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Abstract

In this paper we propose a new method to determine the location and shape of an
unbounded rough surface from measurements of scattered electromagnetic waves. The
proposed method is based on the point source method of Potthast (IMA J.Appl.Math.,
61:119-140, 1998) for inverse scattering by bounded obstacles. We propose a version for
inverse rough surface scattering which can reconstruct the total field when the incident
field is not necessarily time harmonic. We present numerical results for the case of a
perfectly conducting surface in TE polarization, in which case a homogeneous Dirichlet
condition applies on the boundary. The results show great accuracy of reconstruction of
the total field and of the prediction of the surface location.

1 Introduction

The determination of the elevation of the ground, sea surface, or sea bed are basic problems
in remote sensing by sonar or radar. To model the scattering problem, boundary or domain
integral representations of the scattered field are commonly used and the inverse problem
linearised by a Born or Kirchhoff approximation to the field on the scatterer, or the inversion
carried out by interpreting time of travel data (e.g. [8, 9, 29, 12, 14, 27, 28, 30]).

Recently a range of mathematical methods for solving the nonlinear inverse problem,
determining the support of a bounded scattering obstacle directly from measurements of
the scattered field, have been proposed, including factorization and linear sampling methods
[11, 16, 10, 2, 1] and the method of singular sources of Potthast [24]. These methods have
in common: (i) the solution of first kind linear integral equations; and (ii) that they require
measurements of a large quantity of data. Illustrating the second point, consider the applica-
tion of the linear sampling method to the detection of a buried obstacle below a flat interface
[10]. The data required are measurements of the field at every point on a two-dimensional
finite horizontal grid above the interface for a point source at every point on the same grid.
For unbounded periodic surfaces a version of the factorization method has recently been pro-
posed by Arens & Kirsch [2], and see [13] for another method for the same inverse scattering
problem.

In this paper we explore the application, to detect the position of an unbounded surface,
of the point source method proposed by Potthast [23, 24] for inverse scattering by bounded
obstacles. This method has more modest data requirements (as do other somewhat related
methods recently proposed by Potthast et al [26, 25] and by Ikehata [15] – see [25] for a more
detailed review and classification). In our two-dimensional version of the point source method,
a single time harmonic point source transmitter of an electromagnetic field is located above
the surface to be located and the total field produced is measured on a finite horizontal line,
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also above the ground surface. Our version of the point source method is a procedure for
approximating the total field at all points above the ground surface from these few measure-
ments, via solution of an (ill-posed) linear Fredholm integral equation of the first kind. We
briefly explain the justification for this method (for more detail see [18, 19]). We then propose
a time domain point source method to reconstruct the total electric field when the incident
wave is not necessarily time harmonic. In particular, in the numerical experiments we carry
out, we have chosen an incident pulse that is similar to those arising in ground penetrating
radar applications. We show numerical examples for the simplest case, when the boundary
is perfectly conducting and the incident field is in TE polarization, so that a homogenous
Dirichlet condition applies on the boundary. We reconstruct the total field above the surface
and also locate the position of the boundary as the curve along which the reconstructed total
field is minimal.

2 The Surface Scattering Problem

2D u = total field

∆u+ k2u = −δy

(k > 0)

fixed
point
source

u = 0

D

Γ

y

x1

x2

Figure 1: The direct problem for the total field u = G(·, y).

To simplify the problem, and since the rigorous analysis of 3D problems of scattering by
unbounded rough surfaces is very much in its infancy, we consider the 2D case in this paper.
Adopting a Cartesian coordinate system Ox1x2x3, the incident field and scattering surface
are invariant in the x3 direction. We will present results later for the case of an impulsive
source, but for the moment consider the case when the incident electromagnetic field is that
from a time harmonic (e−iωt time dependence) monopole source in TE polarization, and the
scattering surface is perfectly conducting. Let C1,1(R) denote the set of functions f : R → R

which are bounded and continuously differentiable, with Lipschitz continuous derivative, so
that, for some constant C > 0,

|f ′(s) − f ′(t)| ≤ C|s− t|, s, t ∈ R. (1)

We suppose that the scattering surface is given by

Γ = {(x1, f(x1))|x1 ∈ R},
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for some f ∈ C1,1(R) and hence, for some constants f−, f+ ∈ R,

f− ≤ f(x1) ≤ f+, x1 ∈ R. (2)

The electromagnetic field satisfies the Maxwell equations in the region D = {(x1, x2)|x2 >
f(x1)} above Γ. With these assumptions, and using the notations x = (x1, x2), y = (y1, y2)
throughout, the electric field at (x1, x2, x3) when the source is at y ∈ D is E = (0, 0, G(x, y)),
where u := G(·, y) satisfies the inhomogenous Helmholtz equation,

∆u+ k2u = −δy (3)

in D, where k = ω/c and c is the wave speed (see Figure 1). Further, u = 0 on Γ and u
satisfies the Sommerfeld radiation conditions (equations (7) below).

Let

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|), x, y ∈ R

2, x 6= y. (4)

Then Φ(·, y) is the unique solution of (3) in R
2 which satisfies the Sommerfeld radiation

conditions, i.e. Φ(·, y) is the incident field, the electric field in the absence of the scattering
surface. Let U s(x, y) := G(x, y)−Φ(x, y) denote the scattered part of the electric field. Then
v := U s(·, y) satisfies the following Dirichlet boundary value problem (the direct problem):
find v ∈ C2(D) ∩ C(D) such that

∆v + k2v = 0 in D,

v = −Φ(., y) on Γ,

v(x) = O(r−
1
2 ),

∂v(x)

∂r
− ikv(x) = o(r−

1
2 ),

as r := |x| → ∞, uniformly in x̂ = x/|x|. From [7] and [6, Theorem 5.1], we have that this
boundary value problem has exactly one solution.

