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Abstract. We consider the problem of scattering of time-harmonic acoustic waves by an
unbounded sound-soft rough surface. Although integral equation methods are widely used
for the numerical solution of such problems, to date there is no formulation which is known
to be uniquely solvable in the 3D case. We consider a novel Brakhage-Werner type inte-
gral equation formulation of this problem, based on an ansatz as a combined single- and
double-layer potential, but replacing the usual fundamental solution of the Helmholtz equa-
tion with an appropriate half-space Green’s function. In the case when the surface Γ is
sufficiently smooth (Lyapunov), we sketch how it can be shown that the integral operators
are bounded as operators on L2(Γ) and, moreover, how it can be shown that the integral
equation is uniquely solvable in the space L2(Γ). The proof of this latter result uses novel,
direct arguments, leading to explicit bounds on the inverse in terms of the wave number, the
parameter coupling the single- and double-layer potentials, and the maximum surface slope.
These bounds show that the norm of the inverse operator is bounded uniformly in the wave
number if the coupling parameter is chosen proportional to the wave number.
Keywords. Helmholtz equation, coupling parameter, rough surface scattering

This paper is concerned with boundary integral equation methods for what are termed rough
surface scattering problems in the engineering literature. We use the phrase rough surface to
denote a surface which is a perturbation of an infinite plane surface such that the whole surface
lies within a finite distance of the original plane. In particular, we are concerned with the case
where the scattering surface Γ is the graph of some bounded continuous function f : R

2 → R,
i.e.

Γ :=
{

x = (x1, x2, x3) ∈ R
3 : x3 = f(x1, x2)

}

. (1.1)

We will consider a typical problem of this type, namely acoustic scattering by a rough, sound
soft surface, the acoustic medium of propagation occupying the perturbed half-space

D := {x = (x1, x2, x3) : x3 > f(x1, x2)} (1.2)
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2 CHAPTER 1. ROUGH SURFACE SCATTERING

above the scattering surface Γ. We will suppose throughout that f is a moderately smooth func-
tion, i.e. is continuously differentiable with Hölder continuous first derivative (Γ is Lyapunov).

Rough surface scattering problems arise frequently in applications. They model acoustic and
electromagnetic wave propagation over outdoor ground and sea surfaces and, at a very different
scale, problems of optical scattering by surfaces in nano-technology. The extensive literature
on the mathematical and computational modelling of these problems has been reviwed recently
by Saillard & Sentenac [15], Warnick & Chew [16], and DeSanto [10], these reviews making it
clear that boundary integral equation methods are very popular, with many effective, specialised
numerical algorithms developed.

Despite this interest in the application of the BIE method, the associated mathematical
and numerical analysis to support these practical computations is largely absent, in the more
important 3D case at least. For example, to date there is no integral equation formulation that
is known to be uniquely solvable for a general 3D rough surface scattering problem.

For the 2D rough surface scattering problem much progress has been made in the last ten
years in terms of deriving well-posed boundary integral equations for a variety of acoustic,
electromagnetic, and elastic wave problems (see e.g. [4, 17, 2]). For general rough surface scat-
tering problems the usual integral equation formulations for scattering by bounded surfaces are
unattractive from a theoretical point of view since the standard boundary integral operators
(e.g. the standard single- and double-layer potential operators) are not bounded operators on
any of the usual function spaces when the scattering surface is unbounded. This has impor-
tant practical consequences, in particular implying large condition numbers when the standard
integral equations are discretised on large sections of rough surfaces.

In the 2D case alternative integral equations, with bounded integral operators, have been
obtained by replacing the standard fundamental solution by the Dirichlet or impedance Green’s
function for a half-plane that contains the domain D of propagation (see e.g. [4, 17]). This
modification leads to kernels of boundary integral operators that are weakly singular in their
asymptotic behaviour at infinity so that the integral operators are bounded on BC(Γ), the space
of bounded continuous functions on Γ, and on the other usual function spaces. In the case of a
2D sound-soft rough surface, [17] follows the approach that was proposed much earlier for the
sound-soft bounded obstacle, for example by Brakhage and Werner [3]. This approach, to seek
the solution to the exterior Dirichlet problem as a linear combination of double and single-layer
potentials, we will term the Brakhage-Werner method. It is used in [17], with the twist that the
standard fundamental solution is replaced by the Dirichlet Green’s function for a half-plane.

