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Abstract

There are various formulations as BVPs or BIEs
(boundary integral equations) for screen scat-
tering problems in acoustics, all equivalent when
the screen occupies a bounded open Lipschitz
subset of the plane. Motivated by applications
in electromagnetics and ultrasonics we explore
what happens when the screen is less regular,
in particular fractal or with fractal boundary.
The standard formulations divide into an infi-
nite family of well-posed BVP and equivalent
BIE formulations, with infinitely many distinct
solutions. We use “limiting geometry” argu-
ments to select physically appropriate solutions,
and illustrate numerically the surprising new ef-
fects that arise.
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1 Introduction

We consider time-harmonic acoustic scattering
problems modelled by the Helmholtz equation

∆u+ k2u = 0, (1)

where k > 0. Our focus is on scattering by thin
planar screens in Rn (n = 2 or 3), so that the
domain in which (1) holds is D := Rn\Γ, where
Γ, the screen, is a bounded subset of the hyper-
plane Γ∞ := {x = (x1, ..., xn) ∈ Rn : xn =
0}, and the compact set Γ is its closure. As
usual, the complex-valued function u can be in-
terpreted physically as the (total) acoustic pres-
sure field, and we write u as u = ui + us, where
ui is the incident field chosen to be the plane
wave

ui(x) = exp(ikd · x)

where d is a unit vector, the direction of inci-
dence. The scattered field us := u − ui is as-
sumed to satisfy (1) and the standard Sommer-
feld radiation condition. For brevity we restrict
attention to sound-hard boundary conditions,
assuming that

∂u

∂n
= 0 (2)

on the screen in some appropriate sense, where
n is the unit normal pointing in the xn direction.
(For generalisations to other incident fields and
a treatment of sound soft scattering see [4].)

This is a long-standing scattering problem,
its mathematical study dating back at least to
[10], and it is well-known [4, 14] that, for ar-
bitrary bounded Γ ⊂ Γ∞, this problem is well-
posed (and the solution depends only on the clo-
sure Γ) if the boundary condition is understood

in the standard weak sense that u ∈ W 1,loc
2 (D)

and∫
D

(v∆u+∇v · ∇u) dx = 0, v ∈W 1,comp
2 (D).

(3)
In the standard case that Γ is a (relatively)

open subset of Γ∞ that is Lipschitz or smoother,
the alternative, classical formulation, dating to
the late 40s [1], imposes the boundary condi-
tions (2) in a classical sense, and additionally
imposes “edge conditions” requiring locally fi-
nite energy, that u and ∇u are square inte-
grable in some neighbourhood of ∂Γ. Equiv-
alently, one can formulate a BVP for us in a
Sobolev space setting, seeking us ∈ W 1,loc

2 (D)
satisfying (1) and the radiation condition, and
imposing the boundary condition (2) in a trace
sense, requiring that the Neumann traces on
Γ∞, ∂±n u

s, satisfy (∂±n u
s)|Γ = g ∈ H−1/2(Γ),

where g := −(∂±n u
i)|Γ (see, e.g., [11]). Finally,

it is well-known (e.g. [11]) that for Lipschitz Γ
one can reformulate this BVP as the BIE

T [u] = g. (4)

In this equation the unknown is the jump across
the screen in u, [u] ∈ H̃1/2(Γ), and the isomor-
phism T : H̃1/2(Γ) → H−1/2(Γ) is a hypersin-
gular boundary integral operator (BIO). Here
H̃s(Γ) ⊂ Hs(Γ∞), for s ∈ R, denotes the clo-
sure in Hs(Γ∞) of C∞0 (Γ). As pointed out in [3],
(4) is well-posed for arbitrary open Γ. The total
field u is given in terms of [u] by

u(x) = ui(x) +D[u](x), x ∈ D, (5)
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where D : H
1/2

Γ
→ C2(D) ∩ W 1,loc

2 (D) is the
standard double-layer potential operator, and

H
1/2

Γ
⊂ H1/2(Γ∞) is the closed subspace of those

φ ∈ H1/2(Γ∞) that are supported in Γ. We note

that H̃1/2(Γ) ⊂ H1/2

Γ
, that these spaces coincide

if Γ is sufficiently regular, in particular if Γ is
a C0 open set, but that in general these spaces
are distinct.