For h ∈ R let Uh := {(x1, x2)| x2 > h, x1 ∈ R} and define

G1,h(x, y) := Φ(x, y) + Φ(x, y′h) + P (k(x− y′h)), x, y ∈ Uh, x 6= y, (5)

where

P (z) :=
ei|z|

π

∫ ∞

0

t−
1
2 e−|z|t(1 + γ(1 + it))√
t− zi(t− i(1 + γ))2

dt, z ∈ U0,

with γ := z2/|z|, and y′h = (y1, 2h− y2) the reflection of y in Γh := ∂Uh. It is shown in [4, 3]
that P ∈ C(U0)∩C∞(U0\{0}) and satisfies the Helmholtz equation and Sommerfeld radiation
conditions (with k = 1) in U0. Further, if v := G1,h(., y) we have that (see [4, 3])

∆v + k2v = −δy in Uh,

∂v

∂x2
+ ikv = 0 on Γh, (6)

v(x) = O(r−
1
2 )

∂v(x)
∂r − ikv(x) = o(r−

1
2 )

}

as r := |x| → ∞, uniformly in x̂. (7)
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Thus G1,h is the Green’s function for the Helmholtz equation in the half-plane Uh which
satisfies the impedance boundary condition (6). From [5], G1,h satisfies the bound

|G1,h(x, y)| ≤ C(1 + x2 − h)(1 + y2 − h)|x− y|− 3
2 , x, y ∈ Uh, x 6= y, (8)

for some constant C > 0 depending only on k, so that G1,h decays faster than required by the
Sommerfeld radiation conditions if x2 and y2 stay close to the boundary Γh.

Echoing earlier notation we define

U s
1 (x, y) := G(x, y) −G1,h(x, y), x, y ∈ D, (9)

so that U s
1 (·, y) is the solution to the Dirichlet BVP for boundary data −G1,h(·, y) on Γ.

3 The Point Source Method

Let A > 0, H > sup f , and let γ∗ denote the finite horizontal line

γ∗ = {(x1, H)||x1| ≤ A}. (10)

Then the first inverse problem we will consider is as follows.

The Inverse Problem. Given measurements of the total field G(x, z), for x ∈ γ∗ and a

single source position z ∈ D\γ∗, determine f , i.e. the location of the infinite surface Γ.

Remark 3.1 It is an open question whether this inverse problem is uniquely solvable. If the

incident field is replaced by a plane wave then the inverse problem can have more than one

solution as shown by the following simple example. Take the incident field to be the plane

wave exp(−ikx2), and choose p < q < H with q− p a multiple of π/k = λ/2, where λ = 2π/k
is the wavelength. Then the flat surfaces Γ = Γp and Γ = Γq produce the same total field,

namely exp(−ikx2) − exp(ik(x2 − 2p)), and so the same measurements on γ∗.

The method we will formulate for computing a solution to this inverse problem is based on
the point source method of Potthast [23, 24] for scattering by bounded obstacles. Our point
source method is a method to construct, from the measured data, namely G(x, z) for x on γ∗,
an approximation Gα(x, z) to the total field G(x, z) for all x ∈ D. Since G(·, z) vanishes on
Γ, and provided G(·, z) does not vanish on other curves in D, a possibility is to look for the
surface as a minimum of |Gα(·, z)|, and this is the approach adopted.

The first step in constructing Gα(·, z) is to note the reciprocity result shown in [18, The-
orem 3.1.4], that

G(x∗, z) = G(z, x∗), x∗, z ∈ D.

It follows that we can proceed by constructing an approximation to G(z, x∗) for x∗ ∈ D.
Suppose x∗ ∈ D\{z} and f0 ∈ C1,1(R) with f0(0) < 0, and define fx∗ ∈ C1,1(R) by fx∗(x1) :=
f0(x1 − x∗1) + x∗2, x1 ∈ R, and let

Γx∗
:= {(x1, fx∗(x1))| x1 ∈ R} . (11)

We assume that values f− and f+ for which (2) holds are known and define ε+ := supx1∈R f0(x1)
and ε− := − infx1∈R f0(x1). Then Γ lies between the lines Γf− and Γf+ and it is enough, for
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Figure 2: Geometry for equation (12).

the purpose of locating Γ, to reconstruct G(x∗, z) = G(z, x∗) for x∗ ∈ Uf−\Uf+ , i.e. for
f− ≤ x∗2 ≤ f+. We assume further that f0 and H are chosen so that H > f+ + ε+. Then, for
f− ≤ x∗2 ≤ f+, Γx∗

lies below ΓH ⊃ γ∗. Choose d > max (f+ − f−, ε−) and let h∗ := x∗2 − d so
that h∗ < f− and Γx∗ ⊂ Uh∗ , for f− ≤ x∗2 ≤ f+ (see Figure 2).

Consider the first kind integral equation

∫

γ∗
G1,h∗(x, y)φx∗(y) ds(y) = gx∗(x) := G1,h∗(x, x∗), x ∈ Γx∗

, (12)

where G1,h∗ is defined by equation (5) and f− ≤ x∗2 ≤ f+. This equation can be written in
operator form as

Kφx∗ = gx∗ , (13)

where the integral operator K is defined by

Kψ(x) =

∫

γ∗
G1,h∗(x, y)ψ(y)ds(y), x ∈ Γx∗

,

for ψ ∈ L2(γ∗). Since the Green’s function G1,h∗ satisfies the bound (8) it follows that
K : L2(γ∗) → L2(Γx∗

) and is bounded. It is shown in [18, 19] that gx∗ is not in the range
of K so that (12) does not have a solution. However, it is also shown in [18, 19] that K has
dense range (and is injective) so that we can find a function φα

x∗ ∈ L2(γ∗) which solves (12)
approximately to arbitrary accuracy.

A standard method to compute such a solution is Tikhonov regularisation, in which φα
x∗

is found as the unique solution of

αφα
x∗ +K∗Kφα

x∗ = K∗gx∗ , (14)

where K∗ is the adjoint of K and α > 0 is the regularisation parameter. As gx∗ is not in the
range of K, necessarily ||φα

x∗ ||L2(γ∗) → ∞ as α→ 0. On the other hand, since the range of K
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is dense, the standard theory of Tikhonov regularisation (see [18, Theorem 2.2.4]) guarantees
that the residual ||Kφα

x∗ − gx∗ ||L2(Γx∗ ) → 0 as α→ 0.
Thus, defining the residual in (12) by

u(x) :=

∫

γ∗
G1,h∗(x, y)φα

x∗(y)ds(y) −G1,h∗(x, x∗), x ∈ Uh∗ \ {x∗}, (15)

we can make u as small as we like in the L2 norm on Γx∗
by choosing α small enough.