In this paper we will discuss the analogous modification in the 3D case, summarising recent
work in [5, 6]. Following [17], we derive a Brakhage-Werner-type integral equation, replacing the
standard fundamental solution with the Dirichlet Green’s function for a half-space that contains
D. The complication in the 3D case is that this modification, while it improves the kernels of
the integral operators significantly in terms of their behaviour at infinity, leads to kernels of the
integral operators that are strongly singular rather than weakly singular as in the 2D case, even
when the boundary is smooth. As a consequence, the boundary integral operators are no longer
well-defined as operators on BC(Γ). We are, by careful calculations, including computations of
the Fourier transform of parts of the kernel, able to show the boundedness of the operators on
L2(Γ).

To establish existence of solution and well-posedness in the 2D case generalisations of part
of the Riesz theory of compact operators have been developed (e.g. [8]) which require only local
compactness rather than compactness. These results enable existence of solution in BC(Γ) to
be deduced from uniqueness of solution. In fact, injectivity of the second kind BIE in BC(Γ)
implies well-posedness in BC(Γ) and in the space Lp(Γ), 1 ≤ p ≤ ∞ (see e.g. Preston et al. [14]
in this proceedings). But this theory is not relevant for 3D rough surface scattering problems
as the boundary integral operators are not even well-defined as operators on BC(Γ).
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Figure 1.1: Geometrical setting of the scattering problem

In the next section we give a rigorous formulation of the scattering problem, and derive the
Brakhage-Werner type integral equation. This integral equation, in operator form, is

(I + K − iηS)ϕ = 2g, (1.3)

where I is the identity operator, S and K are single- and double-layer potential operators,
defined by (1.12) and (1.13) below, g is the Dirichlet data for the scattered field on Γ, and η > 0
is the coupling parameter. We sketch how it can be established that S and K are bounded
operators on L2(Γ); for further details see [5].

Next we indicate how one can show that

A := I + K − iηS (1.4)

is invertible as an operator on L2(Γ), obtaining the explicit bound that

||A−1||L2(Γ)→L2(Γ) < B(L, κ/η) := 2 + 2L + 4L2 +
κ

η

(

2 + 5L + 3L3/2
)

, (1.5)

where L := sup
x∈R2 |∇f(x)| is the maximum surface slope. In fact, the tools needed to obtain

this explicit bound are rather elementary, namely standard jump relations for layer-potentials
(e.g. [9]) combined with carefully chosen applications of the divergence theorem. Our techniques
of argument are inspired by the somewhat similar methods used to prove invertibility for second
kind boundary integral equations for potential problems in Lipschitz domains (e.g. [13]), and by
arguments used to obtain a priori bounds for variational formulations of rough surface scattering
problems [11, 7]. In particular, a similarly explicit lower bound for the inf-sup (LBB) constant
of a variational formulation of this rough surface scattering problem is shown in [7].

The bound (1.5) is attractive in its explicitness. One consequence of (1.5) is that if η
is chosen proportional to the wave number κ, as recommended for larger frequencies in the
bounded obstacle case in [12, 1], then the inverse operator is bounded by an explicit function of
the Lipschitz constant of f and, in particular, is independent of the wave number, for κ > 0.

Notation. Throughout the paper x and y denote points in R
3 with components x =

(x1, x2, x3) and y = (y1, y2, y3). The image of y ∈ R
3 in the plane Γ0 :=

{

x ∈ R
3 : x3 = 0

}

is
denoted by y′ := (y1, y2,−y3). By x we will denote (x1, x2) ∈ R

2, so that x = (x, x3). Similarly
y denotes (y1, y2). BC(Γ) will denote the set of bounded continuous real- or complex-valued
functions on Γ, a Banach space with the norm || · ||BC(Γ) defined by ||F ||BC(Γ) = supx∈Γ |F (x)|.
For 0 < α ≤ 1 let BC1,α(R2) denote the set of those bounded continuously differentiable
functions F : R

2 → R that have the property that ∇F is bounded and uniformly Hölder
continuous with index α. It is convenient also to have a shorthand for the intersection of the
sets L2(Γ) and BC(Γ), so we define

X := L2(Γ) ∩ BC(Γ).
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Since L2(Γ) and BC(Γ) are Banach spaces equipped with their respective norms, so also is X,
equipped with the norm || · ||X defined by ||F ||X := max(||F ||L2(Γ), ||F ||BC(Γ)).

