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We consider the problem of scattering of time-harmonic acoustic waves by an
unbounded sound-soft rough surface. Recently, a Brakhage—Werner type integral
equation formulation of this problem has been proposed, based on an ansatz as a
combined single- and double-layer potential, but replacing the usual fundamental
solution of the Helmholtz equation with an appropriate half-space Green’s function.
Moreover, it has been shown in the three-dimensional case that this integral equation
is uniquely solvable in the space L?(I') when the scattering surface I' does not differ
too much from a plane. In this paper, we show that this integral equation is uniquely
solvable with no restriction on the surface elevation or slope. Moreover, we construct
explicit bounds on the inverse of the associated boundary integral operator, as a
function of the wave number, the parameter coupling the single- and double-layer
potentials, and the maximum surface slope. These bounds show that the norm of the
inverse operator is bounded uniformly in the wave number, k, for x>0, if the
coupling parameter n is chosen proportional to the wave number. In the case when I’
is a plane, we show that the choice n=«/2 is nearly optimal in terms of minimizing
the condition number.

Keywords: boundary integral equation method; rough surface scattering;
Helmholtz equation; condition number

1. Introduction

This paper is concerned with boundary integral equation methods for scattering
by unbounded surfaces. More precisely, we are concerned with what are termed
rough surface scattering problems in the engineering literature. We use the
phrase rough surface, as is the practice in this literature, to denote a surface
which is a (usually non-local) perturbation of an infinite plane surface such that
the whole surface lies within a finite distance of the original plane. In particular,
we are concerned with what is the usual case in the engineering literature where
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Figure 1. Geometrical setting of the scattering problem.

the scattering surface I' is the graph of some bounded continuous function
f:R*> R, ie. (figure 1)

I={z=(1,2,13) ER’ : 13 = f(m,75)}. (1.1)

We will focus on a typical problem of this type, namely acoustic scattering by a
rough, sound-soft surface, the acoustic medium of propagation occupying the
perturbed half-space,

D={z = (21,22, 23) : 33> f(z1,22)}, (1.2)

above the scattering surface I'. We will suppose throughout that fis a moderately
smooth function, i.e. is continuously differentiable with Holder continuous first
derivative (I" is Lyapunov). Thus, the difficulties in understanding the boundary
integral equation formulation will be associated with the unboundedness of I’
rather than its lack of smoothness.

Rough surface scattering problems arise frequently in applications; for
example, modelling acoustic and electromagnetic wave propagation over outdoor
ground and sea surfaces or, at a very different scale, optical scattering from the
surface of materials in nanotechnology. The mathematical and computational
modelling of these problems has a large literature (see, e.g. the reviews and
monographs by Ogilvy (1991), Voronovich (1998), Saillard & Sentenac (2001),
Warnick & Chew (2001), DeSanto (2002) and Elfouhaily & Guerin (2004)). The
simulation of these scattering problems, requiring discretizations of sections of
three-dimensional surfaces of diameter large compared to the wavelength, is a
substantial scientific computing problem for which boundary integral equation
methods are very popular, with many effective, specialized numerical algorithms
developed (Saillard & Sentenac 2001; Warnick & Chew 2001; Xia et al. 2003).

Despite this interest in the application of the BIE method, the associated
mathematical and numerical analysis to support these practical computations is
largely absent, in the more important three-dimensional case at least. For
example, to date there is no integral equation formulation that is known to be
uniquely solvable for a general three-dimensional rough surface scattering
problem. This lack of a theoretical basis for the BIE method will be addressed in
this paper.

However, for the two-dimensional rough surface scattering problem much
progress has been made in the last 10 years in terms of deriving well-posed
boundary integral equations for a variety of acoustic, electromagnetic and elastic
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wave problems (e.g. Chandler-Wilde & Zhang 1998; Chandler-Wilde et al. 1999;
Arens 2002; Zhang & Chandler-Wilde 2003). An important point is that, for
general rough surface scattering problems, the usual integral equation
formulations for scattering by bounded surfaces, while they have been
successfully used for computations, are unattractive from a theoretical point of
view since the standard boundary integral operators (e.g. the standard single-
and double-layer potential operators) are not bounded operators on any of the
usual function spaces when the scattering surface is unbounded. This has
important practical consequences, and in particular can be expected to lead to
large condition numbers when the standard integral equations are discretized on
large sections of rough surfaces.

In the two-dimensional case, alternative integral equations, with bounded
integral operators, have been obtained by replacing the standard fundamental
solution by the Dirichlet or impedance Green’s function for a half-plane that
contains the domain D of propagation (see, e.g. Chandler-Wilde et al. 1999; Arens
2002; Zhang & Chandler-Wilde 2003). This modification leads to kernels of
boundary integral operators that are weakly singular in their asymptotic behaviour
at infinity so that the integral operators are bounded on LP(I') for 1 < p < o and on
BC(T'), the space of bounded continuous functions on I'. In the case of a two-
dimensional sound-soft rough surface, Zhang & Chandler-Wilde (2003) followed
the approach that was proposed for the sound-soft bounded obstacle, independently
by Brakhage & Werner (1965), Leis (1965) and Panich (1965). This approach, to
seek the solution to the exterior Dirichlet problem as a linear combination of double
and single-layer potentials, will be termed, for brevity, as is common in the
literature, the Brakhage—Werner method. It is used in Zhang & Chandler-Wilde
(2003), with the twist that the standard fundamental solution is replaced by the
Dirichlet Green’s function for a half-plane.

The analogous modification has been recently employed by us in the three-
dimensional case in Chandler-Wilde et al. (2006). Following Zhang &
Chandler-Wilde (2003), we derive a Brakhage-Werner-type integral equation,
replacing the standard fundamental solution with the Dirichlet Green’s function
for a half-space that contains D. The complication in the three-dimensional case
is that this modification, while it improves the behaviour of the kernels of the
integral operators significantly in terms of their behaviour at infinity, as
discussed in Chandler-Wilde et al. (2006), leads to kernels of the integral
operators that are strongly singular rather than weakly singular as in the two-
dimensional case, even when the boundary is smooth. As a consequence, the
boundary integral operators are no longer well-defined as operators on BC(I') or
L*(I'). In Chandler-Wilde et al. (2006) we are able, however, to show the
boundedness of the operators on L*(I') by expressing each integral operator as a
sum of products of convolution and multiplication operators plus a well-behaved
remainder, and by showing, through explicit calculations, that the Fourier
transform of each convolution kernel is bounded and that each multiplication
operator is a multiplication by a bounded function.