Since we take f− ≤ x∗2 ≤ f+, the line Γh∗ lies below Γx∗
. Let Gx∗

denote the unbounded
waveguide/duct-like region between Γx∗

and Γh∗ . As discussed in detail in [18, 19], u satisfies
the Helmholtz equation in Gx∗

and the homogeneous impedance boundary condition (6) on
Γh∗ . It is shown in [18, 19] that this implies that if u is small in the L2 norm on Γx∗

then
it is small in the supremum norm in Gx∗

ε , for every ε > 0, where Gx∗
ε is Gx∗

with an ε-
neighbourhood of Γx∗

removed. Thus, if x∗ is a point in D for which Γ lies below Γx∗
, so that

Γx∗ ⊂ Gx∗
, then u is small in the supremum norm on Γ if u is small in the L2 norm on Γx∗

.
Replacing G1,h∗(x, ·) with U s

1 (x, ·) in (15) we define

w(x) :=

∫

γ∗
U s

1 (x, y)φα
x∗(y) ds(y) − U s

1 (x, x∗), x ∈ D.

Then w is the solution to the Dirichlet BVP in D with boundary data w = −u on Γ and so,
by continuous dependance results for this boundary value problem in [7], if u is small in the
supremum norm on Γ then w is small (in a weighted supremum norm) in D, in particular w
is small at z, in other words

U s
1 (z, x∗) ≈

∫

γ∗
U s

1 (z, y)φα
x∗(y)ds(y). (16)

Now, using the reciprocity relation, the definition of U s
1 (z, y) and (16), it follows from the

above discussion that, if α is chosen small enough, then

G(x∗, z) = G(z, x∗)

= G1,h∗(z, x∗) + U s
1 (z, x∗)

≈ G1,h∗(z, x∗) +

∫

γ∗
U s

1 (z, y)φα
x∗(y) ds(y)

= G1,h∗(z, x∗) +

∫

γ∗
(G(y, z) −G1,h∗(z, y))φα

x∗(y) ds(y). (17)

In this last expression, the values G(y, z), y ∈ γ∗, are the measured data. Based on this
expresssion we define, as our approximation to G(x∗, z), the quantity

Gα(x∗, z) := G1,h∗(z, x∗) +

∫

γ∗
(G(y, z) −G1,h∗(z, y))φα

x∗(y) ds(y), x∗ ∈ Uf−\Uf+ . (18)

Thus our point source method is: given a source position z, and the total field G(y, z), for
y ∈ γ∗, compute Gα(x∗, z) for x∗ ∈ Uf−\Uf+ , and look for the location of the surface as the
minimum of |Gα(x∗, z)|.

By arguments which have been sketched briefly above the following bound on the error in
the point source method approximation is shown in [18, 19]. In this theorem, for f ∈ C1,1(R),
||f ||C1,1(R) denotes the norm ||f ||C1,1(R) := ||f ||∞ + ||f ′||∞ +Cmin, where Cmin is the smallest
value of C for which (1) holds.

6



Theorem 3.1 For every ε > 0 and c > 0 there exists C > 0, dependent only on k, f0, d, ε, z2−
inf f , and c, such that, provided inf(fx∗ − f) > ε, f− ≤ x∗2 ≤ f+, and ‖f‖C1,1(R) ≤ c, it holds
that

|G(x∗, z) −Gα(x∗, z)| = |w(z)| ≤ C‖Kφα
x∗ − gx∗‖L2(Γx

∗ ) → 0 (19)

as α→ 0.

Up to this point the effect of noise in the measured data has been neglected. In practice
we expect to measure Gδ(y, z) for y ∈ γ∗ rather than G(y, z), with ‖Gδ(·, z)−G(·, z)‖L2(γ∗) =
δ > 0. Then we compute Gα

δ (x∗, z), defined by (18) with G(y, z) replaced by the noisy data
Gδ(y, z). From (18) and (19) and standard bounds for Tikhonov regularisation [18, Lemma
2.2.1] it follows that

|G(x∗, z) −Gα
δ (x∗, z)| ≤ C‖Kφα

x∗ − gx∗‖L2(Γx∗ ) + δ‖φα
x∗‖L2(γ∗)

≤ C‖Kφα
x∗ − gx∗‖L2(Γx∗ ) +

δ√
α
‖gx∗‖L2(Γx∗ ). (20)

In the usual case that the noise is a random variable, it follows from (20) that

E(|G(x∗, z) −Gα
δ (x∗, z)|2) ≤ 2C2‖Kφα

x∗ − gx∗‖2
L2(Γx∗ )

+ 2
δ̄2

α
‖gx∗‖2

L2(Γx∗ )
,

where δ̄ :=
√

E(δ2). Choosing α = aδ̄p, for some a > 0 and p ∈ (0, 2), ensures that
E(|G(x∗, z) −Gα

δ (x∗, z)|2) → 0 as δ̄ → 0.

4 The Point Source Method in the Time Domain

In the previous section we described an algorithm which reconstructs the total electric field
up to the surface after the scattering of an incident field by a rough surface when the point
source which gives rise to the incident field is time harmonic. In this section we consider
the case when the point source emits a pulse. In particular we will have in mind the inverse
rough surface scattering problem with a geometry and incident pulse similar to that arising
in ground penetrating radar (GPR) applications. In GPR applications the radar waves are
propagated in distinct pulses from a surface antenna, reflected off buried objects or features
and detected back at the surface by a receiving antenna. From time of travel information the
distance or depth of a feature can be calculated. General GPR systems use dipolar antennas
ranging from 10 MHz to 1000 MHz. Most of the antenna energy is concentrated around this
one central frequency, but radar energy is produced in an interval that ranges up to one octave
above and below the centre frequency.

For F ∈ L1(R) let F̂ ∈ BC(R) denote the Fourier Transform of F , defined by

F̂ (ω) =
1

2π

∫ ∞

−∞
F (t)eiωtdt, ω ∈ R.