1.1 The rough surface scattering problem

Time-harmonic (e−iωt time dependence) acoustic waves are modelled by the Helmholtz equation

△u + κ2u = 0. (1.6)

In this equation κ = ω/c > 0, where c is the speed of sound, is the wave number. We consider
acoustic wave motion in the domain of propagation D defined by (1.2), throughout assuming
that f ∈ BC1,α(R2), for some α ∈ (0, 1], and that f is a strictly positive function, so that there
exist constants f+ > f− > 0 with f− ≤ f(x) ≤ f+, x ∈ R

2. We denote the boundary of D by
Γ, so that Γ is given by (1.1). We use the notation Γh, for h ∈ R, to denote the plane

Γh := {x = (x1, x2, x3) : x3 = h}.

By Uh we denote the half-space above Γh and by Sh the part of D below Γh, so that

Uh := {x : x3 > h}, Sh := D \ Ūh.

We consider the scattering of a wave ui incident on the surface Γ. We assume that the total
field u := ui + us, which is the sum of the incident field and the scattered field us, satisfies on
Γ the Dirichlet boundary condition

u(x) = 0, x ∈ Γ. (1.7)

We require that the scattered field is bounded in D. We also require that u satisfies the following
limiting absorption principle: denoting u temporarily by u(κ) to indicate its dependence on κ,
we suppose that for all sufficiently small ǫ > 0 a solution u(κ+iǫ) exists which satisfies (1.6) and
(1.7) (with κ replaced by κ + iǫ) and that, for all x ∈ D,

u(κ+iǫ)(x) → u(κ)(x), ǫ → 0. (1.8)

The limiting absorption principle plays the role of a radiation condition, singling out the correct
physical solution.

Let

Φ(x, y) :=
1

4π

eiκ|x−y|

|x − y|
, x, y ∈ R

3, x 6= y, (1.9)

denote the standard fundamental solution of the Helmholtz equation. In order to get kernels of
our boundary integral operators which have faster decay at infinity we will, following [5], replace
Φ(x, y) by an appropriate half-space Green’s function for the Helmholtz equation. Specifically,
we will work with the function

G(x, y) := Φ(x, y) − Φ(x, y′), (1.10)

with y′ = (y1, y2,−y3), which is the Dirichlet Green’s function for the half space {x : x3 > 0}.
The faster decay of G(x, y) compared to Φ(x, y), as |x|, |y| → ∞ with x, y ∈ Γ, is captured in
the bound [5, equation (3.8)] that, for some constant C > 0,

|G(x, y)| ≤
C(1 + x3)(1 + y3)

|x − y|2
, (1.11)
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for all x, y ∈ R
3 with x 6= y and x3, y3 ≥ 0.

Thus we will use layer potentials with Φ(x, y) replaced by G(x, y), so that we define the
single-layer potential operator by

(Sϕ)(x) := 2

∫

Γ
G(x, y)ϕ(y) ds(y), x ∈ Γ, (1.12)

and the double-layer potential operator by

(Kϕ)(x) := 2

∫

Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γ, (1.13)

where the normal ν(y) is directed into D.
We will concentrate on the case when the incident field is that due to a point source located

at some point z ∈ D, i.e. ui = Φ(·, z). Thus the following is the problem we consider:

Problem 1 (Point source rough surface scattering problem). Let ui = Φ(·, z) be the
incident field due to a point source at z ∈ D. Then we seek a scattered field us ∈ C2(D)∩BC(D̄)
such that us is a solution to the Helmholtz equation (1.6) in D, the total field satisfies the sound-
soft boundary condition (1.7), and the limiting absorption principle (1.8) holds.

To convert this scattering problem to a boundary value problem we seek the scattered field
as the sum of the solution in the case when Γ is the flat plane Γ0, namely −Φ(·, z′), where z′ is
the image of z in Γ0, plus some unknown remainder v. Since u vanishes on Γ we have that

v(x) = −{Φ(x, z) − Φ(x, z′)} = −G(x, z) =: g(x), x ∈ Γ. (1.14)

Clearly g ∈ BC(Γ) and it follows from (1.11) that g ∈ L2(Γ), so that g ∈ X = L2(Γ) ∩ BC(Γ).
Further, by the dominated convergence theorem we see that ||gǫ − g||L2(Γ) → 0 as ǫ → 0+,
where gǫ is −G(·, z) with κ replaced by κ + iǫ. Thus us satisfies the above scattering problem if
and only if v satisfies the following Dirichlet problem, with g given by (1.14) and gǫ defined as
−G(·, z) with κ replaced by κ + iǫ.