To establish existence of solution and well-posedness in the two-dimensional
case generalizations of the Riesz theory of compact operators have been
developed (see Arens et al. (2003) and references therein) but, as discussed in
Chandler-Wilde et al. (2006), these methods do not appear applicable in the
three-dimensional case. In the absence of these tools, we were able in
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Chandler-Wilde et al. (2006) to prove only a partial result, establishing existence
of solution to the integral equation and scattering problem in the case when I is
sufficiently close to a flat plane. Our tool was to establish existence of solution to
the BIE in the special case when I' is a plane and the integral equation of
convolution type, via computation of the Fourier transform of the kernel, and
then employ operator perturbation arguments. We mention that existence of
solution to the same scattering problem (though formulated rather differently in
terms of the function space setting) has recently been established for the case I'
given by (1.1) by variational methods in Chandler-Wilde & Monk (2005), with
only the weak assumption that fis bounded.

The results contained in this paper are as follows. We suppose that the rough
surface is given by (1.1), with f continuously differentiable with bounded and
Hoélder continuous first derivative, and restrict attention to the case when the
wave number « is real. We begin by recalling the formulation of the scattering
problem in Chandler-Wilde et al. (2006), and the Brakhage—Werner type integral
equation formulation for solving this scattering problem proposed in Chandler-
Wilde et al. (2006). This integral equation, in operator form, is

(I + K—inS)e = 2g, (1.3)

where [ is the identity operator, S and K are single- and double-layer potential
operators, defined by (2.8) and (2.9) below, ¢ is the Dirichlet data for the
scattered field on I', and >0 is the coupling parameter.

Our first main result is to show that

A=1+ K —ins, (1.4)

is always invertible as an operator on L*(T'), generalizing the result in
Chandler-Wilde et al. (2006) for the case when I' is almost flat. Moreover, we
show the explicit bound that

A |2y <2 + 2L + 412 + 2 (2 + 5L + 3173, (1.5)
i
where
L= sup LETTON_ o wsa), (16)
z,y ER? z#y |m y| zER?

is the Lipschitz constant of f (the maximum surface slope). The tools we use to
show invertibility and obtain this explicit bound are standard jump relations for
layer-potentials (e.g. Colton & Kress 1983) combined with carefully chosen
integrations by parts (applications of the divergence theorem) in subsets of D and
the region below D. Our techniques are reminiscent of (and inspired by) the
somewhat similar arguments used to prove invertibility for second kind boundary
integral equations for potential problems in Lipschitz domains (e.g. Verchota
1984; Meyer & Coifman 2000), and of arguments used to obtain a priori bounds for
solutions to variational formulations of interior problems (Melenk 1995;
Cummings & Feng 2006) and rough surface scattering problems (Elschner &
Yamamoto 2002; Chandler-Wilde & Monk 2005). In particular, a similarly explicit
lower bound for the inf-sup constant of a variational formulation of this rough
surface scattering problem is shown in Chandler-Wilde & Monk (2005).
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The bound (1.5) is attractive in its explicitness. Indeed, we know of no other
rigorous bound on the norm of the inverse of a boundary integral operator for a
wave problem which makes explicit the dependence on the wave number and/or
the geometry, with the exception of bounds for a very special acoustic scattering
problem (scattering by a flat inhomogeneous impedance boundary) in Arens
et al. (2003) and Chandler-Wilde et al. (2004). One consequence of (1.5) is that if
7 is chosen proportional to the wave number «, as recommended in the bounded
obstacle case in Kress & Spassov (1983), Kress (1985) and Giebermann (1997),
then the inverse operator is bounded by an explicit function of the Lipschitz
constant of f and, in particular, is bounded independently of the wave number,
for k>0.

In §4, we investigate in more detail the optimal choice of the coupling
parameter n for the case when I' is flat (this is analogous to studying the special
case of a spherical scatterer in bounded obstacle scattering, as done in Kress &
Spassov 1983; Kress 1985; Amini 1990; Giebermann 1997; Buffa & Sauter in press).
We show for this special case that the choice n = k/2 is close to optimal in terms of
minimizing the L? condition number

cond A = || All o2y 1A | 20y 22y

Indeed, in a sense we make precise, the choice n = k/2 is asymptotically optimal in
the limit k — o, leading to a minimal condition number cond A, which is
asymptotically proportional to k. We note that the same choice n=«/2 is
recommended as almost minimizing the condition number for the Brakhage—
Werner formulation for scattering by a sound-soft sphere in Kress & Spassov
(1983), on the basis of numerical computations at low wave numbers of explicit
expressions for the singular values of the operator, and is recommended in
Giebermann (1997) based on a study of high- and low-frequency asymptotics
of eigenvalues.

We remark that, thanks in large part to the simpler geometry, our results for
the case when I' is flat are more rigorous and complete than the corresponding
results for spherical scatterers. For example, our results imply the bound that

_ K
|A 1HL2(r)—>L2(r)§maX<17%>, (1.7)

with equality holding in the case n> k/2 and in the limit k — o. This is precisely
the bound on the inverse of an analogous integral operator in the case when I' is a
sphere stated by Giebermann (1997), but the bound in Giebermann (1997) is a
conjecture, supported by theoretical investigations, example calculations, and
asymptotics. Our bound (1.7) is a theorem.

