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At the Interface Between SAC and NA of Wave Scattering
Problems

Housekeeping: lunch, tables/napkins, MFO abstract book, MFO Friends

49 in-person, 8 online participants – see full list in Tuesday’s email from
MFO Progam Coordination
Bringing together SCA and NA communities – interesting but challenging!

SCA NA
Study h2∆u+ u = 0 in limit h→ 0 Solve ∆u+ k2u = 0 for large k

Put main theorem of paper on page 2 Main theorem is Theorem 4.5,
(just before the numerics section)

We are all familiar with symplectic geometry We are all familiar with FEM and
and semiclassical defect measures discontinuous Galerkin methods

Our aim: to enhance understanding between SCA/NA communities so that we
can work together on joint projects to a larger extent ... and have fun, build new
friendships!
Our aim today: to give some overview of the SCA/NA interface (and existing
successes) from the NA side, then the SCA side this pm.
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The NA side of the NA/SCA interface - bringing SCA colleagues up to speed
with our (NA) methods and our issues (that likely need SCA input)

Opportunities at the NA/SCA interface (case studies) - why we are here!
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Model problem (to get across main ideas)

uI(x) = eikx·a

Ω

u = 0

∆u + k2u = 0 k � 1

u = uI + uS

uS satisfies Sommerfeld radiation condition

Goal: Given uI and Ω, find u

Both SCA and NA seek to understand behaviour of u (and of associated solution
operators)

NA Goal: compute u for fixed, but arbitrarily large, k, to arbitrarily high accuracy
– and as quickly/efficiently as possible!

Geometry: SCA most comfortable with C∞ (but large body of work on
diffraction by corners/edges, including Baskin & Wunsch 2013)
NA likes C∞ too, but also keen on piecewise smooth/analytic + rougher
boundaries
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uI(x) = eikx·a

Ω

u = 0

∆u + k2u = 0 k � 1

u = uI + uS

uS satisfies Sommerfeld radiation condition

Goal: Given uI and Ω, find u

Example solutions:



The Galerkin Method (the focus of this talk)

This starts from a variational formulation of the above problem as:

find v ∈ H (some Hilbert space) such that

a(v, w) = F (w) ∀w ∈ H,

where a(·, ·) and F (·) are some specified sesquilinear form and anti-linear
functional on H.

Galerkin method: Choose (HN )∞N=1 such that each HN ⊂ H is
finite-dimensional, and seek vN ∈ HN such that

a(vN , wN ) = F (wN ) ∀wN ∈ HN .

To solve our problem by GM there are three choices to make:

1 the variational formulation, notably
Domain-based, v := u|ΩR

, where ΩR is a bounded part of Ω, H = subspace
of H1(ΩR).
Boundary-based, from a BIE, where, e.g., v := ∂nu (or some other trace),
H = Sobolev space on Γ := ∂Ω, e.g., L2(Γ), H−1/2(Γ).
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The Galerkin Method (the focus of this talk)

Galerkin method: Choose (HN )∞N=1 such that each HN ⊂ H is
finite-dimensional, and seek vN ∈ HN such that

a(vN , wN ) = F (wN ) ∀wN ∈ HN . (∗)

To solve our problem by GM there are three choices to make:

1 the variational formulation, e.g.
Domain-based, v := u|ΩR

, where ΩR is a bounded part of Ω, H = subspace
of H1(ΩR).
Boundary-based, from a BIE, where, e.g., v := ∂nu (or some other trace),
H = Sobolev space on Γ := ∂Ω, e.g., L2(Γ), H−1/2(Γ).

2 the choice of HN – this talk piecewise polynomials, next talk other spaces
(and see, e.g., talks by Ecevit, Chaumont-Frelet, later this week)

3 how to solve (∗) – see talk this morning by Gander

Goal: SCA to help with all three choices!
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Variational formulation in domain: starting point of FEM

uI

Ω Γ

u = 0

∆u + k2u = 0 k � 1

u = uI + uS

uS satisfies SRC

Find v ∈ H such that a(v, w) = F (w) ∀w ∈ H, where

H = H1
0 (ΩR) := {v ∈ H1(ΩR) : γv = 0 on Γ}, v = u|ΩR

,

a(v, w) :=

∫
ΩR

∇v · ∇w̄ − k2vw̄ −
∫

ΓR

DtNk(γv)γw̄ ds,

F (w) :=

∫
ΓR

(
∂nu

I −DtNk(γuI)
)
γw̄ ds, v, w ∈ H,

DtNk = exact DtN map for exterior of ΓR.