Problem 2 (BVP). Given g ∈ X and gǫ ∈ X, for ǫ > 0, with ||gǫ − g||L2(Γ) → 0 as ǫ → 0, find
v ∈ C2(D) ∩ BC(D̄) which satisfies the Helmholtz equation (1.6) in D, the Dirichlet boundary
condition v = g on Γ, and the following limiting absorption principle: that, for all sufficiently
small ǫ > 0, there exists vǫ ∈ C2(D)∩BC(D̄) satisfying vǫ = gǫ on Γ, and (1.6), with κ replaced
by κ + iǫ, such that, for all x ∈ D, vǫ(x) → v(x) as ǫ → 0.

In this paper we will, following [5], look for a solution to this boundary value problem as the
combined single- and double-layer potential

v(x) := u2(x) − iη u1(x), x ∈ D, (1.15)

with some parameter η > 0, where for a given function ϕ ∈ X we define the single-layer potential

u1(x) :=

∫

Γ
G(x, y)ϕ(y) ds(y), x ∈ R

3, (1.16)

and the double-layer potential

u2(x) :=

∫

Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ R

3. (1.17)

Seeking the solution in this form it is shown in [5], as a consequence of jump relations for the
layer-potentials, that, for g ∈ X, the boundary condition v = g on Γ is satisfied if and only if
the boundary integral equation

Aϕ = 2g (1.18)

holds on Γ, where A is the operator defined by (1.4).
A main result of [5], crucial to the arguments that we will make in the next section, is:
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Theorem 1. The single- and double-layer potential operators S and K, defined by (1.12) and
(1.13), are bounded operators on L2(Γ) and on X.

The technique of argument used is to show this result is as follows. Where a(x, y) denotes
the kernel of S or K, via Taylor expansions with respect to x3 and y3 we can show that, for
some (small) integer N ,

a(x, y) = ã(x, y) +
N

∑

m=1

bm(x)ℓm(x − y)cm(y),

where bm, cm ∈ BC(R2), ℓm ∈ L2(R2)∩C(R2) and the Fourier transform of ℓm is bounded (this
is established via explicit computations). The remaining part of a(x, y) after the finite sum is
subtracted, namely ã(x, y), is relatively well-behaved, precisely ã(x, y) is continuous for x 6= y
and

|ã(x, y)| ≤ ℓ(x − y),

for some ℓ ∈ L1(R2). These properties guarantee the boundedness of the integral operator with
kernel a on the space L2(Γ).

In [5] the following result is also shown, establishing that invertibility of A on X and existence
of solution to the boundary value problem and scattering problem follow once we show that A
is invertible on L2(Γ).

Theorem 2. If A is invertible as an operator on L2(Γ), then A is invertible as an operator on
X. Moreover, if A is invertible, then the boundary value problem has exactly one solution v,
defined by (1.15)-(1.17) with ϕ ∈ X given by ϕ = 2A−1g. Further, for some constant c > 0,
independent of g,

|v(x)| ≤ c ||g||X , x ∈ D̄.

1.2 Invertibility of A

In this section of the paper we indicate how one establishes that A is invertible as an operator
on L2(Γ), with the explicit bound (1.5) on A−1.

We work with the operators S and K and with their adjoints. The adjoint of K is the
operator K ′ defined by

(K ′ϕ)(x) := 2

∫

Γ

∂G(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ Γ. (1.19)

Arguing in the same way as for K we see that K ′ is a bounded operator on L2(Γ). The adjoint
of A is A′ = I + K ′ − iηS. From standard properties of adjoint operators on Hilbert spaces we
have that A and A′ have the same norm, that A is invertible if and only if A′ is invertible, and
that if they are both invertible then

||A−1||L2(Γ)→L2(Γ) = ||A′−1
||L2(Γ)→L2(Γ). (1.20)

Thus, we can proceed by bounding A′−1. The following is the main step in establishing that
A′−1 is bounded.

Lemma 3. Suppose that, in addition to our assumptions throughout on f , it holds that f ∈
C∞(Γ). Then, for all ϕ ∈ L2(Γ) there holds

||A′ϕ||L2(Γ) ≥ B−1||ϕ||L2(Γ), (1.21)

where B = B(L, κ/η) is defined by (1.5).
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This result is shown as follows. A simplifying observation is that, since A′ is bounded on
L2(Γ), it is enough to show (1.21) holds for all ϕ ∈ Y , where Y is a dense subset of L2(Γ),
the set of those ϕ that are Hölder continuous and compactly supported. Then one studies the
behaviour, for ϕ ∈ Y , of the single-layer potential u defined by

u(x) :=

∫

Γ
G(x, y)ϕ(y)ds(y) =

∫

Γ̃
Φ(x, y)ϕ(y)ds(y) −

∫

Γ̃′

Φ(x, y)ϕ(y)ds(y), x ∈ R
3,

where Γ̃ ⊂ Γ denotes the bounded support of ϕ and Γ̃′ := {y′ : y ∈ Γ̃} denotes the image of Γ̃
in Γ0. From standard properties of the single-layer potential (e.g. [9]) we have that u ∈ C(R3)
and that u satisfies the Helmholtz equation in R

