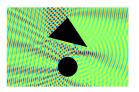
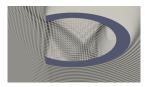
Welcome to ...

At the Interface Between Semiclassical Analysis (SAC) and Numerical Analysis (NA) of Wave Scattering Problems



Simon Chandler-Wilde¹, Monique Dauge², Euan Spence³ & Jared Wunsch⁴ (organisers)

¹University of Reading ²Université de Rennes ³University of Bath ⁴Northwestern University



Mathematisches Forschungsinstitut Oberwolfach, September 2022

• Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends

- Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends
- 49 in-person, 8 online participants see full list in Tuesday's email from MFO Progam Coordination

- Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends
- 49 in-person, 8 online participants see full list in Tuesday's email from MFO Progam Coordination
- Bringing together SCA and NA communities interesting but challenging!

- Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends
- 49 in-person, 8 online participants see full list in Tuesday's email from MFO Progam Coordination
- Bringing together SCA and NA communities interesting but challenging!

SCA | NA

Study $h^2 \Delta u + u = 0$ in limit $h \to 0$

- Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends
- 49 in-person, 8 online participants see full list in Tuesday's email from MFO Progam Coordination
- Bringing together SCA and NA communities interesting but challenging!

SCA | NA

Study $h^2 \Delta u + u = 0$ in limit $h \to 0$ Solve $\Delta u + k^2 u = 0$ for large k

- Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends
- 49 in-person, 8 online participants see full list in Tuesday's email from MFO Progam Coordination
- Bringing together SCA and NA communities interesting but challenging!

 $\frac{\text{SCA}}{\text{Study } h^2 \Delta u + u = 0 \text{ in limit } h \to 0} \quad \text{Solve } \Delta u + k^2 u = 0 \text{ for large } k$

Put main theorem of paper on page 2

- Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends
- 49 in-person, 8 online participants see full list in Tuesday's email from MFO Progam Coordination
- Bringing together SCA and NA communities interesting but challenging!

SCA	NA
Study $h^2 \Delta u + u = 0$ in limit $h \to 0$	Solve $\Delta u + \mathbf{k}^2 u = 0$ for large \mathbf{k}
-	
Put main theorem of paper on page 2	Main theorem is Theorem 4.5, (just before the numerics section)

- Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends
- 49 in-person, 8 online participants see full list in Tuesday's email from MFO Progam Coordination
- Bringing together SCA and NA communities interesting but challenging!

SCA	NA
Study $h^2 \Delta u + u = 0$ in limit $h o 0$	Solve $\Delta u + \mathbf{k}^2 u = 0$ for large \mathbf{k}
Put main theorem of paper on page 2	Main theorem is Theorem 4.5, (just before the numerics section)
We are all familiar with symplectic geometry and semiclassical defect measures	We are all familiar with FEM and discontinuous Galerkin methods

- Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends
- 49 in-person, 8 online participants see full list in Tuesday's email from MFO Progam Coordination
- Bringing together SCA and NA communities interesting but challenging!

SCA	NA
Study $h^2 \Delta u + u = 0$ in limit $h \to 0$	Solve $\Delta u + k^2 u = 0$ for large k
Put main theorem of paper on page 2	Main theorem is Theorem 4.5, (just before the numerics section)
We are all familiar with symplectic geometry and semiclassical defect measures	We are all familiar with FEM and discontinuous Galerkin methods

Our aim: to enhance understanding between SCA/NA communities so that we can work together on joint projects to a larger extent ... and have fun, build new friendships!

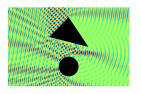
- Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends
- 49 in-person, 8 online participants see full list in Tuesday's email from MFO Progam Coordination
- Bringing together SCA and NA communities interesting but challenging!

SCA	NA
Study $h^2 \Delta u + u = 0$ in limit $h \to 0$	Solve $\Delta u + k^2 u = 0$ for large k
Put main theorem of paper on page 2	Main theorem is Theorem 4.5, (just before the numerics section)
We are all familiar with symplectic geometry and semiclassical defect measures	We are all familiar with FEM and discontinuous Galerkin methods

Our aim: to enhance understanding between SCA/NA communities so that we can work together on joint projects to a larger extent ... and have fun, build new friendships!

Our aim today: to give some overview of the SCA/NA interface (and existing successes) from the NA side, then the SCA side this pm.

NA at the SCA/NA interface: issues and case studies



Simon Chandler-Wilde¹ and Euan Spence²

¹University of Reading, ²University of Bath, UK

At the Interface Between Semiclassical Analysis (SAC) and Numerical Analysis (NA) of Wave Scattering Problems, MFO, September 2022

At the Interface between Semiclassical Analysis and Numerical Analysis of Wave Scattering Problems: Schedule of Talks

Monday

0900-0950 Chandler-Wilde (First "introductory" numerical-analysis talk)

0950-1000 Questions/discussion.

1000-1050 Moiola (Second "introductory" numerical-analysis talk)

 $1050\mathchar`-1100$ Questions/discussion.

1100-1130 Coffee

1130-1220 Gander (Third "introductory" numerical-analysis talk)

1220-1230 Questions/discussion.

1230 Lunch

At the Interface between Semiclassical Analysis and Numerical Analysis of Wave Scattering Problems: Schedule of Talks

Monday

0900-0950 Chandler-Wilde (First "introductory" numerical-analysis talk)

0950-1000 Questions/discussion.

1000-1050 Moiola (Second "introductory" numerical-analysis talk)

1050-1100 Questions/discussion.

1100-1130 Coffee

1130-1220 Gander (Third "introductory" numerical-analysis talk)

1220-1230 Questions/discussion.

1230 Lunch

• The NA side of the NA/SCA interface - bringing SCA colleagues up to speed with our (NA) methods and our issues (that likely need SCA input)

At the Interface between Semiclassical Analysis and Numerical Analysis of Wave Scattering Problems: Schedule of Talks

Monday

0900-0950 Chandler-Wilde (First "introductory" numerical-analysis talk)

 $0950\mathchar`-1000$ Questions/discussion.

1000-1050 Moiola (Second "introductory" numerical-analysis talk)

1050-1100 Questions/discussion.

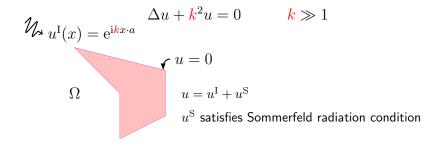
1100-1130 Coffee

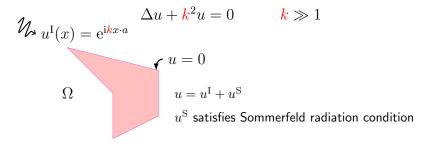
1130-1220 Gander (Third "introductory" numerical-analysis talk)

1220-1230 Questions/discussion.

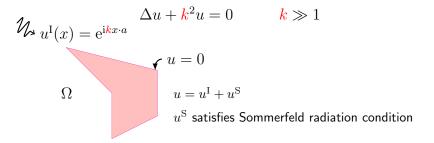
1230 Lunch

- The NA side of the NA/SCA interface bringing SCA colleagues up to speed with our (NA) methods and our issues (that likely need SCA input)
- Opportunities at the NA/SCA interface (case studies) why we are here!