If F is sufficiently smooth (e.g. if F ∈ C2(R) ∩ L1(R)) then F̂ ∈ L1(R) and F is given in
terms of F̂ by the inverse Fourier transform formula

F (t) =

∫ ∞

−∞
F (ω)e−iωtdω, t ∈ R.
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To model the pulse from a GPR antenna we assume that the incident field takes the form

U i(x, t) =

∫ ∞

−∞

Φω/c(x, z)

Φω/c(x0, z)
F̂ i(ω)e−iωtdω, (21)

for some real-valued F i ∈ C2(R) which is compactly supported, where z is the source position,
x0 6= z is some reference point where the incident field is measured and, for x, y ∈ R

2, x 6= y,

Φk(x, y) :=
i

4
H

(1)
0 (k|x− y|), k > 0,

while Φk(x, y) := Φ−k(x, y), for k < 0. It follows from (21) that, if |x − z| = R := |x0 − z|,
then

U i(x, t) =

∫ ∞

−∞
F̂ i(ω)e−iωtdω = F i(t),

so that F i(t) is the incident field at time t at distance R from the source (and in particular is
the incident field at x0).

The direct problem we consider in this section is as follows: Given F i ∈ C2(R) which is
compactly supported, find U s ∈ C2(D × R) ∩ C(D × R) such that

∆U s =
1

c2
∂2U s

∂t2
in D × R,

U s = −U i in Γ × R

and, for some t0 ∈ R, U s(·, t) = 0 for t < t0. By inspection, the solution to this direct problem
is that the total field is given as

U(x, t) = U i(x, t) + U s(x, t) =

∫ ∞

−∞

Gω/c(x, z)

Φω/c(x0, z)
F̂ i(ω)e−iωtdω, (22)

where, for k > 0, Gk(x, z)e
−iωt denotes the total field corresponding to the time harmonic

incident field Φk(x, z)e
−iωt, so that Gk(·, z) is the solution to the Dirichlet boundary value

problem in Section 2 and, for k < 0, Gk(·, z) := G−k(·, z).
A good approximation to an idealised pulse signature for a GPR antenna is given by

F i(t) = −e−σ(t+ ε√
σ

)2
+ 2e−σt2 − e

−σ(t− ε√
σ

)2
, t ∈ R, (23)

with σ = 25ω2
0/98, ω0 = 2πf , f the nominal frequency, and ε = 0.1. The Fourier transform

of F i, given by (23), is

F̂ i(ω) = −
√

2π

3σ
e−ω2/4σ

(

cos

(

ωε√
σ

)

− 1

)

. (24)

In Figure 3 we plot F i(t) and |F̂ i(ω)|2, given by (23) and (24) respectively, for nominal
frequency f = 500MHz.

To compute an approximation to U s(x, t) we proceed by first approximating F i(t) by a
periodic function, F i

T (t), of some sufficiently large period T , defined by

F i
T (t) = F i(t), −T < t ≤ T.
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Figure 3: Incident pulse, F i(t), for nominal frequency f = 500MHz, given by (23) (left hand
plot) and the corresponding power spectrum, |F̂ i(ω)|2, given by (24) (right hand plot).

We then sample F i
T (t) over a period of length T at intervals ∆ = T

N for some odd integer
N ∈ N, starting from some time T1. Let F i

p := F i
T (T1 + ∆p), p ∈ Z, denote the sampled

values. Then, using the standard discrete Fourier transform formula [22],

F i
p =

N−1
∑

j=0

Xje
−2πijp/N , p = 0, 1 . . . , N − 1,

where

Xj :=
1

N

N−1
∑

p=0

F i
pe

2πijp/N , j ∈ Z. (25)

Now, since F i
T is periodic with period T , F i

p+N = F i
p for p ∈ Z. Hence, Xj+N = Xj , j ∈ Z.

Moreover, since we choose N to be odd,

Xj =
1

N

(N−1)/2
∑

p=−(N−1)/2

F i
pe

2πijp/N , j ∈ Z. (26)

From this representation it becomes clear, since F i is real-valued, that Xj = X−j , j ∈ Z.
Since Xj+N = Xj , j ∈ Z, it follows that

F i
p =

(N−1)/2
∑

j=−(N−1)/2

Xje
−2iπj∆p/T , p ∈ Z.

Let

F i
N (t) :=

(N−1)/2
∑

j=−(N−1)/2

Xje
−2iπj(t−T1)/T , t ∈ R. (27)
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Then F i
N (t+ T ) = F i

N (t), t ∈ R, and

F i
N (T1 + ∆p) = F i

p = F i
T (T1 + ∆p), p ∈ Z,

so that F i
N interpolates F i

T at T1 + ∆p, p ∈ Z.
It is easy to see that F i

N (t) can be rewritten in the form

F i
N (t) =

α0

2
+

(N−1)/2
∑

j=1

[

αj cos
2πj(t− T1)

T
+ βj sin

2πj(t− T1)

T

]

,

with real coefficients αj = 2<Xj and βj = 2=Xj . In fact [17], there exists a unique function
of this form (a so-called trigonometric polynomial of degree (N − 1)/2 and period T ) which
interpolates F i

T (t) at T1 + ∆p, p ∈ Z, and, if F i
T ∈ Cn(R), for some n ∈ N, there holds the

error estimate [17, Theorem 11.6]

‖F i
N − F i

T ‖∞ ≤ c
lnN

Nn
,

for some constant c > 0. We note that F i
T ∈ Cn(R) if F i ∈ Cn(R) and T is large enough so

that (−T/2, T/2) contains the support of F i.
With F i

N given by (27) it holds that

F̂ i
N (ω) =

(N−1)/2
∑

j=−(N−1)/2

Xje
iωjT1δ(ω − ωj),

where ωj = 2πj/T and δ is the Dirac delta function. We suppose that X0 = 0 (the incident
pulse has no DC component) which is the case for F i given by (23). Then, substituting in
(21), an approximation to U i(x, t) is

U i
N (x, t) :=

(N−1)/2
∑

j=−(N−1)/2
j 6=0

AjΦkj (x, z)e
−iωjt,

where kj := ωj/c and

Aj :=
Xje

iωjT1

Φkj (x0, z)
. (28)

Since Aj = Aj , we have that

U i
N (x, t) = 2<

(N−1)/2
∑

j=1

AjΦkj (x, z)e
−iωjt.