3 \ (Γ̃ ∪ Γ̃′). Further, it follows from the bound
(1.11) that

u(x) = O(|x|−2), ∇u(x) = O(|x|−2), (1.22)

as |x| → ∞ with x ∈ Ū0 and x3 = O(1). Moreover, where M = {x : 0 < x3 < f(x)} denotes the
region between Γ and Γ0, ∇u can be continuously extended from D to D̄ and from M to M̄ ,
with limiting values on Γ given by

∇u±(x) =

∫

Γ̃
∇xG(x, y)ϕ(y)ds(y) ∓

1

2
ϕ(x)ν(x), x ∈ Γ, (1.23)

where ν(x) is the unit normal vector at x, directed into D, and ∇u±(x) := limǫ→0+ ∇u(x±ǫν(x)).

From (1.23), ∇T u, the tangential part of ∇u, is continuous across Γ. On the other hand,
the normal derivative jumps across Γ, with

∂u±

∂ν
(x) =

1

2

[

(K ′ϕ)(x) ∓ ϕ(x)
]

, x ∈ Γ. (1.24)

Since also u = 1
2Sϕ on Γ, defining

g :=
1

2
A′ϕ =

1

2
(I + K ′ − iηS)ϕ,

we see that
∂u−

∂ν
(x) − iηu(x) = g(x), x ∈ Γ. (1.25)

Further, from (1.24) we see that ∂u−

∂ν − ∂u+

∂ν = ϕ on Γ. To complete the proof we have to show
that

||ϕ||L2(Γ) ≤ 2B||g||L2(Γ).

This can be achieved by bounding the normal derivatives of u on Γ via applications of the
divergence theorem in M and D.

A first (and standard) application of the divergence theorem in M gives that, since u = 0
on Γ0,

Im

∫

Γ
ū

∂u−

∂ν
ds = 0. (1.26)

Using (1.25) to replace ∂u−/∂ν in the above equation, and applying Cauchy-Schwarz, we see
that

η||u||2L2(Γ) = −Im

∫

Γ
ūgds ≤ ||u||2L2(Γ)||g||

2
L2(Γ),

so that

||u||L2(Γ) ≤ η−1||g||L2(Γ). (1.27)
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Alternatively, using (1.25) to replace u in (1.26) and using Cauchy-Schwarz, we see that

∣

∣

∣

∣

∣

∣

∣

∣

∂u−

∂ν

∣

∣

∣

∣

∣

∣

∣

∣

L2(Γ)

≤ ||g||L2(Γ). (1.28)

It remains to bound the L2 norm of ∂u+/∂ν in terms of ||g||L2(Γ). We first make a second
application of the divergence theorem in M . We have

0 = 2Re

∫

M
(∆u + κ2u)

∂ū

∂x3
dx =

∫

M
∇ ·

[

e3(κ
2|u|2 − |∇u|2) + 2Re

(

∂ū

∂x3
∇u

)]

dx,

where e3 is the unit vector in the x3−direction. Applying the divergence theorem we get that

∫

Γ0

∣

∣

∣

∣

∂u

∂x3

∣

∣

∣

∣

2

ds =

∫

Γ

{

ν3(κ
2|u|2 − |∇u−|

2) + 2Re

(

∂ū−

∂x3

∂u−

∂ν

)}

ds

=

∫

Γ

{

ν3

(

κ2|u|2 +

∣

∣

∣

∣

∂u−

∂ν

∣

∣

∣

∣

2

− |∇T u|2

)

+ 2Re

(

e3 · ∇T ū
∂u−

∂ν

)

}

ds, (1.29)

where ν3 := e3 · ν is the vertical component of ν. Since

1

L̃
≤ ν3(x) ≤ 1, |e3 · ∇T u(x)| ≤

L

L̃
|∇T u(x)|, x ∈ Γ, (1.30)

where L̃ := (1 + L2)1/2, we deduce that

1

L̃

∫

Γ
|∇T u|2ds ≤

∫

Γ

(

κ2|u|2 +

∣

∣

∣

∣

∂u−

∂ν

∣

∣

∣

∣

2
)

ds +
2L

L̃

∫

Γ
|∇T u|

∣

∣

∣

∣

∂u−

∂ν

∣

∣

∣

∣

ds. (1.31)