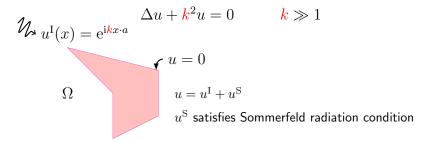


Goal: Given u^{I} and Ω , find u



Goal: Given u^{I} and Ω , find u

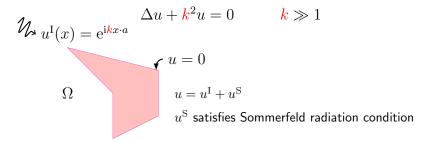
Both SCA and NA seek to understand behaviour of u (and of associated solution operators)



Goal: Given u^{I} and Ω , find u

Both SCA and NA seek to understand behaviour of u (and of associated solution operators)

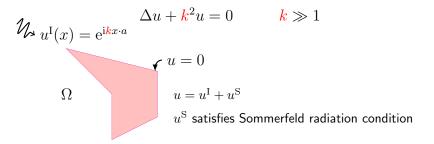
NA Goal: compute u for fixed, but arbitrarily large, k, to arbitrarily high accuracy



Goal: Given u^{I} and Ω , find u

Both SCA and NA seek to understand behaviour of u (and of associated solution operators)

NA Goal: compute u for fixed, but arbitrarily large, k, to arbitrarily high accuracy – and as quickly/efficiently as possible!

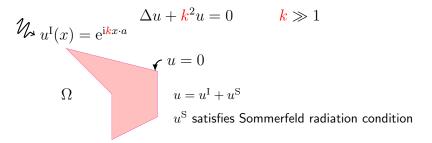


Goal: Given u^{I} and Ω , find u

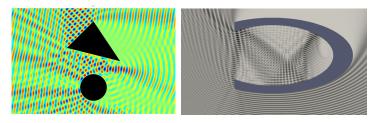
Both SCA and NA seek to understand behaviour of u (and of associated solution operators)

NA Goal: compute u for fixed, but arbitrarily large, k, to arbitrarily high accuracy – and as quickly/efficiently as possible!

Geometry: SCA most comfortable with C^{∞} (but large body of work on diffraction by corners/edges, including **Baskin & Wunsch** 2013) NA likes C^{∞} too, but also keen on piecewise smooth/analytic + rougher boundaries



Goal: Given u^{I} and Ω , find u**Example solutions:**



This starts from a **variational formulation** of the above problem as: find $v \in \mathcal{H}$ (some Hilbert space) such that

 $a(v,w) = F(w) \quad \forall w \in \mathcal{H},$

where $a(\cdot,\cdot)$ and $F(\cdot)$ are some specified sesquilinear form and anti-linear functional on $\mathcal{H}.$

This starts from a **variational formulation** of the above problem as: find $v \in \mathcal{H}$ (some Hilbert space) such that

 $a(v,w) = F(w) \quad \forall w \in \mathcal{H},$

where $a(\cdot, \cdot)$ and $F(\cdot)$ are some specified sesquilinear form and anti-linear functional on \mathcal{H} .

Galerkin method: Choose $(\mathcal{H}_N)_{N=1}^{\infty}$ such that each $\mathcal{H}_N \subset \mathcal{H}$ is finite-dimensional, and seek $v_N \in \mathcal{H}_N$ such that

$$a(v_N, w_N) = F(w_N) \quad \forall w_N \in \mathcal{H}_N.$$

This starts from a **variational formulation** of the above problem as: find $v \in \mathcal{H}$ (some Hilbert space) such that

 $a(v,w) = F(w) \quad \forall w \in \mathcal{H},$

where $a(\cdot, \cdot)$ and $F(\cdot)$ are some specified sesquilinear form and anti-linear functional on \mathcal{H} .

Galerkin method: Choose $(\mathcal{H}_N)_{N=1}^{\infty}$ such that each $\mathcal{H}_N \subset \mathcal{H}$ is finite-dimensional, and seek $v_N \in \mathcal{H}_N$ such that

 $a(v_N, w_N) = F(w_N) \quad \forall w_N \in \mathcal{H}_N.$

(See next talk (Moiola) for cases where $\mathcal{H}_N \subset \mathcal{H}$ violated.)

This starts from a **variational formulation** of the above problem as: find $v \in \mathcal{H}$ (some Hilbert space) such that

 $a(v,w) = F(w) \quad \forall w \in \mathcal{H},$

where $a(\cdot, \cdot)$ and $F(\cdot)$ are some specified sesquilinear form and anti-linear functional on \mathcal{H} .

Galerkin method: Choose $(\mathcal{H}_N)_{N=1}^{\infty}$ such that each $\mathcal{H}_N \subset \mathcal{H}$ is finite-dimensional, and seek $v_N \in \mathcal{H}_N$ such that

$$a(v_N, w_N) = F(w_N) \quad \forall w_N \in \mathcal{H}_N.$$

To solve our problem by **GM** there are three choices to make:

This starts from a **variational formulation** of the above problem as: find $v \in \mathcal{H}$ (some Hilbert space) such that

 $a(v,w) = F(w) \quad \forall w \in \mathcal{H},$

where $a(\cdot, \cdot)$ and $F(\cdot)$ are some specified sesquilinear form and anti-linear functional on \mathcal{H} .

Galerkin method: Choose $(\mathcal{H}_N)_{N=1}^{\infty}$ such that each $\mathcal{H}_N \subset \mathcal{H}$ is finite-dimensional, and seek $v_N \in \mathcal{H}_N$ such that

$$a(v_N, w_N) = F(w_N) \quad \forall w_N \in \mathcal{H}_N.$$

To solve our problem by **GM** there are three choices to make:

• the variational formulation, notably **Domain-based**, $v := u|_{\Omega_R}$, where Ω_R is a bounded part of Ω , \mathcal{H} = subspace of $H^1(\Omega_R)$.

This starts from a **variational formulation** of the above problem as: find $v \in \mathcal{H}$ (some Hilbert space) such that

 $a(v,w) = F(w) \quad \forall w \in \mathcal{H},$

where $a(\cdot, \cdot)$ and $F(\cdot)$ are some specified sesquilinear form and anti-linear functional on \mathcal{H} .

Galerkin method: Choose $(\mathcal{H}_N)_{N=1}^{\infty}$ such that each $\mathcal{H}_N \subset \mathcal{H}$ is finite-dimensional, and seek $v_N \in \mathcal{H}_N$ such that

$$a(v_N, w_N) = F(w_N) \quad \forall w_N \in \mathcal{H}_N.$$

To solve our problem by **GM** there are three choices to make:

the variational formulation, notably
 Domain-based, v := u|_{Ω_R}, where Ω_R is a bounded part of Ω, H = subspace of H¹(Ω_R).
 Boundary-based, from a BIE, where, e.g., v := ∂_nu (or some other trace), H = Sobolev space on Γ := ∂Ω, e.g., L²(Γ), H^{-1/2}(Γ).

Galerkin method: Choose $(\mathcal{H}_N)_{N=1}^{\infty}$ such that each $\mathcal{H}_N \subset \mathcal{H}$ is finite-dimensional, and seek $v_N \in \mathcal{H}_N$ such that

 $a(v_N, w_N) = F(w_N) \quad \forall w_N \in \mathcal{H}_N. \quad (*)$

To solve our problem by **GM** there are three choices to make:

the variational formulation, e.g.
 Domain-based, v := u|_{Ω_R}, where Ω_R is a bounded part of Ω, H = subspace of H¹(Ω_R).
 Boundary-based, from a BIE, where, e.g., v := ∂_nu (or some other trace), H = Sobolev space on Γ := ∂Ω, e.g., L²(Γ), H^{-1/2}(Γ).