Similarly, from (22), an approximation to the total field is

UN (x, t) := 2<
(N−1)/2

∑

j=1

AjGkj (x, z)e
−iωjt. (29)

For the direct scattering problem we are considering in this chapter the inverse problem
analogous to that of Section 3 is the following one. Let γ∗ denote the finite horizontal line
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given by (10).

The Time Domain Inverse Problem. Given the source position z ∈ D\γ∗, the incident

field, F i(t), for t ∈ R, at a reference point x0 6= z, and measurements of the total field U(x, t),
for x ∈ γ∗ and t ∈ R, determine f , i.e. the location of the infinite rough surface Γ.

To solve this inverse problem we will proceed analogously to Section 3 as follows. As a first
step, compute, given U(x, t), for x ∈ γ∗, t ∈ R, an approximation to U(x, t) for x ∈ D, t ∈ R.
As a second step determine Γ as the curve on which the approximation to U(x, t) is minimised.

To construct an approximation to U(x, t) for x ∈ D, t ∈ R, we propose, as a first stage,
to compute the constants Xj and Aj , given by (25) and (28), and approximate F i by F i

N ,
given by (27). The corresponding total field is given by (29). As a second stage we propose
to, similarly, approximate the measured data by ŨN (x, t), for x ∈ γ∗, t ∈ R, where ŨN (x, t)
is the T -periodic trigonometric polynomial of degree ≤ (N − 1)/2 which interpolates U(x, ·)
at T1 + ∆p, p = 0, 1, . . . , N − 1. This approximation takes the form

ŨN (x, t) = 2<
(N−1)/2

∑

j=1

aj(x)e
−iωjt, (30)

for some functions aj(x), determined by the interpolation requirement. Comparing (29) with
(30) we obtain, approximately, values for Gkj (x, z) for j = 1, . . . , (N − 1)/2 and x ∈ γ∗,
namely Gkj (x, z) = aj(x)/Aj . Given this frequency domain data on γ∗ we can compute the
point source method approximations Gα

kj
(x, z), given by (18). Then, as the third and final

stage, we can approximate the total field by (29) with Gkj (x, z) replaced by Gα
kj

(x, z), giving
the approximation

Uα
N (x, t) := 2<

(N−1)/2
∑

j=1

AjG
α
kj

(x, z)e−iωjt, x ∈ R
2\(γ∗ ∪ {z}), t ∈ R, (31)

where we denote Gα(x∗, z) by Gα
kj

(x∗, z) to indicate its dependence on kj . We will call this a

time domain point source method approximation for the total field U(x, t).
Given that U(x, t) = 0 for x ∈ Γ, t ∈ R, we propose to locate the surface Γ as the minimum

of

P (x) =
1

T

∫ T

0

(

Uα
N (x, t)

)2

dt. (32)

By Parseval’s theorem,

P (x) = 2

(N−1)/2
∑

j=1

|Aj |2|Gα
kj

(x, z)|2. (33)

5 Numerical Results

Throughout the numerical examples we assume a wave speed c = c0/
√

10, where c0 is the
velocity of light in vacuo. This wave speed is appropriate for radar waves in dry sandy coastal
land [14], and gives a wavelength of λ = c/f = 0.19m when the frequency is f = 500MHz. We
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assume that F i is given by (23) with f = 500MHz, so that the incident pulse is representative
of a GPR antenna with nominal frequency 500MHz. The measurement line in the inverse
problem is γ∗ = {(x1, H)| |x1| ≤ 10λ = 1.9m} and we fix the height of the measurement line
as H = 4λ = 0.76m. The source of the incident field is at z = (0, 4λ) = (0, 0.76)m, in the
centre of the measurement line. The scattering surface Γ is the graph of the function

f(x1) =
11λ

8
+
λ

8
cos

(

2x1

λ

)

+
λ

4
sin

(

2x1

3λ

)

, x1 ∈ R, (34)

for which (2) holds with f− = λ, f+ = 7λ/4.
We calculate Uα

N (x∗, t) for N = 49, using (31), for 0 < t ≤ T = 20ns, and for |x∗1| ≤ 5λ
and λ/2 ≤ x∗2 ≤ 7λ/2. Gα

kj
(x∗, z), where kj = 2πfj/c with fj = 50jMHz, is calculated using

the point source method described in Section 3, for j = 1, . . . , 24 and for x∗ on a grid with
9.6 points per wavelength (λ) in both coordinate directions. For each x∗ = (x∗1, x

∗
2) we make

the choice Γx∗
= {(x1, fx∗(x1))|x1 ∈ R}, with fx∗(x1) = −3λ

4 exp(−(
x1−x∗

1
8λ )2) + λ

4 + x∗2. We
choose h∗ = x∗2 − d, with d = f+ − f− + λ/4 = λ.

In the numerical implementation we approximate the integral in (12) by the trapezium
rule with step length h = λ/10 and collocate at equally spaced points x, with the same
spacing h, only on the part of Γx∗

, {x ∈ Γx∗ | |x1| ≤ 19λ}. Numerical experiments suggest
that, for this particular configuration, the accuracy of reconstructions in the region below
γ∗ is not significantly improved by collocating on a larger part of Γx∗

. This then leads to
an approximation of (12) as a linear system, with coefficient matrix K. We regularise this
linear system using Tikhonov regularisation with regularisation parameter α = 10−4, unless
otherwise stated, forming the discrete analogue of (14), replacing K and K∗ by K and K

∗.
Note that the “measured” values of Gkj (x, z) are computed by the boundary integral equation
method and super-algebraically convergent Nyström method proposed in [21], with horizontal
spacing between quadrature points of λ/10, and truncating the boundary integral so that Γ
is replaced by {x ∈ Γ||x1| ≤ 100λ} (see [21, 20] for further details).