Applying Cauchy-Schwartz we see that

1

L̃

∫

Γ
|∇T u|2ds ≤

∫

Γ

(

κ2|u|2 +

∣

∣

∣

∣

∂u−

∂ν

∣

∣

∣

∣

2
)

ds +
1

2L̃

∫

Γ
|∇T u|2 ds +

2L2

L̃

∫

Γ

∣

∣

∣

∣

∂u−

∂ν

∣

∣

∣

∣

2

ds. (1.32)

Using (1.27) and (1.28) it follows that

||∇T u||L2(Γ) ≤

(

2L̃ +
2L̃κ2

η2
+ 4L2

)1/2

||g||L2(Γ). (1.33)

To complete our argument we apply the divergence theorem in the region SH = D \UH , for
some H > f+, in order to bound ∂u+/∂ν in terms of ||∇T u||L2(Γ). Arguing exactly as we did
to obtain (1.29) we find that

∫

ΓH

{

κ2|u|2 +

∣

∣

∣

∣

∂u

∂x3

∣

∣

∣

∣

2

− |∇xu|2

}

ds =

∫

Γ

{

ν3

(

κ2|u|2 +

∣

∣

∣

∣

∂u+

∂ν

∣

∣

∣

∣

2

− |∇T u|2

)

+2Re

(

e3 · ∇T ū
∂u+

∂ν

)}

ds, (1.34)

where ∇x denotes the gradient operator on ΓH . Lemma 2.2 in [7] implies that

∫

ΓH

{

κ2|u|2 +

∣

∣

∣

∣

∂u

∂x3

∣

∣

∣

∣

2

− |∇xu|2

}

ds ≤ 2κ Im

∫

ΓH

ū
∂u

∂x3
ds, (1.35)



and a further application of the divergence theorem in SH gives that

Im

∫

ΓH

ū
∂u

∂x3
ds = Im

∫

Γ
ū

∂u+

∂ν
ds. (1.36)

Combining (1.34), (1.35), and (1.36), and noting (1.30), we see that

1

L̃

∫

Γ

∣

∣

∣

∣

∂u+

∂ν

∣

∣

∣

∣

2

ds ≤

∫

Γ
ν3

∣

∣

∣

∣

∂u+

∂ν

∣

∣

∣

∣

2

ds

≤

∫

Γ
|∇T u|2ds +

2L

L̃

∫

Γ
|∇T u|

∣

∣

∣

∣

∂u+

∂ν

∣

∣

∣

∣

ds + 2κ

∫

Γ
|u|

∣

∣

∣

∣

∂u+

∂ν

∣

∣

∣

∣

ds.

Applying Cauchy-Schwartz it follows that

1

3L̃

∫

Γ

∣

∣

∣

∣

∂u+

∂ν

∣

∣

∣

∣

2

ds ≤

(

1 +
3L2

L̃

)
∫

Γ
|∇T u|2ds + 3κ2L̃

∫

Γ
|u|2 ds. (1.37)

Bounding the right hand side using (1.27) and (1.33), we find that

∣

∣

∣

∣

∣

∣

∣

∣

∂u+

∂ν

∣

∣

∣

∣

∣

∣

∣

∣

L2(Γ)

≤

(

3κ2L̃

η2
[5L̃ + 6L2] + 6(L̃ + 3L2)2

)1/2

||g||L2(Γ). (1.38)

Putting this together with (1.28), we see that

||ϕ||L2(Γ) ≤

∣

∣

∣

∣

∣

∣

∣

∣

∂u+

∂ν

∣

∣

∣

∣

∣

∣

∣

∣

L2(Γ)

+

∣

∣

∣

∣

∣

∣

∣

∣

∂u−

∂ν

∣

∣

∣

∣

∣

∣

∣

∣

L2(Γ)

≤ 2B||g||L2(Γ), (1.39)

where B is defined by (1.5), concluding the proof.
Lemma 3 is the major step in showing that A′ is invertible, that is, of establishing the

following theorem. For further details see [6].

Theorem 4. A′ and A are invertible on L2(Γ), with

||A−1||L2(Γ)→L2(Γ) = ||A′−1
||L2(Γ)→L2(Γ) ≤ B, (1.40)

where B = B(L, κ/η) is defined by (1.5).
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