Exact DtN expensive, so in practice approximate by one of:
i) local b.c., e.g. use of impedance b.c. ∂nu− iku = 0 classic NA model problem;
ii) PML = complex scaling in SCA + truncating domain with u = 0 b.c.
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Variational form. on boundary: starting point of BEM

uI

Ω Γ

u = 0

∆u + k2u = 0 k � 1

u = uI + uS

uS satisfies SRC

Green’s representation theorem:

uS(x) =

∫
Γ

(
Φ(x, y)∂nu

S(y)− ∂Φ(x, y)

∂n(y)
uS(x)

)
ds(y), x ∈ Ω,

Φ(x, y) = Helmholtz fundamental solution = exp(ik|x− y|)/(4π|x− y|) in 3D.

Taking Dirichlet/Neumann traces gives a boundary integral equation (BIE), in
operator form

A∂nu
S = f.

Alternatively, try as ansatz (η some constant, ϕ a function to be determined),

uS(x) =

∫
Γ

(
∂Φ(x, y)

∂n(y)
− iηΦ(x, y)

)
ϕ(y) ds(y), x ∈ Ω.
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Imposing b.c. gives a BIE
Aϕ = f := −γuI.

In either case, with v = ∂nu
S or v = ϕ, respectively, and H = L2(Γ),

Lots of choices/options, design of new BIEs an active area which can be/is
informed by SCA, e.g., Epstein talk & work of Darbas.
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Piecewise polynomial spaces HN for FEM/BEM

mesh
(of ΩR, Γ) τ

χτ R
Reference element

On our domain we construct a mesh, a collection of elements τ , each the image
of a fixed reference element under a diffeomorphism χτ : R → τ .

We choose p ∈ N ∪ {0} and set Pp = {polynomials of degree ≤ p on R}. Our
piecewise polynomial approximation space HN is set of wN s. t., for each τ ,

wN |τ = χτ ◦ P, for some P ∈ Pp.

We may also require wN globally continuous, e.g. to ensure HN ⊂ H.

As N →∞ we require:
h := max diam(τ)→ 0 (h-FEM/BEM); or
p→∞ (p-FEM/BEM); or
h→ 0 and p→∞ (hp-FEM/BEM).
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Crucial are sharp bounds for

min
wN∈HN

‖v − wN‖H

as function of Ω, k, h, and p – NA and SCA input valuable and complementary.

By Whittaker-Shannon-Nyquist criterion we expect

dim(HN ) ∼ kdimension of domain

necessary and sufficient to maintain accuracy as k →∞.



Piecewise polynomial spaces HN for FEM/BEM

On our domain we construct a mesh, a collection of elements τ , each the image
of a fixed reference element under a diffeomorphism χτ : R → τ .

We choose p ∈ N ∪ {0} and set Pp = {polynomials of degree ≤ p on R}. Our
piecewise polynomial approximation space HN is set of wN s. t., for each τ ,

wN |τ = χτ ◦ P, for some P ∈ Pp.

We may also require wN globally continuous, e.g. to ensure HN ⊂ H.

As N →∞ we require:
h := max diam(τ)→ 0 (h-FEM/BEM); or
p→∞ (p-FEM/BEM); or
h→ 0 and p→∞ (hp-FEM/BEM).

Crucial are sharp bounds for

min
wN∈HN

‖v − wN‖H

as function of Ω, k, h, and p – NA and SCA input valuable and complementary.
By Whittaker-Shannon-Nyquist criterion we expect

dim(HN ) ∼ kdimension of domain

necessary and sufficient to maintain accuracy as k →∞.