In this paper we explore what happens when
the screen Γ is irregular, in particular fractal or
with fractal boundary, this motivated by the use
of planar screens with precisely these structures
as antennae in electromagnetics and ultrasonics
(e.g., [8,9,12]). We will see in §2 that the stan-
dard classical/Sobolev spaces formulations can
be ill-posed, or if well-posed have solution differ-
ent to the standard weak formulation. In §3 we
will see that there exists, when the screen is suf-
ficiently irregular, a whole family of well-posed
BVP and BIE formulations with infinitely many
distinct solutions. In §4 we discuss the selection
of a correct solution by taking limits with re-
spect to the geometry. In the last two sections
we explore theoretically, illustrated by numeri-
cal computations, wave penetration through a
zero-surface-area fractal “hole” in a sound hard
screen.

We use throughout the notation S◦ to de-
note the (relative) interior of S ⊂ Γ∞. For Borel
S ⊂ Γ∞ we will denote by m(S) the (n − 1)-
dimensional (surface) Lebesgue measure of S,
and by cap(S) the n-dimensional capacity of S
defined as in [4]. For s ∈ R we will say that S is
s-null if the only φ ∈ Hs(Γ∞) with supp(φ) ⊂
S is φ = 0. Importantly, it holds that S is
−1/2-null if and only if cap(S) = 0, and that
cap(S) > 0 if dimH(S) > n−2, while cap(S) = 0
if dimH(S) < n − 2, where dimH(S) denotes
the Hausdorff dimension of S. For proofs of
these statements and other characterisations of
s-nullity see [7].

2 Equivalence and well-posedness (or not)
of standard formulations

As we have observed above, the weak formula-
tion of the scattering problem, with the bound-
ary condition imposed in the sense (2), is well-
posed for every bounded Γ ⊂ Γ∞. The (equiv-
alent) classical and Sobolev space formulations
above equation (4), however, are only well-posed
for sufficiently regular Γ. Precisely:

Theorem 1 [4] The classical and Sobolev space
problems formulations are well-posed if and only

if H̃1/2(Γ◦) = H
1/2

Γ
and ∂Γ is −1/2-null. In

particular, these formulations are well-posed if
Γ is a Lipschitz open set, or if Γ is C0 ex-
cept at a countable set of points that has only
finitely many limit points, provided also ∂Γ ⊂
∪∞j=1∂Ωj, with each Ωj ⊂ Γ∞ a Lipschitz open
set. But these formulations are not well-posed if
cap(∂Γ) > 0, in particular if dimH(∂Γ) > n−2.
If these formulations are well-posed then they
are equivalent to the weak formulation.

Figure 1 illustrates this theorem for n = 3
with a (non-Lipschitz, indeed non-C0) exam-
ple of a screen for which the classical/Sobolev
space formulations are well-posed, and an ex-
ample (the Koch snowflake) where these formu-
lations are not well-posed (because dimH(∂Γ) =
log 4/ log 3 > 1).

Figure 1: Example sound hard screens for
which the classical/Sobolev space formulations
are well-posed (top) and not well-posed (bot-
tom).

The solution to the weak formulation always
satisfies the classical and Sobolev space formu-
lations, so that when well-posedness of these
latter formulations fails it is because the stan-
dard edge conditions are insufficient to ensure
uniqueness if the screen is sufficiently irregular.
But these formulations become well-posed if the
standard edge conditions are supplemented by
the conditions in the following theorem.
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Theorem 2 [4] The classical and Sobolev space
problems formulations, supplemented by the ad-
ditional requirements that: a) [u] ∈ H̃1/2(Γ);
b) [∂nu] = 0; are well-posed for every bounded
open Γ ⊂ Γ∞.

If H̃1/2(Γ) & H
1/2

Γ
, which holds in partic-

ular if dimH(Γ
◦ \ Γ◦) > n − 2 [2, 4], then the

equivalent classical/Sobolev space formulations
supplemented by the additional constraints a)
and b) are well-posed, but [4] their unique so-
lution is different from the solution to the weak
formulation, for almost all incident wave direc-
tions d. Indeed, we will see in the next section

that when H̃1/2(Γ) & H
1/2

Γ
there exists an in-

finite family of well-posed BVPs, intermediate
between the weak and classical formulations.