We note that a rigorous theory for BIE methods for three-dimensional rough
surface scattering has been developed previously for two special cases. The first is
the case of scattering by a locally perturbed plane, where the unbounded surface
coincides with a plane in the exterior of some ball. This case can be reduced to a
boundary integral equation on a finite domain, related to the local perturbation;
we refer the reader to Willers (1987), Kress & Tran (2000) and Chandler-Wilde &
Peplow (2005) and references therein. The second is the case when the surface is
a diffraction grating (the function fin (1.1) is bi-periodic) and the incident field is
a plane wave. In this case, the boundary integral equation can be reduced to one
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on a finite part of the surface that is a single period; see Nédélec & Starling
(1991) and Dobson & Friedman (1992). In both these cases, reducible to integral
equations on finite domains, well-posedness is obtained by compactness
arguments, which do not apply to the general rough surface scattering problem
and, moreover, do not lead to explicit bounds on the inverses of the boundary
integral operators.

We should perhaps emphasize that, since our results assume boundary data in
the space L*(I'), they do not include the interesting case of plane wave incidence,
which case is included in the theory that has been developed for the
two-dimensional problem (Chandler-Wilde et al. 1999; Zhang & Chandler-Wilde
2003). For a partial theoretical justification for BIE methods for three-
dimensional rough surface scattering with plane wave incidence, namely a
justification, with some provisos, of Green’s representation formula, see
DeSanto & Martin (1998).

Finally, we remark that a brief summary of some of the results of this paper
and those of Chandler-Wilde et al. (2006) is published in the proceedings of the
fifth UK Boundary Integral Methods Conference (Chandler-Wilde et al. 2005).

Notation. Throughout the paper z and y will denote points in R® with
components = (z;, 5, 73) and y= (4, %, y3). The image of y €R? in the plane
I'y={z€R?: 2,=0} will be denoted by " := (v, 1, —3). By @, we will denote
(71, 15) €R?, so that = (x, z3). Similarly, y denotes (1, 1). The standard scalar
product in R? is denoted by z-y and |-| is the Euclidean norm in R"”. BC(T) will
denote the set of bounded continuous real- or complex-valued functions on I', a
Banach space with the norm ||| g¢(r) defined by [|F| pe(ry = sup,er|F(z)|. For
0<a<1, let BC*(R?) denote the set of those bounded continuously
differentiable functions F : R*> — R that have the property that VF is bounded
and uniformly Hoélder continuous with index «, so that

|1 F|lpcramey = sup |F(x)| + sup [VF(z)| +  sup VF(2) =V E(y)l < oo,

o
zER? rER? z,y €R% x#y ‘.’B—y‘

BC™*(R?) is a Banach space under the norm ||| BGe(R)- It is convenient also to
have a shorthand for the intersection of the sets L*(I') and BC(I'), so we define

X=L*T)NBC().

Since L*(I') and BC(T') are Banach spaces equipped with their respective norms,
so also is X, equipped with the norm ||-||x defined by

1]y = max([[Fl| p2r), [1F | seer))-

2. The rough surface scattering problem
Time-harmonic (e’ time dependence) acoustic waves are modelled by the
Helmholtz equation
Au + k*u = 0. (2.1)

In this equation, k = w/c> 0, where c is the speed of sound, is the wave number.
We consider acoustic wave motion in the domain of propagation D defined by
(1.2), throughout assuming that f € BC"*(R?), for some « € (0, 1], and that fis a
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strictly positive function, so that there exist constants f*> f~> 0 with
[F<f@)<f", zeR.

We denote the boundary of D by I', so that I' is given by (1.1). Whenever we
wish to denote explicitly the dependence of the domain on the boundary function
f, we will write D/ for D and I for T, so that

= {z = (21,29, 13) 1 13 = f()}.
We use the notation I';, for h €R, to denote the plane
I'y={z = (2,29, 33) 1 ;3 = h}.

By U, we denote the half-space above I';, and by S}, the part of D below I';, so
that

Uy={x:23>h}, S,:=D\U,.

We will consider the scattering of an incident acoustic wave u! by the surface
I'. For the total field u:=u'+ «’, which is the sum of the incident field and the
scattered field v°, we assume on I' the Dirichlet boundary condition

u(z) =0, z€T. (2.2)
We require that the scattered field is bounded in D, i.e.
|v’(z)|< ¢, x€D, (2.3)

for some constant ¢>0. We also require that u satisfies the following limiting
absorption principle: denoting u temporarily by 4" to indicate its dependence on
k, we suppose that for all sufficiently small >0 a solution w9 exists which
satisfies (2.1)—(2.3) (with « replaced by k + ie€) and that, for all z € D,

uM9 () — ¥ (), €e—0. (2.4)

The limiting absorption principle plays the role of a radiation condition, singling
out the correct physical solution.
Let

1 eilel

P(z,y): z,y R’z #y, (2.5)

A |z —y|’
denote the standard fundamental solution of the Helmholtz equation. In order to
get kernels of our boundary integral operators which have faster decay at infinity
we will, following Chandler-Wilde et al. (2006), replace @(z, y) by an appropriate
half-space Green’s function for the Helmholtz equation. Specifically, we will work
with the function

Gz, y) = D(z,y) = D(z,y), (2.6)

with v = (y1, y2, —y3), which is the Dirichlet Green’s function for the half space
{z : 23> 0}. The faster decay of G(z,y) compared to ®(z,y), as |z|, |y| — o with
z,y €T, is captured in the bound (3.8) in Chandler-Wilde et al. (2006), that, for
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some constant C>0,
C(l+ )1 +y3)
|z =y’

|G(z,y)| < ; (2.7)
for all z,y €R? with z#y and 3, y3 > 0.

Thus, we will use layer potentials with @(z, y) replaced by G(z,y), so that we
define the single-layer potential operator by

(S0)(a)=2| Gla)oisty), weT. (2:8)
and the double-layer potential operator by
(ko)) =2] "0 D p(asty). aer, (29)

where the normal v(y) is directed into D. Whenever we wish to denote explicitly
the dependence of S and K on the boundary function f, we will write S; and K for
S and K, respectively.