To compute the noisy reconstructed total field we calculate Uα
N,δ(x

∗, t) as for Uα
N (x∗, t)

but with noise added to each measured value of Gkj (x, z), x ∈ γ∗, by replacing Gkj (x, z)
by Gkj ,δ(x, z) = Gkj (x, z) + N(x), where N(x) and N(y) are independently distributed for
x 6= y, and where, for each x, the real and imaginary parts of N(x) are independently
and identically normally distributed with mean 0 and standard deviation chosen such that
√

E(|N(x)|2) = δ∗

100 |Φkjj(x, z)|, where δ∗ is the specified percentage error. Note that this
implies that δ∗ is related to δ = ‖N‖L2(γ∗) by

δ̄ :=
√

E(δ2) =
δ∗

100
‖Φkj (·, z)‖L2(γ∗). (35)

Figures 4 and 5 show snapshots of the reconstructed total field Uα
N,δ(x

∗, t) at a sequence
of times for the above geometry, with δ∗ = 0 (no measurement noise) and δ∗ = 5 (5% error)
in figures 4 and 5, respectively. Also shown in the figures is the scattering surface Γ, the
position of which is unknown, of course, to the reconstruction algorithm. In Figure 4, with no
measurement noise, a clear incident pulse is visible as is the pulse reflected from the surface.
In fact the reconstructed total field above Γ is very accurate, as shown by the results in Figure
6 discussed below, and suggested by Theorem 3.1, though note that Theorem 3.1 only applies
when Γx∗

lies above Γ, and so certainly does not apply when x∗2 < f(x∗1) + λ/2. Since the
position of Γ is unknown, we are computing Uα

N,δ(x
∗, t) on a grid which includes points above
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and below Γ. We have no theory for what we are computing when x∗ is below Γ, but perhaps
it is an approximation to the solution, U(x∗, t), to the wave equation extended across the
boundary Γ. It appears to us that some sort of image of the incident field, reflected in Γ, can
be seen in Figure 7 leaving an approximate image source position at time t = 0 and rising up
to interfere destructively with the incident field to satisfy the boundary condition that U = 0
on Γ. Comparing Figures 4 and 5 it is clear that adding 5% random error to the measurements
has a significant effect on the reconstruction of the total field achieved. However, despite the
effects of this noise, the incident and scattered waves can be clearly distinguished in Figure 5.

In Figures 6 and 7 we take a more detailed look at the quality of the reconstructions,
comparing the reconstructed total field Uα

N,δ(x, t), for 0 ≤ t ≤ T = 20ns, with UN (x, t) given
by (29), at several points x above Γ, for the same geometry and noise levels as in Figures 4
and 5, respectively. In the two Figures 6 and 7 the incident and reflected pulse can be seen in
the top two plots (the reflected pulse with phase change of 180◦, appropriate to the boundary
condition that the total field vanishes). The incident and reflected pulses begin to merge in
the 3rd plot, for x = (0, 1.6λ) (the surface passes through (0, 1.5λ)).

The reconstructed total fields agree very accurately with the exact values of the total field
in Figure 6. When 5% noise is added to the data (Figure 7), even though we can see errors in
the reconstructed total fields, the incident and reflected pulses are clearly visible and correctly
positioned on the time axis.

Although these reconstructions are for the case when the total electric field vanishes on
the surface, the same formula for reconstructing the total field from measured data can be
expected to work regardless of the boundary condition. There would appear, in fact, to be
good prospects for locating the surface, even without knowledge of the boundary condition,
as the locus of those points where the incident and reflected pulses coincide in time.

In Figure 8 we predict the surface location as the minimum of P (x), given by (32) and
(33). We first interpolate P (x), calculated for |x1| ≤ 5λ and 1/2λ ≤ x2 ≤ 3/2λ at 9.6 points
per wavelength (λ), to 19 points per wavelength, and this is what is shown in the left hand side
of Figure 8. On the right hand side we put a grid over the same region and, in each column,
colour in black the square in which P (x) is minimised as a function of x2. The squares coloured
in black are thus our reconstruction of the position of the scattering surface Γ. It can be seen
that, for this particular configuration, the reconstruction is near perfect if no noise is added
to the measurements, with errors a small fraction of the nominal wavelength λ. When 5%
noise is added the quality of the reconstruction is almost as good for −2λ ≤ x1 ≤ 3.5λ, but
effectively no useful reconstruction is obtained for |x1| ≥ 4λ. Bearing in mind that the source
is in the centre of the finite measurement line which is 20λ in length, our speculation is that,
on a geometrical optics basis, no significant proportion of the incident wave power is being
scattered through the finite measurement line from parts of the surface with |x1| > 5λ so that
effectively no information is being collected about the parts of the surface with |x1| > 5λ.

Finally, we investigate in more detail the effect of the noise level on the accuracy of
predicting the location of the surface. For the surface (34), we compute Uα

N,δ(x, z) on the two
vertical lines, x1 = 0 and x1 = 4λ, for λ/2 < x2 < 5λ/2. On each vertical line we compute
the value of x2, denoted by X2, which minimises P (x), given by (33), over some range of
x2. The range of x2 is either λ/2 < x2 < 5λ/2 or the part of this interval which lies within
distance λ/3 of the surface, i.e. max(λ/2, f(x1)− λ

3 ) < x2 < min(f(x1)+ λ
3 , 5λ/2). X2 is thus

a time domain point source estimate of the surface height, f(x1). Using each of the ranges
of x2, X2 is computed for 20 values of the percentage error, δ∗, logarithmically spaced on the
interval 0.0001 < δ∗ < 12. In these calculations we choose the regularisation parameter to
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be α = 10−4δ∗/5. Then α → 0 as δ∗ → 0, and the theory of Section 3, coupled with (35),
predicts that, for each wavenumber kj , j = 1, . . . , 24, the point source estimate Gα

δ (x∗, z) of
G(x∗, z), the main approximation in our reconstruction algorithm, satisfies, if Γx∗

lies above
Γ,

E(|G(x∗, z) −Gα
δ (x∗, z)|2) ≤ 2C2‖Kφα

x∗ − gx∗‖2
L2(Γx∗ )

+ 10δ∗‖Φ(·, z)‖2
L2(γ∗)‖gx∗‖2

L2(Γx∗ )
→ 0

as δ∗ → 0.
In Figure 9 we plot |X2 − f(x1)|/λ against δ∗, i.e. we plot the distance of the predicted

surface location from the actual surface (in wavelengths) as the noise in the measurement
data increases. In Figure 9 the left hand plot shows the results for x1 = 0 (so f(x1) = 1.5λ)
and the right hand plot shows the results for x1 = 4λ (so f(x1) = 1.4711λ). In each graph the
dashed line indicates the distance of X2 from f(x1) when x2 minimises P (x) over the range
λ/2 < x2 < 5λ/2, while the solid line shows the distance of X2 from f(x1) when x2 minimises
P (x) over the range f(x1)−λ/3 < x2 < f(x1)+λ/3. The dotted line is the graph of C(δ∗)1/2,
for some constant C > 0.