Galerkin method: Choose $(\mathcal{H}_N)_{N=1}^{\infty}$ such that each $\mathcal{H}_N \subset \mathcal{H}$ is finite-dimensional, and seek $v_N \in \mathcal{H}_N$ such that

 $a(v_N, w_N) = F(w_N) \quad \forall w_N \in \mathcal{H}_N. \quad (*)$

To solve our problem by **GM** there are three choices to make:

- the variational formulation, e.g.
 Domain-based, v := u|_{Ω_R}, where Ω_R is a bounded part of Ω, H = subspace of H¹(Ω_R).
 Boundary-based, from a BIE, where, e.g., v := ∂_nu (or some other trace), H = Sobolev space on Γ := ∂Ω, e.g., L²(Γ), H^{-1/2}(Γ).
- (and see, e.g., talks by **Ecevit**, **Chaumont-Frelet**, later this week)

Galerkin method: Choose $(\mathcal{H}_N)_{N=1}^{\infty}$ such that each $\mathcal{H}_N \subset \mathcal{H}$ is finite-dimensional, and seek $v_N \in \mathcal{H}_N$ such that

 $a(v_N, w_N) = F(w_N) \quad \forall w_N \in \mathcal{H}_N. \quad (*)$

To solve our problem by **GM** there are three choices to make:

- the variational formulation, e.g.
 Domain-based, v := u|_{Ω_R}, where Ω_R is a bounded part of Ω, H = subspace of H¹(Ω_R).
 Boundary-based, from a BIE, where, e.g., v := ∂_nu (or some other trace), H = Sobolev space on Γ := ∂Ω, e.g., L²(Γ), H^{-1/2}(Γ).
- (and see, e.g., talks by **Ecevit**, **Chaumont-Frelet**, later this week)
- (a) how to solve (*) see talk this morning by **Gander**

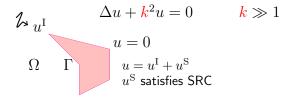
Galerkin method: Choose $(\mathcal{H}_N)_{N=1}^{\infty}$ such that each $\mathcal{H}_N \subset \mathcal{H}$ is finite-dimensional, and seek $v_N \in \mathcal{H}_N$ such that

 $a(v_N, w_N) = F(w_N) \quad \forall w_N \in \mathcal{H}_N. \quad (*)$

To solve our problem by **GM** there are three choices to make:

- the variational formulation, e.g.
 Domain-based, v := u|_{Ω_R}, where Ω_R is a bounded part of Ω, H = subspace of H¹(Ω_R).
 Boundary-based, from a BIE, where, e.g., v := ∂_nu (or some other trace), H = Sobolev space on Γ := ∂Ω, e.g., L²(Γ), H^{-1/2}(Γ).
- (and see, e.g., talks by **Ecevit**, **Chaumont-Frelet**, later this week)
- (a) how to solve (*) see talk this morning by **Gander**

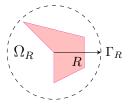
Goal: SCA to help with all three choices!



$$\begin{array}{c} \Delta u + k^2 u = 0 \\ u = 0 \\ \Omega \\ \Gamma \\ u = u^{\mathrm{I}} + u^{\mathrm{S}} \\ u^{\mathrm{S}} \text{ satisfies SRC} \end{array}$$

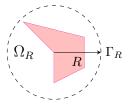
 $\label{eq:Find} {\rm Find} \ v \in {\mathcal H} \ {\rm such \ that} \ a(v,w) = F(w) \quad \forall w \in {\mathcal H}, \ {\rm where}$

$$\mathcal{H} \quad = \quad H^1_0(\Omega_R) := \{ v \in H^1(\Omega_R) : \gamma v = 0 \text{ on } \Gamma \}, \quad v = u|_{\Omega_R},$$



 $\label{eq:Find} \text{Find } v \in \mathcal{H} \text{ such that } a(v,w) = F(w) \quad \forall w \in \mathcal{H}, \text{ where }$

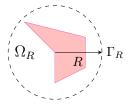
$$\mathcal{H} \quad = \quad H^1_0(\Omega_R) := \{ v \in H^1(\Omega_R) : \gamma v = 0 \text{ on } \Gamma \}, \quad v = u|_{\Omega_R},$$



 $\label{eq:Find} \text{ Find } v \in \mathcal{H} \text{ such that } a(v,w) = F(w) \quad \forall w \in \mathcal{H}, \text{ where }$

$$\begin{split} \mathcal{H} &= H_0^1(\Omega_R) := \{ v \in H^1(\Omega_R) : \gamma v = 0 \text{ on } \Gamma \}, \quad v = u|_{\Omega_R}, \\ a(v,w) &:= \int_{\Omega_R} \nabla v \cdot \nabla \bar{w} - k^2 v \bar{w} - \int_{\Gamma_R} \mathrm{DtN}_k(\gamma v) \gamma \bar{w} \, \mathrm{d}s, \\ F(w) &:= \int_{\Gamma_R} \left(\partial_n u^{\mathrm{I}} - \mathrm{DtN}_k(\gamma u^{\mathrm{I}}) \right) \gamma \bar{w} \, \mathrm{d}s, \quad v, w \in \mathcal{H}, \end{split}$$

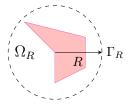
Variational formulation in domain: starting point of FEM



 $\label{eq:Find} \text{ Find } v \in \mathcal{H} \text{ such that } a(v,w) = F(w) \quad \forall w \in \mathcal{H}, \text{ where }$

$$\begin{split} \mathcal{H} &= H_0^1(\Omega_R) := \{ v \in H^1(\Omega_R) : \gamma v = 0 \text{ on } \Gamma \}, \quad v = u|_{\Omega_R}, \\ a(v,w) &:= \int_{\Omega_R} \nabla v \cdot \nabla \bar{w} - k^2 v \bar{w} - \int_{\Gamma_R} \mathrm{DtN}_k(\gamma v) \gamma \bar{w} \, \mathrm{d}s, \\ F(w) &:= \int_{\Gamma_R} \left(\partial_n u^{\mathrm{I}} - \mathrm{DtN}_k(\gamma u^{\mathrm{I}}) \right) \gamma \bar{w} \, \mathrm{d}s, \quad v, w \in \mathcal{H}, \\ \mathrm{DtN}_k &= \text{ exact DtN map for exterior of } \Gamma_R. \end{split}$$

Variational formulation in domain: starting point of FEM

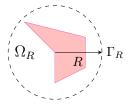


 $\label{eq:Find} \text{ Find } v \in \mathcal{H} \text{ such that } a(v,w) = F(w) \quad \forall w \in \mathcal{H}, \text{ where }$

$$\begin{split} \mathcal{H} &= H_0^1(\Omega_R) := \{ v \in H^1(\Omega_R) : \gamma v = 0 \text{ on } \Gamma \}, \quad v = u|_{\Omega_R}, \\ a(v,w) &:= \int_{\Omega_R} \nabla v \cdot \nabla \bar{w} - \mathbf{k}^2 v \bar{w} - \int_{\Gamma_R} \mathrm{DtN}_{\mathbf{k}}(\gamma v) \gamma \bar{w} \, \mathrm{d}s, \\ F(w) &:= \int_{\Gamma_R} \left(\partial_n u^{\mathrm{I}} - \mathrm{DtN}_{\mathbf{k}}(\gamma u^{\mathrm{I}}) \right) \gamma \bar{w} \, \mathrm{d}s, \quad v, w \in \mathcal{H}, \\ \mathrm{DtN}_{\mathbf{k}} &= \text{ exact DtN map for exterior of } \Gamma_R. \end{split}$$

Exact DtN expensive, so in practice approximate by one of: i) **local b.c.**, e.g. use of impedance b.c. $\partial_n u - iku = 0$ classic NA model problem;

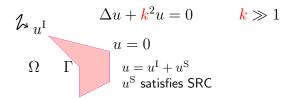
Variational formulation in domain: starting point of FEM



 $\label{eq:Find} \text{ Find } v \in \mathcal{H} \text{ such that } a(v,w) = F(w) \quad \forall w \in \mathcal{H}, \text{ where }$

$$\begin{split} \mathcal{H} &= H_0^1(\Omega_R) := \{ v \in H^1(\Omega_R) : \gamma v = 0 \text{ on } \Gamma \}, \quad v = u|_{\Omega_R}, \\ a(v,w) &:= \int_{\Omega_R} \nabla v \cdot \nabla \bar{w} - \mathbf{k}^2 v \bar{w} - \int_{\Gamma_R} \mathrm{DtN}_{\mathbf{k}}(\gamma v) \gamma \bar{w} \, \mathrm{d}s, \\ F(w) &:= \int_{\Gamma_R} \left(\partial_n u^{\mathrm{I}} - \mathrm{DtN}_{\mathbf{k}}(\gamma u^{\mathrm{I}}) \right) \gamma \bar{w} \, \mathrm{d}s, \quad v, w \in \mathcal{H}, \\ \mathrm{DtN}_{\mathbf{k}} &= \text{ exact } \mathrm{DtN } \text{ map for exterior of } \Gamma_R. \end{split}$$

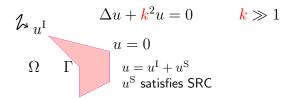
Exact DtN expensive, so in practice approximate by one of: i) **local b.c.**, e.g. use of impedance b.c. $\partial_n u - iku = 0$ classic NA model problem; ii) **PML** = complex scaling in SCA + truncating domain with u = 0 b.c.