3 An infinite family of BVP and BIE
formulations

Recall that H−1/2(Γ∞) is (a unitary realisation
of) the dual space of H1/2(Γ∞) through the du-
ality pairing 〈·, ·〉 on H−1/2(Γ∞) × H1/2(Γ∞)
that extends the L2(Γ∞) inner product. Let V
be a closed subspace of H1/2(Γ∞), in particular
we will be interested in subspaces satisfying

H̃1/2(Γ◦) ⊂ V ⊂ H1/2

Γ
. (6)

Let V a := {φ ∈ H−1/2(Γ∞) : 〈φ, ψ〉 = 0 for all
ψ ∈ V } be the annihilator of V , and let V ∗ :=
(V a)⊥ ⊂ H−1/2(Γ∞), so that V ∗ is the natu-
ral unitary realisation of the dual space of V
through the duality pairing that is the restric-
tion of 〈·, ·〉 to V ∗×V [2]. Let P : H−1/2(Γ∞)→
V ∗ be orthogonal projection. Explicitly, V ∗ =

(H̃−1/2((Γ)c))⊥ if V = H
1/2

Γ
, where c denotes

complement in Γ∞. Similarly, V ∗ = (H
−1/2
(Γ◦)c)

⊥

if V = H̃1/2(Γ◦).

We can associate to each V ⊂ H1/2

Γ
a formu-

lation SN(V ) of the scattering problem, this a
physically sensible mathematical model if V is
constrained by (6), and interesting as a numeri-
cal approximation when V is finite-dimensional.
In this formulation D1 denotes the set of those
χ ∈ C∞0 (Γ∞) that are = 1 in some neighbour-
hood of Γ

Scattering Problem SN(V): Find u ∈ C2(D)

∩W 1,loc
2 (D) such that: i) (1) holds in D; ii)

us := u − ui satisfies the Sommerfeld radiation
condition; iii) [u] ∈ V ; iv) [∂nu] = 0; v) the

boundary condition (2) holds on Γ in the sense
that P (χ∂±n u) = 0, for every χ ∈ D1.

The choice of V in SN(V ) plays two roles:
the larger V is the larger the space in which
we constrain [u] to lie, and simultaneously the
stronger the sense in which we impose the bound-
ary condition (2). In particular [4]: a) if V =

H
1/2

Γ
then SN(V ) is equivalent to the weak for-

mulation with the boundary condition under-
stood in the sense (3); and b), for every V sat-
isfying (6) the boundary condition in the sense
v) implies that (∂±n u)|Γ◦ = 0, indeed is equiva-
lent to this condition if V = H̃1/2(Γ◦).

Theorem 3 [4] SN(V ) has exactly one solu-
tion, and this solution is a solution to the clas-
sical/Sobolev space formulation above (4) if V
satisfies (6), indeed SN(V ) is equivalent to the
classical/Sobolev space formulation augmented
by the conditions iii) and iv) if V = H̃1/2(Γ◦).

If V = H
1/2

Γ
then the solution to SN(V ) coin-

cides with the solution to the weak formulation
with boundary condition in the sense (3). If

H̃1/2(Γ◦) = H
1/2

Γ
then there is only one formu-

lation SN(V ) satisfying (6), but if H̃1/2(Γ◦) $
H

1/2

Γ
there are infinitely many (with cardinal-

ity that of the continuum) distinct formulations,
and for almost all incident wave directions these
formulations have infinitely many distinct solu-
tions.

To each V ⊂ H
1/2

Γ
we can also associate a

unique BIE formulation. To define the associ-
ated BIO, choose any bounded open set Γ† ⊃ Γ,

let T† : H̃1/2(Γ†)→ H−1/2(Γ†) be the standard

hypersingular BIO on H̃1/2(Γ†) ⊃ H
1/2

Γ
⊃ V ,

and define the hypersingular operator TV : V →
V ∗ by

TV φ = PET†φ, φ ∈ V,
where E : H−1/2(Γ†) → H−1/2(Γ∞) is the op-
erator of minimum norm extension.

Theorem 4 [4] For every V ⊂ H
1/2

Γ
the hy-

persingular operator TV : V → V ∗ is an isomor-
phism. Further, u satisfies SN(V ) if and only
if (5) holds and [u] ∈ V and satisfies, for some
χ ∈ D1,

TV [u] = −P (χ∂±n u
i). (7)

Moreover, (7) can be written equivalently in vari-
ational form as

〈TV [u], v〉 = −〈χ∂±n ui, v〉, v ∈ V.
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4 Limiting geometry principles

If H̃1/2(Γ◦) = H
1/2

Γ
the formulations SN(V )

that satisfy (6) collapse to a single formula-
tion, equivalent to the standard weak formu-
lation with boundary condition (3). So there is
a single unique solution in this case. We note

that H̃1/2(Γ◦) = H
1/2

Γ
if Γ is a C0 open set, and

also if Γ is C0 except at countably many points
on ∂Γ, as long as this set has only finitely many
limit points [2] (an example is the screen at the
top of Figure 1).