Returning to the scattering problem, we wish to develop an analysis that is
applicable whenever the incident wave is due to sources of the acoustic field
located in some compact set M C D. Since waves with sources in a bounded set
M CR? can be represented as superpositions of point sources located in the same
set, we will concentrate on the case when the incident field is that due to a point
source located at some point z € D, i.e. u'= @(-, z). Thus, as in Chandler-Wilde
et al. (2006), the following is the specific problem that we will consider in
this paper:

Problem 1 (Point source rough surface scattering problem). Let u' = &(-, 2)
be the incident field due to a point source at z € D. Then we seek a scattered field
u* € C*(D) N C(D) such that u* is a solution to the Helmholtz equation (2.1) in D,
the total field satisfies the sound-soft boundary condition (2.2), and the bound
(2.3) and the limiting absorption principle (2.4) hold.

We will convert this scattering problem to a boundary value problem (BVP).
To do this, we will seek the scattered field as the sum of a mirrored point source
@'(-,2):==—&(-,7'), where 2’ is the image of z in the flat plane I'j, plus some
unknown remainder v, i.e. v = v+ @'(-, 2). Note that @'(-, 2) is a solution to the
scattering problem in the special case that I'=I'j. Using the boundary condition
w~+ @(+,2)=0 on I'= 93D we obtain the boundary condition on v that

v(z) =—{®(z,2) —®(z,2)} =—G(x,2) = g(x), z€<T. (2.10)
Clearly, g€ BC(I') and it follows from (2.7) that g€ L*(I'), so that
g€ X=L*(I')N BC(I'). Further, by the dominated convergence theorem we
see that ||ge — gl 2(r) = 0 as € > 07, where g, is —G(-, z) with « replaced by k + ie.
Thus, u® satisfies the above scattering problem if and only if v satisfies the

following Dirichlet problem, with g given by (2.10) and g, defined as —G(-, 2)
with k replaced by « + ie.

Problem 2 (BVP). Given g € X and g. € X, for ¢>0, with ||g.— gl 2(r) = 0 as
e— 0, find ve C*(D)N C(D) which satisfies the Helmholtz equation (2.1) in D,
the Dirichlet boundary condition v= g on I', the bound (2.3), and the following

Proc. R. Soc. A



Rough surface scattering 9

limiting absorption principle: that, for all sufficiently small >0, there exists v, €
C*(D)N C(D) satisfying ve=g. on T, (2.1) and (2.3), with k replaced by k + i,
such that, for all x € D, v.(z) — v(x) as e— 0.

In this paper we will, following Chandler-Wilde et al. (2006), look for a
solution to this BVP as the combined single- and double-layer potential

v(z) =uy(z) —inu(z), z€ D, (2.11)

with some parameter >0, where for a given function ¢ € X we define the single-
layer potential

iy (2) = LG("”’ De(y)ds(y), zER, (2.12)

and the double-layer potential

_ [ 9G(z,y)
(7) ._Jr av(y)

Seeking the solution in this form it is shown in Chandler-Wilde et al. (2006), as a
consequence of jump relations for the layer-potentials, that, for g€ X, the
boundary condition v=g¢ on I is satisfied if and only if the boundary integral
equation

o(y)ds(y), =R’ (2.13)

Ag = 2g, (2.14)

holds on I', where A is the operator defined by (1.4).
A main result of Chandler-Wilde et al. (2006), crucial to the arguments that
we will make in §3, is:

Theorem 2.1. The single- and double-layer potential operators S and K, defined
by (2.8) and (2.9), are bounded operators on L*(T') and on X.

In Chandler-Wilde et al. (2006), we also showed the following result,
establishing that invertibility of A on X and existence of solution to the BVP
and scattering problem follow once we show that A is invertible on L*(T).

Theorem 2.2. If A is invertible as an operator on L*(T), then A is invertible as
an operator on X. Moreover, if A is invertible on X, then the BVP has exactly one
solution v, defined by (2.11)-(2.13) with ¢ € X given by ¢ =2A'g. Further, for
some constant ¢>0, independent of g,

v(@)| < cllgllx, z€D.

We showed in Chandler-Wilde et al. (2006) that A is indeed invertible as an
operator on L*(T') in the case when I is almost flat. In particular, we established
the following special case:

Theorem 2.3. In the case I'=1T, with h>0, it holds that A is invertible on
L*(T') and that the BVP is uniquely solvable.

Starting from the above results we will show in §3 that A is invertible on
L*(T'), without restriction on the surface elevation or slope of I', establishing the
explicit bound (1.5). We will establish this result first of all for the case in which
f € C*(R?). We will extend the result to the more general case, in which we only
assume that fe& BC’L‘"(IRQ), by continuity arguments, using the results of
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continuous dependence of A on I established in Chandler-Wilde et al. (2006).
The continuous dependence result we use is stated precisely in theorem 2.4. In
the statement of this theorem, we use the notation T} for either Sor K defined on
a surface IV, With the help of the isomorphism

I (I = (R, (Lo)(y) = o((y.f(), yER, (2.15)
we associate Ty with the element szff TfIf_l of the set of bounded linear
operators on LQ([R{Q).

Theorem 2.4 (Chandler-Wilde et al. 2006). The single- and double-layer

potential operators depend continuously on the boundary I' of the unbounded
domain D in the sense that

1T = Tyl 22y 12(2) = O, (2.16)
as g— f in BCY*(R?).

3. Invertibility of A

In this section, our main result is to establish that A is invertible as an operator
on L*(T'), with the explicit bound (1.5) on A~'. Combining this result with
theorem 2.2 we also establish the following important corollary.

Theorem 3.1. A is invertible as an operator on L*(TI') and as an operator on X.
Moreover, the BVP has exactly one solution v, defined by (2.11)-(2.13) with
¢ € X given by o =2A"1g. Further, for some constant ¢>0, independent of g,

(@) < cllgllx, z€D.

To establish these results our tools are the theorems from Chandler-Wilde
et al. (2006) that are stated at the end of §2, certain results from Chandler-Wilde
& Monk (2005), and standard properties of layer potentials. We will work with
the operators S and K and with their adjoints. We introduce the operator K’
defined by

<K@xm=ﬂjaau””¢wmxw, rer (3.1)

r ov(z)
Our first result is as follows:
Lemma 3.2. K’ is a bounded operator on L*(T).