Green's representation theorem:

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\Phi(x, y) \partial_n u^{\mathrm{S}}(y) - \frac{\partial \Phi(x, y)}{\partial n(y)} u^{\mathrm{S}}(x) \right) \, \mathrm{d}s(y), \quad x \in \Omega,$$

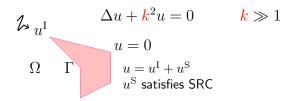
 $\Phi(x,y) = \text{Helmholtz fundamental solution} = \exp(\mathbf{i}\mathbf{k}|x-y|)/(4\pi|x-y|)$ in 3D.



Green's representation theorem:

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\Phi(x, y) \partial_n u^{\mathrm{S}}(y) + \frac{\partial \Phi(x, y)}{\partial n(y)} u^{\mathrm{I}}(x) \right) \, \mathrm{d}s(y), \quad x \in \Omega,$$

 $\Phi(x,y) = \text{Helmholtz fundamental solution} = \exp(\mathbf{i}\mathbf{k}|x-y|)/(4\pi|x-y|)$ in 3D.



Green's representation theorem:

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\Phi(x, y) \partial_n u^{\mathrm{S}}(y) + \frac{\partial \Phi(x, y)}{\partial n(y)} u^{\mathrm{I}}(x) \right) \, \mathrm{d}s(y), \quad x \in \Omega,$$

 $\Phi(x,y) =$ Helmholtz fundamental solution $= \exp(i\mathbf{k}|x-y|)/(4\pi|x-y|)$ in 3D. Taking Dirichlet/Neumann traces gives a **boundary integral equation (BIE)**, in operator form

$$A \partial_n u^{\mathrm{S}} = f.$$

$$\begin{array}{ccc} \Delta u + k^2 u = 0 & k \gg 1 \\ u = 0 & u = u^{\mathrm{I}} + u^{\mathrm{S}} \\ u^{\mathrm{S}} \text{ satisfies SRC} \end{array}$$

Green's representation theorem:

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\Phi(x, y) \partial_n u^{\mathrm{S}}(y) + \frac{\partial \Phi(x, y)}{\partial n(y)} u^{\mathrm{I}}(x) \right) \, \mathrm{d}s(y), \quad x \in \Omega,$$

 $\Phi(x,y) =$ Helmholtz fundamental solution $= \exp(ik|x-y|)/(4\pi|x-y|)$ in 3D. Taking Dirichlet/Neumann traces gives a **boundary integral equation (BIE)**, in operator form

$$A \,\partial_n u^{\rm S} = f$$

Alternatively, try as ansatz (η some constant, φ a function to be determined),

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i} \eta \Phi(x, y) \right) \varphi(y) \, \mathrm{d} s(y), \quad x \in \Omega.$$

Green's representation theorem:

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\Phi(x, y) \partial_n u^{\mathrm{S}}(y) + \frac{\partial \Phi(x, y)}{\partial n(y)} u^{\mathrm{I}}(x) \right) \, \mathrm{d}s(y), \quad x \in \Omega,$$

Taking Dirichlet/Neumann traces gives a BIE

$$A \,\partial_n u^{\rm S} = f$$

Alternatively, try as ansatz (η some constant, φ a function to be determined),

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i} \eta \Phi(x, y) \right) \varphi(y) \, \mathrm{d} s(y), \quad x \in \Omega.$$

Green's representation theorem:

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\Phi(x, y) \partial_n u^{\mathrm{S}}(y) + \frac{\partial \Phi(x, y)}{\partial n(y)} u^{\mathrm{I}}(x) \right) \, \mathrm{d}s(y), \quad x \in \Omega,$$

Taking Dirichlet/Neumann traces gives a BIE

$$A \,\partial_n u^{\rm S} = f$$

Alternatively, try as ansatz (η some constant, φ a function to be determined),

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i} \eta \Phi(x, y) \right) \varphi(y) \, \mathrm{d} s(y), \quad x \in \Omega.$$

Imposing b.c. gives a BIE

$$A \varphi = f := -\gamma u^{\mathrm{I}}.$$

Green's representation theorem:

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\Phi(x, y) \partial_n u^{\mathrm{S}}(y) + \frac{\partial \Phi(x, y)}{\partial n(y)} u^{\mathrm{I}}(x) \right) \, \mathrm{d}s(y), \quad x \in \Omega,$$

Taking Dirichlet/Neumann traces gives a BIE

$$A \partial_n u^{\mathrm{S}} = f.$$

Alternatively, try as ansatz (η some constant, φ a function to be determined),

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i}\eta \Phi(x, y) \right) \varphi(y) \,\mathrm{d}s(y), \quad x \in \Omega.$$

Imposing b.c. gives a BIE

$$A \varphi = f := -\gamma u^{\mathrm{I}}.$$

In either case, with $v=\partial_n u^{\rm S}$ or $v=\varphi,$ respectively, and $\mathcal{H}=L^2(\Gamma),$

$$Av = f \Rightarrow \int_{\Gamma} Av\bar{w} \,\mathrm{d}s = \int_{\Gamma} f\bar{w} \,\mathrm{d}s, \quad w \in \mathcal{H}, \quad \mathrm{i.e}$$

Green's representation theorem:

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\Phi(x, y) \partial_n u^{\mathrm{S}}(y) + \frac{\partial \Phi(x, y)}{\partial n(y)} u^{\mathrm{I}}(x) \right) \, \mathrm{d}s(y), \quad x \in \Omega,$$

Taking Dirichlet/Neumann traces gives a BIE

$$A \partial_n u^{\mathrm{S}} = f.$$

Alternatively, try as ansatz (η some constant, φ a function to be determined),

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x,y)}{\partial n(y)} - \mathrm{i} \eta \Phi(x,y) \right) \varphi(y) \, \mathrm{d} s(y), \quad x \in \Omega$$

Imposing b.c. gives a BIE

$$A \varphi = f := -\gamma u^{\mathrm{I}}.$$

In either case, with $v=\partial_n u^{\rm S}$ or $v=\varphi,$ respectively, and $\mathcal{H}=L^2(\Gamma),$

$$a(v,w) = F(w), \quad w \in \mathcal{H}, \quad \text{with} \quad a(v,w) := \int_{\Gamma} (Av) \bar{w} \, \mathrm{d}s, \quad F(w) := \int_{\Gamma} f \bar{w} \, \mathrm{d}s.$$

Green's representation theorem:

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\Phi(x, y) \partial_n u^{\mathrm{S}}(y) + \frac{\partial \Phi(x, y)}{\partial n(y)} u^{\mathrm{I}}(x) \right) \, \mathrm{d}s(y), \quad x \in \Omega,$$

Taking Dirichlet/Neumann traces gives a BIE

$$A \partial_n u^{\mathrm{S}} = f.$$

Alternatively, try as ansatz (η some constant, φ a function to be determined),

$$u^{\mathrm{S}}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i} \eta \Phi(x, y) \right) \varphi(y) \, \mathrm{d} s(y), \quad x \in \Omega.$$

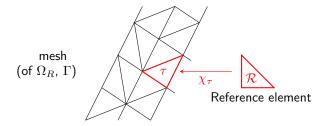
Imposing b.c. gives a BIE

$$A \varphi = f := -\gamma u^{\mathrm{I}}.$$

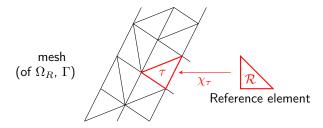
In either case, with $v=\partial_n u^{\rm S}$ or $v=\varphi,$ respectively, and $\mathcal{H}=L^2(\Gamma),$

$$a(v,w) = F(w), \quad w \in \mathcal{H}, \quad \text{with} \quad a(v,w) := \int_{\Gamma} (Av) \bar{w} \, \mathrm{d}s, \quad F(w) := \int_{\Gamma} f \bar{w} \, \mathrm{d}s.$$

Lots of choices/options, design of new BIEs an active area which can be/is informed by SCA, e.g., **Epstein** talk & work of **Darbas**.