Comparison of FEM/BEM

FEM BEM

Computational domain (ΩR) Computational domain (Γ = ∂Ω)
is d-dimensional is d− 1-dimensional

dim(HN ) ∼ kd needed dim(HN ) ∼ kd−1 needed
for small best approx. error for small best approx. error

Sparse linear system Dense linear system
(see Gander talk) (see, e.g., Chaillat-Loseille talk)

Works for variable coefficients, Needs constant coefficients
e.g., ∇ · (A(x)∇u) + k2n(x)u = 0



Numerical analysis of the Galerkin method

Goal: prove quasi-optimality, that the Galerkin solution vN ∈ HN satisfies

‖v − vN‖H︸ ︷︷ ︸
Error in vN

≤ Cqo min
wN∈HN

‖v − wN‖H︸ ︷︷ ︸
Best approximation error

(∗)

Standard framework where this holds: if

|a(u,w)| ≤ Ccont‖u‖H‖w‖H︸ ︷︷ ︸
Continuity/boundedness of a

and |a(w,w)| ≥ Ccoer‖w‖2H,︸ ︷︷ ︸
Coercivity of a

∀u,w ∈ H,

then (∗) holds for every HN ⊂ H with Cqo =
Ccont

Ccoer
; this is Céa’s lemma =

extension of Lax-Milgram.

One reason FEM for Helmholtz “hard” from NA perspective if that a(·, ·) not
coercive: if w vanishes on ΓR, then

a(w,w) = ‖∇w‖2L2(ΩR) − k
2‖w‖2L2(ΩR) = ‖w‖2H1(ΩR) − (1 + k2)‖w‖2L2(ΩR).

Compact perturbation arguments show ∃N0 s.t. (∗) holds for N ≥ N0 but need
k-explicit (e.g., SCA) info about Helmholtz solution to quantify how N0 and Cqo

depend on k (and Ω, h, p).
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SCA applied in NA: Ex. 1. Hybrid NA-asymptotic methods

uI(x) = eikx·a
Ω−

Γ

u = 0

∆u + k2u = 0 k � 1

u = uI + uS

uS satisfies Sommerfeld rad. cond.

s.b.

Melrose & Taylor 1985, through SCA, study k →∞ asymptotics of

ηslow(x) =
∂nu(x)

eikx·a , x ∈ Γ,

when Ω− is C∞ and strictly convex, especially near shadow boundaries.

Combining with NA, Dominguez, Graham & Smyshlyaev 2007 show, in 2D, that
k-dependent mesh & dim(HN ) ∼ k1/9 keeps ‖ηslow − vN‖L2(Γ) small as k →∞,
where vN is GM soln. to BIE; improved to kε, ∀ε > 0, in Ecevit & Eruslu 2019.
Open problems: extension of theory/algorithms to 3D, non-convex scatterers



SCA applied in NA: Ex. 1. Hybrid NA-asymptotic methods

uI(x) = eikx·a
Ω−

Γ

u = 0

∆u + k2u = 0 k � 1

u = uI + uS

uS satisfies Sommerfeld rad. cond.

s.b.

Melrose & Taylor 1985, through SCA, study k →∞ asymptotics of

ηslow(x) =
∂nu(x)

eikx·a , x ∈ Γ,

when Ω− is C∞ and strictly convex, especially near shadow boundaries.
Combining with NA, Dominguez, Graham & Smyshlyaev 2007 show, in 2D, that
k-dependent mesh & dim(HN ) ∼ k1/9 keeps ‖ηslow − vN‖L2(Γ) small as k →∞,
where vN is GM soln. to BIE;

improved to kε, ∀ε > 0, in Ecevit & Eruslu 2019.
Open problems: extension of theory/algorithms to 3D, non-convex scatterers



SCA applied in NA: Ex. 1. Hybrid NA-asymptotic methods

uI(x) = eikx·a
Ω−

Γ

u = 0

∆u + k2u = 0 k � 1

u = uI + uS

uS satisfies Sommerfeld rad. cond.

s.b.

Melrose & Taylor 1985, through SCA, study k →∞ asymptotics of

ηslow(x) =
∂nu(x)

eikx·a , x ∈ Γ,

when Ω− is C∞ and strictly convex, especially near shadow boundaries.
Combining with NA, Dominguez, Graham & Smyshlyaev 2007 show, in 2D, that
k-dependent mesh & dim(HN ) ∼ k1/9 keeps ‖ηslow − vN‖L2(Γ) small as k →∞,
where vN is GM soln. to BIE; improved to kε, ∀ε > 0, in Ecevit & Eruslu 2019.