On the other hand, if H̃1/2(Γ◦) $ H
1/2

Γ
,

there are infinitely many distinct solutions to
the formulations SN(V ) by Theorem 3. We
propose to select physically appropriate solu-
tions by thinking of the screen Γ as limj→∞ Γj ,
with convergence in some appropriate sense and
with each bounded Γj ⊂ Γ∞ satisfying H̃1/2(Γ◦j )

= H
1/2

Γj
. If the (well-defined) solution uj , for

scattering by Γj , converges to a limit u which
satisfies SN(V ) for some V satisfying (6), we
will say that SN(V ) is the correct formulation
for scattering by Γ in this limit. This approach
for selecting the correct formulation, which we
term a limiting geometry principle, seems nat-
ural for the many fractal scatterers defined as
the limit of a sequence of regular prefractals,
and dates back, in the context of potential the-
ory, to Wiener [13].

Given a bounded screen Γ ⊂ Γ∞ there are
many different possible approximating sequences
Γj , and many different senses in which Γj may
converge to Γ, and correspondingly we expect
many different formulations SN(V ) to be ap-
propriate as particular limiting geometry solu-
tions (LGSs) [4]. We will focus here on the fol-
lowing particular cases:

Definition 5 (LGS for an Open Screen) If
Γ ⊂ Γ∞ is bounded and open, we call the total
field u a LGS for the open screen Γ if there ex-
ists a sequence (Γj)j∈N of open subsets of Γ∞
such that: (i) Γ1 ⊂ Γ2 ⊂ ... and Γ = ∪∞j=1Γj;

(ii) for j ∈ N, H̃1/2(Γj) = H
1/2

Γj
, so that the

formulations SN(V ) satisfying (6) collapse to
a single formulation with a well-defined unique
solution uj; (iii) for x ∈ D = Rn \ Γ, u(x) =
limj→∞ uj(x).

Definition 6 (LGS for a Closed Screen) If
Γ ⊂ Γ∞ is compact, call the total field u a LGS

for the closed screen Γ if there exists a sequence
(Γj)j∈N of compact subsets of Γ∞ such that: (i)
Γ1 ⊃ Γ2 ⊃ ... and Γ = ∩∞j=1Γj; (ii) for j ∈
N, H̃1/2(Γ◦j ) = H

1/2
Γj

, so that the formulations

SN(V ) satisfying (6) collapse to a single for-
mulation with a well-defined unique solution uj;
(iii) for x ∈ D = Rn \ Γ, u(x) = limj→∞ uj(x).

The following characterises these LGSs in
terms of the formulations SN(V ).

Theorem 7 [4] For every bounded open screen
Γ there exists a unique LGS u, and this is the
unique solution of SN(V ) with V = H̃1/2(Γ).
Similarly, for every compact screen Γ there ex-
ists a unique LGS u, and this is the unique so-

lution of SN(V ) with V = H
1/2
Γ .

5 What differences between formulations
are detectable in the scattered field?

Our first result is concerned with whether the
incident field “sees” the screen, i.e., for which Γ
and ui it holds that us 6= 0.

Theorem 8 [4] Suppose that u satisfies SN(V )

for some V ⊂ H
1/2

Γ
. Then u = ui (so that

us = 0) if Γ is 1/2-null. If Γ is not 1/2-null,

i.e., H
1/2

Γ
6= {0}, and {0} 6= V ⊂ H

1/2

Γ
, then

u 6= ui for almost all incident directions d.
Γ is 1/2-null if m(Γ) = 0, and clearly not

1/2-null if Γ◦ is non-empty. There exist screens
with Γ◦ = ∅ and m(Γ) > 0 with Γ not 1/2-
null [4, Example 9.3].

In the interesting case that Γ◦ = ∅ and Γ
is not 1/2-null, the above result implies that
SN(V1) and SN(V2) have distinct solutions for

almost all incident directions if V1 = H
1/2

Γ
and

V2 = H̃1/2(Γ◦) = {0}. The following theorem
implies results of the same flavour for general
screens Γ.