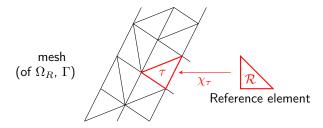


On our domain we construct a **mesh**, a collection of **elements** τ , each the image of a fixed **reference element** under a diffeomorphism $\chi_{\tau} : \mathcal{R} \to \tau$.



On our domain we construct a **mesh**, a collection of **elements** τ , each the image of a fixed **reference element** under a diffeomorphism $\chi_{\tau} : \mathcal{R} \to \tau$.

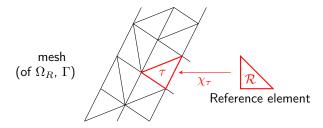
We choose $p \in \mathbb{N} \cup \{0\}$ and set $\mathbb{P}_p = \{\text{polynomials of degree} \le p \text{ on } \mathbb{R}\}.$



On our domain we construct a **mesh**, a collection of **elements** τ , each the image of a fixed **reference element** under a diffeomorphism $\chi_{\tau} : \mathcal{R} \to \tau$.

We choose $p \in \mathbb{N} \cup \{0\}$ and set $\mathbb{P}_p = \{\text{polynomials of degree} \leq p \text{ on } \mathcal{R}\}$. Our **piecewise polynomial approximation space** \mathcal{H}_N is set of w_N s. t., for each τ ,

$$w_N|_{\tau} = \chi_{\tau} \circ P$$
, for some $P \in \mathbb{P}_p$.

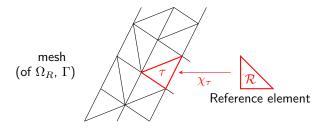


On our domain we construct a **mesh**, a collection of **elements** τ , each the image of a fixed **reference element** under a diffeomorphism $\chi_{\tau} : \mathcal{R} \to \tau$.

We choose $p \in \mathbb{N} \cup \{0\}$ and set $\mathbb{P}_p = \{\text{polynomials of degree} \leq p \text{ on } \mathcal{R}\}$. Our **piecewise polynomial approximation space** \mathcal{H}_N is set of w_N s. t., for each τ ,

 $w_N|_{\tau} = \chi_{\tau} \circ P$, for some $P \in \mathbb{P}_p$.

We may also require w_N globally continuous, e.g. to ensure $\mathcal{H}_N \subset \mathcal{H}$.



On our domain we construct a **mesh**, a collection of **elements** τ , each the image of a fixed **reference element** under a diffeomorphism $\chi_{\tau} : \mathcal{R} \to \tau$.

We choose $p \in \mathbb{N} \cup \{0\}$ and set $\mathbb{P}_p = \{\text{polynomials of degree} \leq p \text{ on } \mathcal{R}\}$. Our **piecewise polynomial approximation space** \mathcal{H}_N is set of w_N s. t., for each τ ,

 $w_N|_{\tau} = \chi_{\tau} \circ P$, for some $P \in \mathbb{P}_p$.

We may also require w_N globally continuous, e.g. to ensure $\mathcal{H}_N \subset \mathcal{H}$.

As $N \to \infty$ we require:

- $h := \max \operatorname{diam}(\tau) \to 0$ (h-FEM/BEM); or
- $p
 ightarrow \infty$ ($p ext{-FEM/BEM}$); or
- $h \to 0$ and $p \to \infty$ (*hp*-FEM/BEM).

On our domain we construct a **mesh**, a collection of **elements** τ , each the image of a fixed **reference element** under a diffeomorphism $\chi_{\tau} : \mathcal{R} \to \tau$.

We choose $p \in \mathbb{N} \cup \{0\}$ and set $\mathbb{P}_p = \{\text{polynomials of degree} \leq p \text{ on } \mathcal{R}\}$. Our **piecewise polynomial approximation space** \mathcal{H}_N is set of w_N s. t., for each τ ,

 $w_N|_{\tau} = \chi_{\tau} \circ P$, for some $P \in \mathbb{P}_p$.

We may also require w_N globally continuous, e.g. to ensure $\mathcal{H}_N \subset \mathcal{H}$.

- As $N \to \infty$ we require:
 - $h := \max \operatorname{diam}(\tau) \to 0$ (*h*-FEM/BEM); or
 - $p
 ightarrow \infty$ ($p ext{-FEM/BEM}$); or
 - $h \to 0$ and $p \to \infty$ (hp-FEM/BEM).

Crucial are sharp bounds for

$$\min_{w_N \in \mathcal{H}_N} \|v - w_N\|_{\mathcal{H}}$$

as function of Ω , k, h, and p – NA and SCA input valuable and complementary.

On our domain we construct a **mesh**, a collection of **elements** τ , each the image of a fixed **reference element** under a diffeomorphism $\chi_{\tau} : \mathcal{R} \to \tau$.

We choose $p \in \mathbb{N} \cup \{0\}$ and set $\mathbb{P}_p = \{\text{polynomials of degree} \leq p \text{ on } \mathcal{R}\}$. Our **piecewise polynomial approximation space** \mathcal{H}_N is set of w_N s. t., for each τ ,

 $w_N|_{\tau} = \chi_{\tau} \circ P$, for some $P \in \mathbb{P}_p$.

We may also require w_N globally continuous, e.g. to ensure $\mathcal{H}_N \subset \mathcal{H}$.

As $N \to \infty$ we require:

- $h := \max \operatorname{diam}(\tau) \to 0$ (*h*-FEM/BEM); or
- $p \rightarrow \infty$ (p-FEM/BEM); or
- $h \to 0$ and $p \to \infty$ (*hp*-FEM/BEM).

Crucial are sharp bounds for

$$\min_{w_N \in \mathcal{H}_N} \|v - w_N\|_{\mathcal{H}}$$

as function of Ω , k, h, and p – NA and SCA input valuable and complementary. By Whittaker-Shannon-Nyquist criterion we expect

 $\dim(\mathcal{H}_N) \sim \mathbf{k}^{\mathsf{dimension}}$ of domain

necessary and sufficient to maintain accuracy as $k
ightarrow \infty$.