As expected, as the percentage of noise added to the measurement data increases, the
general trend is that the accuracy with which the surface location is predicted worsens. The
large fluctuations about this general trend are mainly due to the random nature of the noise.
(Note that δ∗ is proportional to the standard deviation of the population from which the
random noise is sampled rather than being the root mean square of the particular realisation
of the random noise.) As noted already in connection with Figure 8, the accuracy of prediction
is much worse for x1 = 4λ than for x1 = 0. Precisely, in Figure 9, the surface location is
predicted to within 10−3λ for x1 = 0 and to within 10−1.4λ ≈ 0.04λ for x1 = 4λ, for small
values of δ∗, the percentage error.

At x1 = 0, |X2 − f(x1)| appears to approach zero approximately in proportion to (δ∗)1/2;
the rate of convergence at x1 = 4λ is possibly a little slower. In [18, 19] similar graphs are
plotted for the corresponding frequency domain scattering problem with F i time harmonic
with wavelength λ. In the frequency domain case (solving the inverse problem of Section 3)
similar rates of convergence as δ∗ → 0 are observed. However the accuracy of the predicted
surface location is improved significantly when using the time domain algorithm, especially
for larger δ∗.

The plotting of the two curves in Figure 9 is motivated by Remark 3.1 which suggests that
there may be issues of non-uniqueness for the inverse problem. Precisely, for the case of an
incident time harmonic plane wave, with wavelength λ, it is pointed out in the remark that two
flat boundaries a distance λ/2 apart can produce the same scattered field. The dashed curves
in Figure 9 suggest that, if the search for the surface is constrained, by a priori knowledge,
to a neighbourhood of the actual surface position, the reconstructions are improved for larger
values of the percentage error, δ∗. Precisely, a significant improvement is seen when δ∗ > 8
for x1 = 0 and when δ∗ > 2 for x1 = 4λ.

6 Conclusions

In this paper we have proposed point source method algorithms for inverse scattering by
unbounded rough surfaces. These algorithms, in the first instance, reconstruct the total field
above the scattering surface from limited measurement, on a finite line above the surface. For
the case of a time harmonic incident field we have briefly sketched a theoretical justification for
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our method, culminating in the error bound of Theorem 3.1 – for a more complete justification
see [18, 19]. Based on this frequency domain algorithm we have proposed a time domain
point source method, in which we approximate the actual incident field by a finite sum of
time harmonic fields and then apply the point source algorithm for time harmonic waves. A
rigorous convergence analysis has not been established for this method (it seems to us to need
an understanding of how the constant C in Theorem 3.1 depends on the wavenumber). But
numerical results show that the time domain point source method can be very effective.

In the numerical experiments that we have carried out we have chosen an incident pulse
that is similar to that arising in ground penetrating radar applications. With the measure-
ment line 21

4 wavelengths from the mean surface level, the reconstructed total fields agree
very well with the exact total field, and when 5% noise is added to the measurements the
incident and reflected pulse positions in time are very accurate and clearly observable. Hav-
ing reconstructed the total field, the scattering surface, on which the total field vanishes, is
located as the locus of minima of the reconstructed total field. These reconstructions are ac-
curate, over a large part of the scattering surface, with the surface height recovered to within
a small fraction of a wavelength, even with 5% noise. We have also investigated numerically
the convergence of the reconstructed surface to the true surface as the noise level (and the
regularisation parameter in the method) tend to zero. A convergence rate of approximately
(δ∗)1/2, where δ∗ is the percentage error, is observed.

Finally we remark that, although all the reconstructions in this paper have been for the
case where the total field vanishes on the boundary, it seems to us that the time domain
point source method is likely to have more general application. In particular, the formulae
for reconstructing the total field up to the surface as a function of time can be expected to
work for general boundary conditions. It seems to us that there are good prospects then for
identifying the surface, even without knowledge of the boundary condition, as the locus of
those points where the incident and reflected pulses coincide in time.

References

[1] T. Arens. Why linear sampling works! Inverse Problems, 20:163–173, 2004.

[2] T. Arens and Kirsch. A. the factorization method in inverse scattering from periodic
structures. Inverse Problems, 19:1195–1211, 2003.

[3] S. N. Chandler-Wilde. The impedance boundary value problem for the Helmholtz equa-
tion in a half-plane. Math. Meth. Appl. Sci., 20:813–840, 1997.

[4] S. N. Chandler-Wilde and D. C. Hothersall. Efficient calculation of the Green function for
acoustic propagation above a homogeneous impedance plane. J. Sound Vib., 180:705–724,
1995.

[5] S. N. Chandler-Wilde and C. R. Ross. Scattering by rough surfaces: the Dirichlet problem
for the Helmholtz equation in a non-locally perturbed half-plane. Math. Meth. Appl. Sci.,
19:959–976, 1996.

[6] S. N. Chandler-Wilde, C. R. Ross, and B. Zhang. Scattering by rough surfaces. In
J. DeSanto, editor, Proceedings of the Fourth International Conference on Mathematical

and Numerical Aspects of Wave Propagation, pages 164–168. SIAM, 1998.

15



[7] S. N. Chandler-Wilde, C. R. Ross, and B. Zhang. Scattering by infinite one-dimensional
rough surfaces. Proc. R. Soc. Lon. A, 455:3767–3787, 1999.