Proof. The kernel of K’ is just the transpose of that of K. Examining the proof
of the boundedness of K in Chandler-Wilde et al. (2006), we see that it applies
word for word to establish that K’ is bounded. [}

Of course K’ is just the adjoint of K with respect to the bilinear form (-, ) on
L*(I') X L*(I') defined by

w»o=mewwmw» oy € IA(I).

With respect to this bilinear form S and I are both self-adjoint so that the
adjoint of A is

A'=T+ K —ins.
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From standard properties of adjoint operators on Hilbert spaces, we have that A
and A’ have the same norm, that 4 is invertible if and only if 4 is invertible, and
that if they are both invertible then

IA™ N 2= 2y = A N 200y 220 - (3.2)

Thus, we can proceed in the first instance by bounding A’. Our first, key step in
this direction is to prove the following lower bound in the case when I' is smooth.

Lemma 3.3. Suppose that, in addition to our assumptions throughout on f, it

holds that f € C*(R?). Then, for all ¢ € L*(I') there holds

140l 2y = B 0l 221 (3.3)
where
1 3L -, AN
B = B(Lx/n)= 1+< " [5L+6L]+6(L+3L)> . (3.4)

and L= (1+ L*)"/2

Proof. Let Y C L*(I') denote the set of those ¢ € C(I') that are Holder
continuous and compactly supported. Since Y is dense in L*(I') and A’ is
bounded on L*(T) it is sufficient to show that (3.3) holds for all p € Y.

So suppose ¢ € Y, let I' C I' denote the (bounded) support of ¢, and define the
single-layer potential u by

ua)= | G ve)dsty), a<®,

and note that

ua) = | 6. owdsty) = | o vewist) - | o vewisty)

r
where I == {y : y €T} denotes the image of I in I'y. From standard properties of
the single-layer potential (e.g. Colton & Kress 1983), we have that v € C(R*) N

CY(R*\(I'UT")) and that u satisfies the Helmholtz equation in R*\(I'UT").
Further, it follows from the bound (2.7), which allows us to estimate |u|, and by
interior elliptic regularity estimates for solutions of the Helmholtz equation (e.g.
Lemma 2.7 in Chandler-Wilde & Zhang 1998), which allow us then to estimate
|Vul, that

u(z) = O(ja[®),  Vu(z) = O(|2[), (3.5)

as |z| — » with € Uj and 23 = O(1). Moreover, where M = {z: 0 < 23 < f(z)}
denotes the region between I' and I'y, we have (Theorem 2.17 in Colton & Kress
(1983)) that Vu can be continuously extended from D to D and from M to M,
with limiting values on I' given by

Vus(o) = | V.6 o) Fyplapo), sl 30)

where () is the unit normal vector at z, directed into D, and
Vuy(z):= lhgfr Vu(zt+ev(z)), z€T.

Proc. R. Soc. A



12 S. N. Chandler-Wilde and others

We note from (3.6) that the normal derivative jumps across I', with
6u+

- (5)i=0() Vus(2) = S [(K'9) () Fo(w), weT. (37)

On the other hand, the tangential part of Vu is continuous across I'. We
denote this tangential part by Vru, so that
ad
Vou(z) = Vuy (z) —v(g;)%(a;), ser.
- v

Noting that

and defining

1 1
g=54'0 =5 (I + K ~inS)e,
we see that
Ju_
B () —inu(s) = o(a), weT (3.8)
Further, from (3.7) we see that
ou_ ouy
= (2)——X(2) = er. .
U ) =T (1) = p(a), weT (39

Note that to complete the proof we have to show that
Hfl’HH(r) < 2B||9HL2(F)-

We will achieve this by bounding the normal derivatives of u on I' via
applications of the divergence theorem in M and D.

We start with a simple and standard application of the divergence theorem in M.
This, and our other application of the divergence theorem in M, are valid since
ue€ CY(M)N C*(M\T') and decays rapidly at infinity, as quantified in (3.5), so that
u is also in the standard Sobolev space H'(M). Precisely, these properties of u are
enough to justify our applications of the divergence theorem in M by first applying
the divergence theorem in the region {z= (x, 13) : |z| <C,0< 13 < f(x) —¢€},
for some C>0 and sufficiently small ¢>0, and then letting first ¢e— 0 and
then C'— oo.

Proceeding with our argument, since u satisfies the Helmholtz equation in M,
we have that

0= Im[ (Au+ Pu)adr = Im[ V- (uVu)dz.
M M

Applying the divergence theorem, since u=0 on Iy, we have that

ImJ ad%=ds = 0. (3.10)
a

14

Using (3.8) to replace du_/dv in the above equation, and applying Cauchy—Schwarz,
we see that

nllullfz ) = _Imjrug ds <|lull 219l 221y

Proc. R. Soc. A
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so that

lall 2y < 77 gl 2y (3.11)
Alternatively, from (3.10) we have that

ReJ inﬂ%ds =0,
r Jdv

and, using (3.8) and Cauchy—Schwarz, we see that
Ju_
=5, ) < Nlgll 2y (3.12)

It remains to bound the L? norm of du, /dv in terms of ||g|| 2(r)- To achieve this
goal, we first make a second application of the divergence theorem in M. We have

(Au+K2u)ﬂdx=J V- | es(K*|u* —|Vul?) + 2 Re a—uVu dz,
01'3 M 61'3

O=2ReJ
M

where e is the unit vector in the a3-direction. Applying the divergence theorem, we

obtain that
di_ du_
ds _L{yg(ﬂu\? - |vu,|2) +2Re (67;3 5:) }ds

J du |?
FU

afL'g

du_ ou_
=J K |ul® + v —|Vrul* ) +2Re 63'VT?_LL ds,
r K3 v
(3.13)
where v3 := e5-v is the vertical component of v. Since
1 L
ESV?)(.'I))Sl, \eg-VTu(x)\Sf\VTu(x)\, z€T, (3.14)
we deduce that
1 a 2L ou_
TJ IV pul? dsSJ < lu> + | =— - >ds+ = J |VTu| = (3.15)
LJr r K3
Applying Cauchy—Schwarz and noting that
bZ
2ab<ed® + —, (3.16)
€
for a, b> 0, e>0, we see that
1 ) [ ( du_ 2) 1 J 217 J du_
= | |Vyul'ds< K + ds +—| |Vpul’ds + = | |—| ds.
=] 1ralas< | (€l + |50 Jas+ oz | wrufas+ 2 | 15
(3.17)
Using (3.11) and (3.12), we deduce that
1/2
19l < ) Nl (3.18)
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14 S. N. Chandler-Wilde and others

To complete our argument, we carry out a similar integration by parts in the region
Sy = D\ Uy, for some H> f, in order to bound du,/dv in terms of ||V pul sz ).
Arguing exactly as we did to obtain (3.13), we find that

| {K| P |—|Vu|}
I'y
(9u+ 2 7(9u+
= Clul? + ] —==| —|Vrul*) +2Re 63'VTUW ds, (3.19)
r

where V= (d/dx;,0/dx,) denotes the gradient operator on I'y.