$\label{eq:comparison} Comparison \ of \ \mathsf{FEM}/\mathsf{BEM}$

FEM	BEM
Computational domain (Ω_R) is <i>d</i> -dimensional	Computational domain $(\Gamma=\partial\Omega)$ is $d-1$ -dimensional
$\dim(\mathcal{H}_N)\sim {m k}^d$ needed for small best approx. error	$\dim(\mathcal{H}_N)\sim k^{d-1}$ needed for small best approx. error
Sparse linear system (see Gander talk)	Dense linear system (see, e.g., Chaillat-Loseille talk)
Works for variable coefficients, e.g., $\nabla \cdot (A(x) \nabla u) + k^2 n(x) u = 0$	Needs constant coefficients

Goal: prove quasi-optimality, that the Galerkin solution $v_N \in \mathcal{H}_N$ satisfies

$$\underbrace{\|v - v_N\|_{\mathcal{H}}}_{\text{Error in } v_N} \le C_{q_0} \underbrace{\min_{w_N \in \mathcal{H}_N} \|v - w_N\|_{\mathcal{H}}}_{\text{Best approximation error}} \quad (*$$

Goal: prove quasi-optimality, that the Galerkin solution $v_N \in \mathcal{H}_N$ satisfies

$$\underbrace{\|v - v_N\|_{\mathcal{H}}}_{\text{Error in } v_N} \leq C_{qo} \min_{\substack{w_N \in \mathcal{H}_N \\ \text{Best approximation error}}} \|v - w_N\|_{\mathcal{H}} \quad (*$$

Standard framework where this holds: if

 $\underbrace{|a(u,w)| \leq C_{\text{cont}} \|u\|_{\mathcal{H}} \|w\|_{\mathcal{H}}}_{\text{Continuity/boundedness of } a} \quad \text{and} \quad \underbrace{|a(w,w)| \geq C_{\text{coer}} \|w\|_{\mathcal{H}}^2}_{\text{Coercivity of } a}, \quad \forall u, w \in \mathcal{H},$ then (*) holds for every $\mathcal{H}_N \subset \mathcal{H}$ with $C_{\text{qo}} = \frac{C_{\text{coer}}}{C_{\text{coer}}}$; this is Céa's lemma = extension of Lax-Milgram.

Goal: prove quasi-optimality, that the Galerkin solution $v_N \in \mathcal{H}_N$ satisfies

$$\underbrace{\|v - v_N\|_{\mathcal{H}}}_{\text{Error in } v_N} \leq C_{qo} \min_{\substack{w_N \in \mathcal{H}_N \\ \text{Best approximation error}}} \|v - w_N\|_{\mathcal{H}} \quad (*$$

Standard framework where this holds: if

 $\underbrace{|a(u,w)| \leq C_{\rm cont} \|u\|_{\mathcal{H}} \|w\|_{\mathcal{H}}}_{\rm Continuity/boundedness of } a} \quad \text{and} \quad \underbrace{|a(w,w)| \geq C_{\rm coer} \|w\|_{\mathcal{H}}^2}_{\rm Coercivity of } a}, \quad \forall u, w \in \mathcal{H},$

then (*) holds for every $\mathcal{H}_N \subset \mathcal{H}$ with $C_{qo} = \frac{C_{cont}}{C_{coer}}$; this is **Céa's lemma** = extension of **Lax-Milgram**.

One reason FEM for Helmholtz "hard" from NA perspective if that $a(\cdot, \cdot)$ not coercive: if w vanishes on Γ_R , then

$$a(w,w) = \|\nabla w\|_{L^2(\Omega_R)}^2 - \frac{k^2}{\|w\|_{L^2(\Omega_R)}^2} = \|w\|_{H^1(\Omega_R)}^2 - (1+\frac{k^2}{\|w\|_{L^2(\Omega_R)}^2}).$$

Goal: prove quasi-optimality, that the Galerkin solution $v_N \in \mathcal{H}_N$ satisfies

$$\underbrace{\|v - v_N\|_{\mathcal{H}}}_{\text{Error in } v_N} \leq C_{qo} \min_{\substack{w_N \in \mathcal{H}_N \\ \text{Best approximation error}}} \|v - w_N\|_{\mathcal{H}} \quad (*$$

Standard framework where this holds: if

 $\underbrace{|a(u,w)| \leq C_{\rm cont} \|u\|_{\mathcal{H}} \|w\|_{\mathcal{H}}}_{\rm Continuity/boundedness of } a} \quad \text{and} \quad \underbrace{|a(w,w)| \geq C_{\rm coer} \|w\|_{\mathcal{H}}^2}_{\rm Coercivity of } a}, \quad \forall u,w \in \mathcal{H},$

then (*) holds for every $\mathcal{H}_N \subset \mathcal{H}$ with $C_{qo} = \frac{C_{cont}}{C_{coer}}$; this is **Céa's lemma** = extension of **Lax-Milgram**.

One reason FEM for Helmholtz "hard" from NA perspective if that $a(\cdot, \cdot)$ not coercive: if w vanishes on Γ_R , then

$$a(w,w) = \|\nabla w\|_{L^{2}(\Omega_{R})}^{2} - \frac{k^{2}}{\|w\|_{L^{2}(\Omega_{R})}^{2}} = \|w\|_{H^{1}(\Omega_{R})}^{2} - (1+\frac{k^{2}}{\|w\|_{L^{2}(\Omega_{R})}^{2}})$$

Compact perturbation arguments show $\exists N_0 \text{ s.t. } (*)$ holds for $N \geq N_0$ but need k-explicit (e.g., SCA) info about Helmholtz solution to quantify how N_0 and C_{qo} depend on k (and Ω , h, p).

$$\Delta u + k^2 u = 0 \qquad k \gg 1$$
s.b.
$$u = 0$$

$$u = u^{\mathrm{I}} + u^{\mathrm{S}}$$

$$u^{\mathrm{I}}(x) = \mathrm{e}^{\mathrm{i}kx \cdot a}$$

$$\Gamma$$

$$u^{\mathrm{S}} \text{ satisfies Sommerfeld rad. cond.}$$

Melrose & Taylor 1985, through SCA, study $k \to \infty$ asymptotics of

$$\eta^{\text{slow}}(x) = \frac{\partial_n u(x)}{\mathrm{e}^{\mathrm{i}kx \cdot a}}, \quad x \in \Gamma,$$

when Ω_{-} is C^{∞} and strictly convex, especially near shadow boundaries.

$$\Delta u + k^2 u = 0 \qquad k \gg 1$$
s.b.
$$u = 0$$

$$u = u^{\mathrm{I}} + u^{\mathrm{S}}$$

$$u^{\mathrm{I}}(x) = \mathrm{e}^{\mathrm{i}kx \cdot a}$$

$$\Gamma$$

$$u^{\mathrm{S}} \text{ satisfies Sommerfeld rad. cond.}$$

Melrose & Taylor 1985, through SCA, study $k \to \infty$ asymptotics of

$$\eta^{\text{slow}}(x) = \frac{\partial_n u(x)}{\mathrm{e}^{\mathrm{i}kx \cdot a}}, \quad x \in \Gamma,$$

when Ω_{-} is C^{∞} and strictly convex, especially near shadow boundaries. Combining with NA, Dominguez, **Graham & Smyshlyaev** 2007 show, in 2D, that k-dependent mesh & $\dim(\mathcal{H}_N) \sim k^{1/9}$ keeps $\|\eta^{\text{slow}} - v_N\|_{L_2(\Gamma)}$ small as $k \to \infty$, where v_N is GM soln. to BIE;

$$\Delta u + k^{2}u = 0 \qquad k \gg 1$$
s.b.
$$u = 0$$

$$u^{I}(x) = e^{ikx \cdot a}$$

Melrose & Taylor 1985, through SCA, study $k \to \infty$ asymptotics of

$$\eta^{\text{slow}}(x) = \frac{\partial_n u(x)}{\mathrm{e}^{\mathrm{i}kx \cdot a}}, \quad x \in \Gamma,$$

when Ω_{-} is C^{∞} and strictly convex, especially near shadow boundaries. Combining with NA, Dominguez, **Graham & Smyshlyaev** 2007 show, in 2D, that k-dependent mesh & $\dim(\mathcal{H}_N) \sim k^{1/9}$ keeps $\|\eta^{\text{slow}} - v_N\|_{L_2(\Gamma)}$ small as $k \to \infty$, where v_N is GM soln. to BIE; improved to k^{ε} , $\forall \varepsilon > 0$, in **Ecevit** & Eruslu 2019.