Open problems: extension of theory/algorithms to 3D, non-convex scatterers



SCA applied in NA: Ex. 1. Hybrid NA-asymptotic methods

uI(x) = eikx·a
Ω−

Γ

u = 0

∆u + k2u = 0 k � 1

u = uI + uS

uS satisfies Sommerfeld rad. cond.

s.b.

Melrose & Taylor 1985, through SCA, study k →∞ asymptotics of

ηslow(x) =
∂nu(x)

eikx·a , x ∈ Γ,

when Ω− is C∞ and strictly convex, especially near shadow boundaries.
Combining with NA, Dominguez, Graham & Smyshlyaev 2007 show, in 2D, that
k-dependent mesh & dim(HN ) ∼ k1/9 keeps ‖ηslow − vN‖L2(Γ) small as k →∞,
where vN is GM soln. to BIE; improved to kε, ∀ε > 0, in Ecevit & Eruslu 2019.
Open problems: extension of theory/algorithms to 3D, non-convex scatterers



SCA applied in NA: Ex. 2. “Pollution” in FEM/BEM

Q. In quasi-optimality estimate

‖v − vN‖H︸ ︷︷ ︸
Error in vN

≤ Cqo min
wN∈HN

‖v − wN‖H,︸ ︷︷ ︸
Best approximation error

N ≥ N0, (∗)

how do Cqo and N0 depend on k (and Ω, h, p)?

For h-FEM need dim(HN ) ∼ kd to control best approximation error, but
dim(HN )� kd for (∗) to hold (with Cqo independent of k), the so-called
“pollution effect” – Babuška & Sauter 1997.

For h-BEM no pollution if Ω non-trapping, (∗) holds with dim(HN ) ∼ kd−1;
Galkowski & Spence 2022, through SCA high/low freq. integral operator splitting

For hp-FEM/BEM no pollution, (∗) holds with dim(HN ) ∼ kd or kd−1,
provided p ∼ log k; Melenk & Sauter 2010, 2011, Löhndorf & Melenk 2011,
Bernkopf, Chaumont-Frelet, Melenk 2022, and (with SCA-methods) in
Lafontaine, Spence, Wunsch 2020, Galkowski, Lafontaine, Spence, Wunsch
– see talks by Lafontaine, Melenk/Sauter

Open problems: Elasticity, Maxwell (though see Melenk, Sauter 2022)? For
BEM case, other b.c.’s, Ω trapping?
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SCA applied in NA: Ex. 3. k-dependence of BIOs

uI

Ω Ω−Γ
u = 0

∆u + k2u = 0 k � 1

Try as ansatz

uS(x) =

∫
Γ

(
∂Φ(x, y)

∂n(y)
− iηΦ(x, y)

)
ϕ(y) ds(y), x ∈ Ω. (∗)

Imposing b.c. uS = −uI on Γ gives a BIE Aϕ = f := −γuI.

Q. How do ‖A‖, ‖A−1‖, condA := ‖A‖ ‖A−1‖ depend on k, η, Ω?

‖A‖ tackled by SCA results on restrictions of ∆ eigenfunctions to submanifolds
(Burq, Gérard, Tzvetkov 2007) by Galkowski & Smith 2015 and by Han & Tacy
2015.

‖A−1‖ tackled via SCA resolvent estimates for (∆ + k2)−1 for Ω− and for
non-trapping Ω in Baskin, Spence, Wunsch 2016 (and see C-W, Spence, Gibbs,
Smyshlyaev 2020 for trapping cases, using SCA results of Burq 1998, 2004).

Open problems: rigorous extensions to other b.c.’s, elastic waves, where η is an
(SCA-inspired) operator – see, e.g., Darbas, Chaillat, Le Louër 2021
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Conclusions

Coming from the NA side it is clear that:

There are many problems in NA of wave problems that SCA can help with

There are successes at the SCA/NA interface already, but many open
problems