To bound the left-hand side of equation (3.19), we first construct an explicit
representation for u in a half-space above I' containing I'y. Define the Fourier
transform operator on L*(R?) by

(FO)(k) = %J 2e*”“'yf(y)dy, ke R (3.20)

Pick h such that f, <h<H, let ¥, :=u|, denote the restriction of u to I'; and,
identifying I';, with R?, let 1//h =Fy,, denote the Fourier transform of u on I b
well-defined as an element of L*(R?) since u € L*(T';). Note further that v, €
C*(T'},) and that, by the same interior elliptic estimates we used to deduce the
bound (3.5) on Vu, it follows that the second-order partial derivatives of u decay
at least as rapidly as |z| 2 on I',. Thus y, € H*(I'}), so that, by Cauchy-Schwarz, we
see that ¥, € L' (R?) with

{jwr@,xkndk}Q < ﬁjwr%(kﬂ%l + k)% dk = Bl e,
where
8= JR2(1 + k%)% dk.
Now define

v(z) :=%J exp(il(z; —h) VK2 — K + - K]) ¥ (k (3.21)
R

for z=(z, 1) € U,, where Vi —k>=iVk?—«? for |k|>«. We obtain our

representation for u by proving that u coincides with vin Uy,.

To see this, we note first that u restricted to U, satisfies Problem 2 in the case
that we set I'=1I";,, g= 1}, and define g, to be the restriction of u to I';, when wu is
defined by (2.11) but with k replaced by k + ie in the definition of the Dirichlet
Green’s function G. (We note that g. € L*(I';) and converges in norm to g as
€ — 0, by the dominated convergence theorem, since the bound (2.7) holds with
the same constant C' when « is replaced by -+ ie; see Chandler-Wilde et al.
(2006).) But it is straightforward to show that v satisfies the same BVP; in
particular, since ¥, € L'(R?), v € C(U) follows by the dominated convergence
theorem, and it holds that v= 4, on I'; since the right-hand side of (3.21) is just
the inverse Fourier transform of ¥, when 23 = h. Thus, by theorem 2.3, it follows
that u(z) = v(z), z € U,,.
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Having shown this explicit formula for w in U,, a plane-wave spectrum
representation for u, we can apply lemma 2.2 in Chandler-Wilde & Monk (2005)
to deduce that

9
J { Ju? +\ | —|v, uy} S<2KImJ G ds. (3.22)
I'y I'y dz3

To proceed further we make a further application of the divergence theorem in
Sy to obtain that

(9 _ _au_;,_
ImJ ua—xgds ImL qus, (3.23)

by arguing exactly as we did to get (3.10). Combining (3.19), (3.22) and (3.23),
and noting (3.14), we see that

1 2
TJ dsSJ 1/3a
L)r I

Applying Cauchy-Schwarz and then applying (3.16) twice, first with e=3,
a= L||Vyul[ 2y and b= [[dwy./0¥|| ;2(ryr and then with e=3L, a= Kllull 2 () and
b= ][8u+/61/]]Lz (r), it follows that

ouy
Jdv

6u+

U4
—|ds.
Jdv s

2L
ds<J |V rul*ds+ LJ |V ru||—

dS+2KJ

d I
—NJ ﬁ ds< < 3 )J IV rul? ds + 3k LJ lul® ds. (3.24)
3L Jr| dv L
Bounding the right-hand side using (3.11) and (3.18), we find that
9 31 V2
H - < “ 2L+ 617 + 6(L + 3L%)? > 91l z2r)- (3.25)
L n?
Putting this together with (3.9) and (3.12), we conclude that
ol r2(r) < 2Bl gl 21 (3.26)
where B is defined by (3.4), concluding the proof. [ |

The lemma we have just proved is the major part of showing that A’ is
invertible, that is, of establishing the following theorem.

Theorem 3.4. A’ and A are invertible on L*(T), with
_ -
A 1||L2(T)—>L2(I‘) = ||A/ ||L2(r)—>L2(r) < B, (3.27)

where B= B(L,k/n) is defined by (3.4).

Proof. We have remarked already that A and A’ are invertible together, and,
that if they are both invertible, then their norms are equal.

We show first that A and A’ are invertible in the case when f € C*(R?). Note
that, if f € C*(R?), it follows from lemma 3.2 that the bound (3.27) holds if A’ is
invertible. To prove that A and A’ are invertible, define f., for 0 <e<1, by

f(@) =¢f(z) +(1—of ", zER”
Then f, = f, so that I'' = I/, while I'" is the flat plane I'y+. Denoting A and A’ by
Ay and Af, to indicate thelr dependence on f, we associate A; and Af with the
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16 S. N. Chandler- Wilde and others

elements /~1f= LA and fl}z LAMIT of the space BL(L*(R?)) of bounded
linear operators on L?(R?). Here, Iy is the isomorphism defined by (2.15). Note
that [; and Ijzl are bounded, uniformly in ¢, for 0<e<1, i.e.

e =L 17 <Cr 0<e<1,

for some constant C; > 1. We note that Ay is invertible by theorem 2.3. We will
show now by a simple homotopy argument that A; = A; is also invertible.