$$\Delta u + k^2 u = 0 \qquad k \gg 1$$
s.b.
$$u = 0$$

$$u = u^{\mathrm{I}} + u^{\mathrm{S}}$$

$$u^{\mathrm{I}}(x) = \mathrm{e}^{\mathrm{i}kx \cdot a}$$

$$\Gamma$$

$$u^{\mathrm{S}} \text{ satisfies Sommerfeld rad. cond.}$$

Melrose & Taylor 1985, through SCA, study $k \to \infty$ asymptotics of

$$\eta^{\text{slow}}(x) = \frac{\partial_n u(x)}{\mathrm{e}^{\mathrm{i}kx \cdot a}}, \quad x \in \Gamma,$$

when Ω_{-} is C^{∞} and strictly convex, especially near shadow boundaries. Combining with NA, Dominguez, **Graham & Smyshlyaev** 2007 show, in 2D, that k-dependent mesh & $\dim(\mathcal{H}_N) \sim k^{1/9}$ keeps $\|\eta^{\text{slow}} - v_N\|_{L_2(\Gamma)}$ small as $k \to \infty$, where v_N is GM soln. to BIE; improved to k^{ε} , $\forall \varepsilon > 0$, in **Ecevit** & Eruslu 2019. **Open problems:** extension of theory/algorithms to 3D, non-convex scatterers

Q. In quasi-optimality estimate

$$\underbrace{\|v - v_N\|_{\mathcal{H}}}_{\text{Error in } v_N} \le C_{qo} \min_{\substack{w_N \in \mathcal{H}_N \\ \text{Best approximation error}}} \|v - w_N\|_{\mathcal{H}}, \quad N \ge N_0, (*)$$

how do C_{qo} and N_0 depend on \pmb{k} (and Ω , h, p)?

Q. In quasi-optimality estimate

$$\frac{\|v - v_N\|_{\mathcal{H}}}{\text{Error in } v_N} \leq C_{qo} \min_{\substack{w_N \in \mathcal{H}_N \\ \text{Best approximation error}}} \|v - w_N\|_{\mathcal{H}}, \quad N \geq N_0, (*)$$

how do $C_{\rm qo}$ and N_0 depend on k (and Ω , h, p)?

For h-FEM need $\dim(\mathcal{H}_N) \sim k^d$ to control best approximation error, but $\dim(\mathcal{H}_N) \gg k^d$ for (*) to hold (with C_{qo} independent of k), the so-called "pollution effect" – Babuška & Sauter 1997.

Q. In quasi-optimality estimate

$$\frac{\|v - v_N\|_{\mathcal{H}}}{\text{Error in } v_N} \leq C_{qo} \min_{\substack{w_N \in \mathcal{H}_N \\ \text{Best approximation error}}} \|v - w_N\|_{\mathcal{H}}, \quad N \geq N_0, (*)$$

how do $C_{\rm qo}$ and N_0 depend on k (and Ω , h, p)?

For h-FEM need $\dim(\mathcal{H}_N) \sim k^d$ to control best approximation error, but $\dim(\mathcal{H}_N) \gg k^d$ for (*) to hold (with C_{qo} independent of k), the so-called "pollution effect" – Babuška & Sauter 1997.

For *h*-BEM no pollution if Ω non-trapping, (*) holds with dim(\mathcal{H}_N) ~ k^{d-1} ; Galkowski & Spence 2022, through SCA high/low freq. integral operator splitting

Q. In quasi-optimality estimate

$$\frac{\|v - v_N\|_{\mathcal{H}}}{\text{Error in } v_N} \leq C_{qo} \min_{\substack{w_N \in \mathcal{H}_N \\ \text{Best approximation error}}} \|v - w_N\|_{\mathcal{H}}, \quad N \geq N_0, (*)$$

how do $C_{\rm qo}$ and N_0 depend on k (and Ω , h, p)?

For h-FEM need $\dim(\mathcal{H}_N) \sim \mathbf{k}^d$ to control best approximation error, but $\dim(\mathcal{H}_N) \gg \mathbf{k}^d$ for (*) to hold (with C_{qo} independent of \mathbf{k}), the so-called "pollution effect" – Babuška & Sauter 1997.

For *h*-BEM no pollution if Ω non-trapping, (*) holds with dim(\mathcal{H}_N) ~ k^{d-1} ; Galkowski & Spence 2022, through SCA high/low freq. integral operator splitting

For hp-FEM/BEM no pollution, (*) holds with $\dim(\mathcal{H}_N) \sim k^d$ or k^{d-1} , provided $p \sim \log k$;

Q. In quasi-optimality estimate

$$\frac{\|v - v_N\|_{\mathcal{H}}}{\text{Error in } v_N} \leq C_{qo} \min_{\substack{w_N \in \mathcal{H}_N \\ \text{Best approximation error}}} \|v - w_N\|_{\mathcal{H}}, \quad N \geq N_0, (*)$$

how do $C_{\rm qo}$ and N_0 depend on \pmb{k} (and Ω , h, p)?

For h-FEM need $\dim(\mathcal{H}_N) \sim \mathbf{k}^d$ to control best approximation error, but $\dim(\mathcal{H}_N) \gg \mathbf{k}^d$ for (*) to hold (with C_{qo} independent of \mathbf{k}), the so-called "pollution effect" – Babuška & Sauter 1997.

For *h*-BEM no pollution if Ω non-trapping, (*) holds with dim(\mathcal{H}_N) ~ k^{d-1} ; Galkowski & Spence 2022, through SCA high/low freq. integral operator splitting

For hp-FEM/BEM no pollution, (*) holds with $\dim(\mathcal{H}_N) \sim k^d$ or k^{d-1} , provided $p \sim \log k$; Melenk & Sauter 2010, 2011, Löhndorf & Melenk 2011, Bernkopf, Chaumont-Frelet, Melenk 2022,

Q. In quasi-optimality estimate

$$\frac{\|v - v_N\|_{\mathcal{H}}}{\text{Error in } v_N} \leq C_{qo} \min_{\substack{w_N \in \mathcal{H}_N \\ \text{Best approximation error}}} \|v - w_N\|_{\mathcal{H}}, \quad N \geq N_0, (*)$$

how do $C_{\rm qo}$ and N_0 depend on \pmb{k} (and Ω , h, p)?

For h-FEM need $\dim(\mathcal{H}_N) \sim k^d$ to control best approximation error, but $\dim(\mathcal{H}_N) \gg k^d$ for (*) to hold (with C_{qo} independent of k), the so-called "pollution effect" – Babuška & Sauter 1997.

For *h*-BEM no pollution if Ω non-trapping, (*) holds with dim(\mathcal{H}_N) ~ k^{d-1} ; Galkowski & Spence 2022, through SCA high/low freq. integral operator splitting

For hp-FEM/BEM no pollution, (*) holds with $\dim(\mathcal{H}_N) \sim k^d$ or k^{d-1} , provided $p \sim \log k$; Melenk & Sauter 2010, 2011, Löhndorf & Melenk 2011, Bernkopf, Chaumont-Frelet, Melenk 2022, and (with SCA-methods) in Lafontaine, Spence, Wunsch 2020, Galkowski, Lafontaine, Spence, Wunsch – see talks by Lafontaine, Melenk/Sauter

Q. In quasi-optimality estimate

$$\underbrace{\|v - v_N\|_{\mathcal{H}}}_{\text{Error in } v_N} \le C_{qo} \underbrace{\min_{w_N \in \mathcal{H}_N} \|v - w_N\|_{\mathcal{H}}}_{\text{Best approximation error}}, \quad N \ge N_0, (*)$$

how do $C_{\rm qo}$ and N_0 depend on \pmb{k} (and Ω , h, p)?

