is mildly rough, we may use a perturbation
argument to show that the integral equation remains solvable. We state our result
precisely in the following theorem.

Theorem 6.3. Suppose that h > 0 and that either η > 0 or η = 0 and κ1 > 0.
Then, provided ‖f − h‖BC1,α(R2) is sufficiently small (so that Γf is sufficiently close
to the flat surface f ≡ h), it holds that (I + K − iηS)−1 exists and is bounded as an
operator on L2(Γf ).

Proof. Let A = I + K − iηS, and then denote A by Af to denote its dependence
on f . With the help of the isomorphism If : L2(Γf ) → L2(R2) defined by (5.18) we

associate Af with the element Ãf = IfAfI
−1
f of the set of bounded linear operators

on L2(R2). Now Ãh is invertible with bounded inverse, by our analysis above for the
flat plane case. Moreover, by the continuity of Ãf with respect to f as proven in

Theorem 5.6 it follows from standard arguments that Ãf is boundedly invertible on
L2(R2) for ‖f − h‖BC1,α(R2) sufficiently small, and so Af is boundedly invertible on
L2(Γf ) .

Combining Theorem 6.3 with Lemma 6.1 we deduce Theorem 2.4. Combining
Theorem 6.3 with Corollary 6.2 we establish Theorem 2.5.
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