Note that, for 0 <e<1, the Lipschitz constant of f. is not larger than L, the
Lipschitz constant of f. Thus, if A; is invertible, the bound (3.27) holds on A}
with B= B(L,«/n), so that

~—1 _
1A 2@y 2@ < cell A7 | 2ry— 2y < Cr B (3.28)
Since the mapping
[0,1] > BCY(R?), e~ f, (3.29)
is continuous, it follows from theorem 2.4 that the mapping
0,1] > BL(L*(R?), e— A, (3.30)

is continuous, in fact uniformly continuous since [0, 1] is compact. Thus, there
exists N €N such that

H‘/le_/ij—luLQ(RQ)HH(R?) < (C]B)_l, (331)

for j=1,..., N, where flj is an abbreviation for flﬁ when €= j/N. But, by standard
operator perturbation results, if 4 ; ; is invertible, so that the bound (3.28) applies

to A, then (3.31) ensures that A is also invertible. Since A, = A is invertible, by

induction, A;= A y is invertible, so A; is invertible.

We have shown that A and A’ are invertible whenever f € C*(R?). We finish
the proof by using this result and the explicit bound (3.27) to show invertibility
in the more general case when we have only that f& BCM“*(R?), for some
a €(0,1]. Choose a non-negative function x € C*(R?) with the property that
x(x)=0, |z|>1, and

Jsz(a:)da: =1.

Define x, € C*(R?), for €>0, by x.(z):=¢?x(z/¢), £ ER? so that x.(x)=0,
|z| > €, and

JRQXG(a:)d:I: =1, €>0.
Next, define f. € C*(R?), for €>0, by
fla)= | x@=wfwy = | fe-prwiy ocr?
which implies that

Viia) = | x(@—u)¥iwdy. ock
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Since f € BC"(R?) and f~ < f(x) < f, it is a straightforward calculation to see
that the same is true for f, for every €>0. In particular, where E = ||f|| poro(m?),
it holds that

Vf(x) =Vi(y)| < Blz—y|", z,yER.
Further, choosing 8 with 0 < 8 < « and setting v = a —(, we have that
Vf (@) = Vf(y) = (V@) = Vf(y))| < 2E min(e*, |z —y|*) < 2E€" [z —y|".
With the help of this inequality it follows that
If —fllpcrswey =0, €—0, (3.32)
and then from theorem 2.4 that
H"Zlf_‘/zlffHLz(Rz)ﬂLQ(ﬂW)_)07 e— 0. (333)

Further, since f. € C*(R?), A; is invertible. It is a straightforward calculation to
see that the Lipschitz constant of f. is not greater than that of f. Thus,

¢ =L 1< 0 0<e<1,

for some constant C;> 1, and the bound (3.27) holds on A} with B= B(L,«/n),
ie.

1AL 2y 2y < B €0, (3.34)
so that
1A | we)-rz@) < cllAr l2ir—2a) < CrB,  €>0.

Choosing € such that ||f~1f —/Nlﬂ | 22 2y 22 (m2) < (C;B)™, we deduce from standard
operator perturbation results that A;, and hence A; and AJ’c, are invertible. Also,
by (3.33),

_ 1 71 . 1 7—1
1A N 2= 2y = W Ay Ll o2y = lim || 7y YA Il e -

Further, (3.32) implies that || If|| = 1 and || I; || = 1, as e — 0, so that, using
(3.34),

1A W2y = Him L L A Iyl gy oy < i sup 1 L BI T 4| = B,

i.e. (3.27) holds. [

In the special case when I is flat, i.e. I'=1}, for some h>0, theorem 3.4

predicts that
15k 1/2
1+ < 7 + 6) . (3.35)

We will consider this special case with more precise tools in §4, showing that

_ 1
IA™ | 2= 12y < 5

_ K
|4 1HL2(r)—>L2(r) < max(l, %> ) (3.36)
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18 S. N. Chandler- Wilde and others

with equality holding in the case 7 > k/2 and in the limit kh — oo. (Interestingly,
this is precisely the bound conjectured by Giebermann (1997) for the inverse of
an analogous integral operator in the case when I' is a sphere, based on a study of
asymptotics of eigenvalues.) It is encouraging that the bound (3.35), while
necessarily larger than the sharp bound (3.36), is larger by at most a factor
(1++/66)/2 < 5, for all n/k. This gives hope that the bound (3.27) is fairly sharp
in the general case when I is not flat.

In §4, our calculations will lead to the conclusion that, when I' is flat, the
choice of coupling parameter n=k/2 is almost optimal in terms of minimizing
the condition number of A. Using the triangle inequality that (o + 5°)"/? < a+ b,
for a, b> 0, we can simplify the bound (3.27) on A™! when 1= «/2, obtaining that

- 1 7 = 1 .
1A oy < 5 (1 + (66F +108EL2 + 5411)/2) < = (1 + 9L + 8T
1
<510 +9L 4+ 8L*) <5(1 + L)*. (3.37)

Finally, we note that, again using the triangle inequality, we can simplify (at
the cost of a little sharpness) the bound (3.27) in the general case. From (3.27) it
follows by the triangle inequality that

| _ _ _
1A e < 5 (1 +V6L + 3\/6L2) + % (\/EL + 3\/§L\/E)

<5 (14 VB + VoL +3V617)
+%(\/ﬁ+(\/ﬁ+3\/§)L+3\/§Lg/g),

from which the bound (1.5) follows.

4. Minimizing the condition number when I is flat

In this section, we consider the special case when I is flat, i.e. I'=I";, for some
h> 0, aiming to compute the condition number of A= 1+ K —inS explicitly,
and then to use the explicit results we obtain to select n so as to approximately
minimize A.

In the case I'=TI';, the kernels of K and S only depend on the difference = —y
and thus, identifying I', with R?, the operators are convolution operators on
L*(R?). Explicitly (see Chandler-Wilde et al. 2006), we can write the kernel of the
double-layer potential operator as Pj(x—1y), where P,(y)=p,(]y|) and

ikh eixm h eixm

T AR w (r2 + 4n2)3/?’

pu(r) = > 0.

The kernel of the single-layer potential operator is @, (x—1vy), where Q,(y) =

a(|y|) and
1 eiK’l‘ eiK\/ 72 +4h?
QG \T) = — — ——F/—— 7, r>0.
h(r) T NVr? 4+ 4h?