[8] M. Cheney. A mathematical tutorial on synthetic aperture radar. SIAM Rev, 43:301–312,
2001.

[9] R. Coifman, M. Goldberg, T. Hrycak, M. Israeli, and V. Rokhlin. An improved operator
expansion algorithm for direct and inverse scattering computations. Waves in Random

Media, 9:441–457, 1999.

[10] D. Colton, J. Coyle, and P. Monk. Recent developments in inverse acoustic scattering
theory. SIAM Rev., 42:369–414, 2000.

[11] D. Colton and A. Kirsch. A simple method for solving inverse scattering problems in the
resonance region. Inverse Problems, 12:383–393, 1996.

[12] J. A. DeSanto and R. J. Wombell. The reconstruction of shallow rough-surface profiles
from scattered field data. Inverse Problems, 7:L7–L12, 1991.

[13] J. Elschner and M. Yamamoto. An inverse problem in periodic diffractive optics: Recon-
struction of lipschitz grating profiles. Applicable Analysis, 81:1307–1328, 2002.

[14] D. Goodman and L. Conyers. Ground Penetrating Radar, An Introduction for Archaeol-

ogists. AltaMira, 1997.

[15] M. Ikehata. On reconstruction in the inverse conductivity problem with one measurement.
Inverse Problems, 16:785–793, 2000.

[16] A. Kirsch. Characterization of the shape of a scattering obstacle using the spectral data
of the far field operator. Inverse Problems, 14:1489–1512, 1998.

[17] R. Kress. Linear Integral Equations. Springer, Berlin, 1989.

[18] C. D. Lines. Inverse Scattering by Unbounded Rough Surfaces. PhD thesis, Brunel
University, 2003.

[19] C. D. Lines and S. N. Chandler-Wilde. A point source method for inverse scattering by
rough surfaces. In preparation.

[20] A. Meier. Numerical Treatment of Integral Equations on the Real Line with Application

to Acoustic Scattering by Unbounded Rough Surfaces. PhD thesis, Brunel University,
2001.

[21] A. Meier, T. Arens, S. N. Chandler-Wilde, and A. Kirsch. A Nyström method for a
class of integral equations on the real line with applications to scattering by diffraction
gratings and rough surfaces. J. Int Equ. Appl., 12:281–321, 2000.

[22] D. E. Newland. An Introduction to Random Vibrations, Spectral and Wavelet Analysis.
Longman, 1993.

[23] R. Potthast. A point source method for inverse acoustic and electromagnetic obstacle
scattering problems. IMA J. Appl. Math., 61:119–140, 1998.

16



[24] R. Potthast. Point Sources and Multipoles in Inverse Scattering Theory. CRC Press,
2001.

[25] R. Potthast and D. Luke. The no response test - a sampling method for inverse scattering
problems. Siam J. Appl. Math., 63:1292–1312, 2003.

[26] R. Potthast, J. Sylvester, and S. Kusiak. A ’Range test’ for determining scatterers with
unknown physical properties. Inverse Problems, 19:533–547, 2003.

[27] C. Sheppard. Imaging of random surfaces and inverse scattering in the Kirchhoff approx-
imation. Waves in Random Media, 8:53–66, 1998.

[28] M. Spivack. Direct solution of the inverse problem for rough scattering at grazing inci-
dence. J. Phys. A: Math. Gen, 25:3295–3302, 1992.

[29] R. J. Wombell and J. A. DeSanto. Reconstruction of rough-surface profiles with the
Kirchhoff approximation. J. Opt. Soc. Am., 8:1892–1897, 1991.

[30] C. Ying and A. Noguchi. Rough surface inverse scattering problem with gaussian beam
illumination. IEICE Trans. Electron., E77-C(11):1781–1785, 1994.

17



−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

x
1
/λ

x 2/λ

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

x
1
/λ

x 2/λ

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

x
1
/λ

x 2/λ

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

x
1
/λ

x 2/λ

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

x
1
/λ

x 2/λ

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

x
1
/λ

x 2/λ

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

x
1
/λ

x 2/λ

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

x
1
/λ

x 2/λ

Figure 4: The reconstructed total field, Uα
N (x, t), for t = 3.2ns, 5.2ns, 6.2ns, 7.2ns, 8.2ns,

9.2ns, 10.2ns and 12.2ns (from top left to bottom right) for surface (34).
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Figure 5: The reconstructed total field, Uα
N,δ(x, t), for t = 3.2ns, 5.2ns, 6.2ns, 7.2ns, 8.2ns,

9.2ns, 10.2ns and 12.2ns (from top left to bottom right) for surface (34) with δ∗ = 5, i.e 5%
noise added to the measurement data.
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Figure 6: Comparison of the reconstructed total field, Uα
N (x, t), and the exact total field,

UN (x, t), for the surface (34) on the time interval 0 < t ≤ T = 20ns. The total fields are
compared at the points x = (0, 3.5λ), x = (0, 2.6λ), x = (0, 1.6λ) and x = (0, 0.5λ) (from
top to bottom). Note that the surface is at height 1.5λ. Thus the bottom plot shows a
reconstructed total field for a point x below the surface. The reconstructions are so accurate
that most of the graphs are superposed.
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Figure 7: As Figure 6 but with 5% noise added to the measurements.
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Figure 8: A plot of the power content, P (x), of the total electric field (left hand side). On the
right hand side we predict the surface location from this plot by colouring in, in each column,
the square in which P (x) is minimised as a function of x2. The bottom two plots show the
case when 5% noise is added to the measurements.
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Figure 9: Results showing the accuracy of the predicted surface location, |X2 − f(x1)|/λ, as
δ∗ increases. Shown are results for the rough surface (34) where Uα

N,δ(x, z) is calculated on
the vertical line x1 = 0 (left hand plot) and on the vertical line x1 = 4λ (right hand plot).
The dashed line shows the distance of X2 from f(x1) when x2 minimises P (x) over the range
λ/2 < x2 < 5λ/2 and the solid line shows the distance of X2 from f(x1) when x2 minimises
P (x) over the range f(x1)−λ/3 < x2 < f(x1)+λ/3. The dotted line is the graph of C(δ∗)1/2,
where C > 0 is a constant.
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