Theorem 9 [4] Suppose that V1 and V2 are
subspaces satisfying (6) and that uj is the solu-
tion to SN(Vj), for j = 1, 2. Then u1 = u2 if

H̃1/2(Γ◦) = H
1/2

Γ
, while u1 6= u2 for almost all

incident directions d if H̃1/2(Γ◦) 6= H
1/2

Γ
and

V1 6= V2. Further, H̃1/2(Γ◦) 6= H
1/2

Γ
if Γ \ Γ◦ is

1/2-null or if Γ
◦ \Γ◦ is −1/2-null, in particular

if dimH(Γ
◦ \ Γ◦) > n− 2.
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Figure 2: The first five prefractal approxima-
tions to the standard two-dimensional middle-
third Cantor set (or Cantor dust).

6 Fractal apertures in a sound hard screen:
theory and numerical results

As an illustration of the above results (cf. [2,
Remark 4.6], [4, Example 9.5]) suppose that n =
2 or 3 and let

Cj :=
{

(x̃, 0) : x̃ ∈ En−1
j−1

}
⊂ Γ∞,

with R ⊃ E0 ⊃ E1 ⊃ . . . the standard recursive
sequence generating the “middle-λ” Cantor set,
for some 0 < λ < 1 [5, Example 4.5]. Where
α = (1 − λ)/2 ∈ (0, 1/2), explicitly E0 = [0, 1],
E1 = [0, α]∪[1−α, 1], E2 = [0, α2]∪[α−α2, α]∪
[1 − α, 1 − α + α2] ∪ [1 − α2, 1], ..., so that
Ej ⊂ R is the closure of a Lipschitz open set
that is the union of 2j open intervals of length
αj , while E2

j ⊂ R2 is the closure of a Lips-

chitz open set that is the union of 4j squares
of side-length αj . The limit C := ∩∞j=1Cj is
the middle-λ Cantor set for n = 2, the cor-
responding Cantor dust for n = 3, with [5]
dimH(C) = 2n−2 log(2)/ log(1/α). Figure 2 vi-
sualises E2

0 , . . . , E
2
4 (i.e., C1, .., C5 for n = 3) in

the classical “middle third” case α = λ = 1/3.
Let Γ0 := C◦1 , and, for j ∈ N, let Γj :=

Γ0 \ Cj , so that Γj is a Lipschitz open set. Let
Γ := ∪∞j=1Γj = Γ0 \ C. Let u0 denote the total
field for scattering by the screen Γ0 (just the
unit interval for n = 2, a unit square for n = 3)
which we compare with scattering by Γ, which
is Γ0 with the fractal “hole” C removed. Let uj
denote the solution for scattering by Γj and u
the LGS for the open set Γ in the sense of Def-
inition 5 which, by Theorem 7, is the solution
to SN(V ) with V = H̃1/2(Γ). Then uj → u
as j →∞ pointwise, and also [4] locally in W 1

2

norm on compact subsets of D.
Whether the “hole” C has an effect, i.e.,

whether u 6= u0, depends on the dimension and
on λ. The total fields u0 and u are the solutions
to the formulations SN(V1) and SN(V2), re-

spectively, with V1 = H
1/2

Γ
= H

1/2

Γ0
= H̃1/2(Γ0)

and V2 = H̃1/2(Γ). Thus, by Theorem 9, for

almost all incident wave directions, u 6= u0 if
dimH(Γ0 \ Γ) = dimH(C) > n − 2, which holds
if n = 2 or if n = 3 and α > 1/4, so the hole
has an effect in these cases. More detailed anal-
ysis [4] shows that u = u0, i.e., the hole has no
effect, if n = 3 and α ≤ 1/4.

Figure 3: Reflection and transmission by a pre-
fractal Cantor set aperture Cj in a sound hard
screen: j = 2 (top); j = 5 (middle); j = 8
(bottom).

Figure 3 shows numerical results for n = 2
and α = λ = 1/3 for a slightly modified prob-
lem of scattering by the fractal “hole” or aper-
ture C in an infinite sound hard screen, which
can be reduced to a (sound soft) screen scatter-
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ing problem by a Babinet principle (e.g., [6]).
Shown is <uj , computed accurately by a BEM
for j = 2, 5, 8, where uj is the total field when
d = (1,−1)/

√
2 and the incident field has wave-

length 0.3, so that k = 20π/3 ≈ 20.94, and with
the fractal hole C replaced by its prefractal ap-
proximation Cj . Our theoretical results predict
that uj approaches a limit that is different from
the solution for a screen with no hole, i.e., a
limit with a finite non-zero scattered field in the
lower half-plane. This indeed seems to be the
case, even though in this limit the hole has van-
ishing size: the total length of the components
of Cj is (2/3)j−1, which tends to zero as j →∞
and is ≈ 0.059 for j = 8.
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