For h-FEM need $\dim(\mathcal{H}_N) \sim k^d$ to control best approximation error, but $\dim(\mathcal{H}_N) \gg k^d$ for (*) to hold (with C_{qo} independent of k), the so-called "pollution effect" – Babuška & Sauter 1997.

For *h*-BEM no pollution if Ω non-trapping, (*) holds with dim(\mathcal{H}_N) ~ k^{d-1} ; Galkowski & Spence 2022, through SCA high/low freq. integral operator splitting

For hp-**FEM/BEM** no pollution, (*) holds with $\dim(\mathcal{H}_N) \sim k^d$ or k^{d-1} , provided $p \sim \log k$; **Melenk & Sauter** 2010, 2011, Löhndorf & **Melenk** 2011, Bernkopf, **Chaumont-Frelet**, **Melenk** 2022, and (with SCA-methods) in Lafontaine, Spence, Wunsch 2020, **Galkowski, Lafontaine, Spence, Wunsch** – see talks by Lafontaine, Melenk/Sauter

Open problems: Elasticity, Maxwell (though see **Melenk**, **Sauter** 2022)? For BEM case, other b.c.'s, Ω trapping?

$$\mathcal{L}_{u^{\mathrm{I}}} \qquad \begin{array}{c} \Delta u + k^{2}u = 0 \\ \Omega & \Gamma & \Omega \end{array} \qquad \begin{array}{c} u = 0 \\ u = 0 \end{array} \qquad \begin{array}{c} k \gg 1 \end{array}$$

Try as ansatz

$$u^{\rm S}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i}\eta \Phi(x, y) \right) \varphi(y) \,\mathrm{d}s(y), \quad x \in \Omega. \quad (*)$$

Imposing b.c. $u^{\mathrm{S}} = -u^{\mathrm{I}}$ on Γ gives a BIE $A \varphi = f := -\gamma u^{\mathrm{I}}$.

Q. How do ||A||, $||A^{-1}||$, $\operatorname{cond} A := ||A|| ||A^{-1}||$ depend on k, η , Ω ?

$$\begin{aligned} & \mathbf{\chi}_{u^{\mathrm{I}}} \qquad \Delta u + \mathbf{k}^{2} u = 0 \\ & \mathbf{\chi}_{u^{\mathrm{I}}} \qquad u = 0 \\ & \mathbf{\Omega}_{\mathrm{I}} \quad \mathbf{\Omega}_{\mathrm{I}} \end{aligned}$$

Try as ansatz

$$u^{\rm S}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i} \eta \Phi(x, y) \right) \varphi(y) \, \mathrm{d} s(y), \quad x \in \Omega. \quad (*)$$

Imposing b.c. $u^{\mathrm{S}} = -u^{\mathrm{I}}$ on Γ gives a BIE $A \varphi = f := -\gamma u^{\mathrm{I}}$.

Q. How do ||A||, $||A^{-1}||$, $\operatorname{cond} A := ||A|| ||A^{-1}||$ depend on k, η , Ω ?

||A|| tackled by SCA results on restrictions of Δ eigenfunctions to submanifolds (**Burq**, Gérard, Tzvetkov 2007) by **Galkowski** & Smith 2015 and by Han & **Tacy** 2015.

$$\begin{aligned} & \mathbf{\chi}_{u^{\mathrm{I}}} \qquad \Delta u + \mathbf{k}^{2} u = 0 \\ & \mathbf{\chi}_{u^{\mathrm{I}}} \qquad u = 0 \\ & \mathbf{\Omega}_{\mathrm{I}} \quad \mathbf{\Omega}_{\mathrm{I}} \end{aligned}$$

Try as ansatz

$$u^{\rm S}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i}\eta \Phi(x, y) \right) \varphi(y) \,\mathrm{d}s(y), \quad x \in \Omega. \quad (*)$$

Imposing b.c. $u^{\mathrm{S}} = -u^{\mathrm{I}}$ on Γ gives a BIE $A \, \varphi = f := -\gamma u^{\mathrm{I}}$.

Q. How do ||A||, $||A^{-1}||$, $\operatorname{cond} A := ||A|| ||A^{-1}||$ depend on k, η , Ω ?

||A|| tackled by SCA results on restrictions of Δ eigenfunctions to submanifolds (**Burq**, Gérard, Tzvetkov 2007) by **Galkowski** & Smith 2015 and by Han & **Tacy** 2015.

 $||A^{-1}||$ tackled via SCA resolvent estimates for $(\Delta + k^2)^{-1}$ for Ω_- and for non-trapping Ω in **Baskin**, **Spence**, **Wunsch** 2016

$$\begin{aligned} & \mathbf{\chi}_{u^{\mathrm{I}}} \quad \Delta u + \mathbf{k}^{2} u = 0 \\ & \mathbf{\Omega}_{\mathrm{I}} \quad \mathbf{\Omega}_{-} \end{aligned} \qquad \mathbf{k} \gg 1 \end{aligned}$$

Try as ansatz

$$u^{\rm S}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i}\eta \Phi(x, y) \right) \varphi(y) \,\mathrm{d}s(y), \quad x \in \Omega. \quad (*)$$

Imposing b.c. $u^{\mathrm{S}} = -u^{\mathrm{I}}$ on Γ gives a BIE $A \varphi = f := -\gamma u^{\mathrm{I}}$.

Q. How do ||A||, $||A^{-1}||$, $\operatorname{cond} A := ||A|| ||A^{-1}||$ depend on k, η , Ω ?

||A|| tackled by SCA results on restrictions of Δ eigenfunctions to submanifolds (**Burq**, Gérard, Tzvetkov 2007) by **Galkowski** & Smith 2015 and by Han & **Tacy** 2015.

 $||A^{-1}||$ tackled via SCA resolvent estimates for $(\Delta + k^2)^{-1}$ for Ω_- and for non-trapping Ω in **Baskin**, **Spence**, **Wunsch** 2016 (and see **C-W**, **Spence**, Gibbs, **Smyshlyaev** 2020 for trapping cases, using SCA results of **Burq** 1998, 2004).

$$\begin{aligned} & \mathbf{\chi}_{u^{\mathrm{I}}} \quad \Delta u + \mathbf{k}^{2} u = 0 \\ & \mathbf{\Omega}_{\mathrm{I}} \quad \mathbf{\Omega}_{-} \end{aligned} \qquad \mathbf{k} \gg 1 \end{aligned}$$

Try as ansatz

$$u^{\rm S}(x) = \int_{\Gamma} \left(\frac{\partial \Phi(x, y)}{\partial n(y)} - \mathrm{i}\eta \Phi(x, y) \right) \varphi(y) \,\mathrm{d}s(y), \quad x \in \Omega. \quad (*)$$

Imposing b.c. $u^{\mathrm{S}} = -u^{\mathrm{I}}$ on Γ gives a BIE $A \varphi = f := -\gamma u^{\mathrm{I}}$.

Q. How do ||A||, $||A^{-1}||$, $\operatorname{cond} A := ||A|| ||A^{-1}||$ depend on k, η , Ω ?

||A|| tackled by SCA results on restrictions of Δ eigenfunctions to submanifolds (**Burq**, Gérard, Tzvetkov 2007) by **Galkowski** & Smith 2015 and by Han & **Tacy** 2015.

 $||A^{-1}||$ tackled via SCA resolvent estimates for $(\Delta + k^2)^{-1}$ for Ω_- and for non-trapping Ω in **Baskin**, **Spence**, **Wunsch** 2016 (and see **C-W**, **Spence**, Gibbs, **Smyshlyaev** 2020 for trapping cases, using SCA results of **Burq** 1998, 2004).

Open problems: rigorous extensions to other b.c.'s, elastic waves, where η is an (SCA-inspired) operator – see, e.g., **Darbas**, **Chaillat**, Le Louër 2021

Coming from the NA side it is clear that:

- There are many problems in NA of wave problems that SCA can help with
- There are successes at the SCA/NA interface already, but many open problems