Proc. R. Soc. A



Rough surface scattering 19

Hence, the integral equation (1.3) reduces to the convolution integral equation

o(@)+ | Rila=po(udy = 20(e), =R, (4.1)

where Rj,:=Pj, —in(Q,. Defining the Fourier transform operator F by (3.20),
equation (4.1) can be rewritten, using standard results on convolution operators,
as

¢ + 21 F " ((FRy)(Fo)) = 2g.

For more details see Chandler-Wilde et al. (2006). Thus, in the special case
I'= Fh?

Ay = FHM(FY)), yE LR, (4.2)

where M), =1+ 27F Ry,
In Chandler-Wilde et al. (2006), we have computed the function M, explicitly,
finding that M, (k)= K(|k|), for almost all k€ R?, where

=F(hV K —k?), k>0,
with Vk2 —k2=—vk?—k? for k> k and

ih
F(2)=1+¢ %1 (1—e), (4.3)
z
Since F is an isometric isomorphism on L*(R?), we see that
Al 2(ry-12(ry = ess sup | M, (k)| = sup [K(k)], (4.4)
kER? k>0
and
-1 .
A gy = ess inf, |M,(R)] = inf | (8, (45)
so that

_ Suka(JlK(k)|
infy> o| K ()]

Now, as k increases from 0 to k to %, hV k> —k®> moves in the complex plane
from —ikh to 0 to . Thus, defining

[F(O)F,  t>0,
G(t):=
|F(it)]?, —«h<t<0,

(4.6)

we see that

<sup\K(/<;)y)2 = sup G(1), (1nf|K( )|>2 = inf G(t). (4.7)

k>0 t>—xh k>0 t>—xh
Moreover, for t> 0,
» h2 2 .
G(t) = (1+e?)? + 2 (1—e)?,

t2
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20 S. N. Chandler- Wilde and others

which is decreasing on ¢>0, from the value G(0)=4+ 4h*n* to the value
lim, ,,, G(t)=1. For -xh<t<0,

h h
G(t) = (1 + cos 215—777 (1—cos 2t))? + (sin 2t + Tnsin 2t)?

sin’t
t2

= 4 cos’t + 4h*n*

Since |sin t| < |t], t <0, we see that G(t) < G(0) for —xh < t <0 so that, applying
(4.4) and (4.7),

1/2
1A 20y~ 22y = (Sup G(t)> =2\/1+ h2r’.

t>—«xh

If n> k/2, then also 4h*n*/t* > 1 for —kh < ¢t < 0, so that, from (4.5) and (4.7),

—1/2
_1 _ . _
47 oy = nf, 60) =1
Thus,

cond A =21+ h2n%, n>«/2. (4.8)
If n<k/2 and kh<m/2, we see that

-1/2
Mﬂmnmm=(mfa@

t>—«h

1 .. 92 h —1/2
= max (1, 3 (costh +7? SH,1<2K ) < %, (4.9)

so that

1 9 5 sin’kh /2 55
cond A = 2max 1,5 cos“kh +n 5 vV 1+ h*n?, (4.10)
K

and so
2v/1+ K22 < cond A< /1 + i2nP. (4.11)
n
Since, for n <«k/2 and —kh < ¢ <0 it holds that
h2772 4h27l2 47’2
G(t) = 4(1 - )cos% Tz (4.12)

the bounds (4.9) and (4.11) hold whenever n < k/2. However, if kh> /2 we can
sometimes sharpen the lower part of the bound in (4.11). Precisely, since cos ¢

vanishes at some point in [f,kh], where t:=max(w/2,kh—m), it follows from
(4.12) that

e (o< 2 _ A ()"

—«h<1<0 -2 K2 ’

Proc. R. Soc. A



Rough surface scattering 21

where

s

H =
(s) max(m/2, s—)

Thus, for n <«k/2 and kh> /2,

, s=>w/2.

max| Loy ) S A - <5

so that

max (2,ﬁ> V1+hn?<cond A< £ V14 k292 (4.13)
Kn)n n

Note that, in the above inequality, the ratio of the upper to the lower bound on
cond A is

min<L,H(Kh)) < H(kh)< sup H(s) =3.
2n s>m/2

Further, the lower and upper bounds are asymptotically equal in either of the
limits n— «/2 or kh— oo,

Having computed cond A exactly for n>«/2 and for n <«k/2 with kh<m/2,
and having achieved fairly sharp upper and lower bounds in the other cases, we
turn to selecting n to approximately minimize the condition number. From (4.8)
and (4.11) we see that cond A= T'(n) for n>«/2, and that cond A< T'(n) for
n<k/2, where

() {2\/1+h2n2, n=k/2,
17 =
k2402 n<k/2.

The choice n = k/2 minimizes T'(n) on n> 0. We shall see that this choice comes
close to also minimizing cond A. For s> 0, let C(s) denote the value of cond A,
when n=s. Then, for kh <m/2, from (4.8) and (4.11),

C(k/2
C(n)
For kh>m/2 and n<«k/2, from (4.8) and (4.13),
C(k/2) _ H(kh)V4 + h%2 < H(h).
Cln = i+ h2?
and this bound holds also for n > k/2 by (4.8). Thus, if we extend the definition of

H from [r/2, %) to (0,%) by setting H(s):=+/1+ m?/16 =1.27 for 0< s< 7/2,
we see that

)g\/1+/<2h2/4§ \/1 +72/16, n>0.

C(x/2)
infn>() 0(77)

In particular, since H(w/2) =1 and H(s) — 1 as s — oo, this bound shows that the
choice n=«/2 is optimal when kh=m/2 and in the limit kh— oo.

< H(kh) < 3. (4.14)
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22 S. N. Chandler-Wilde and others

Although, for all values of k and h, n=«/2 is almost optimal in terms of
minimizing cond A, and is exactly optimal in the limit kh — o, it should be noted
that a range of values of n give almost as small a condition number. Precisely,
from (4.8) and (4.11) we see that, for every Q> 1,

C(n) <QC(k/2),
if
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