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Abstract. In this paper we study the application of boundary integral equation methods to

the solution of the Helmholtz equation in a locally perturbed half–plane with Robin or impedance

boundary conditions. This problem models outdoor noise propagation from a cutting onto a sur-

rounding flat plane, and also the harbour resonance problem in coastal engineering. We employ

Green’s theorem to derive a system of three coupled integral equations. The three unknowns are

the pressure on the boundary of the disturbance and the pressure and its normal derivative on the

interface with the upper half–space. We prove that the integral equation formulation has a unique

solution at all wavenumbers by proving equivalence of the boundary value problem and the integral

equation formulation and proving uniqueness of solution for the boundary value problem.

Key words. Half–plane, Boundary integral equations, Helmholtz equation, uniqueness.

1. Introduction. In this paper a boundary integral equation formulation for the

two–dimensional Helmholtz equation in a locally perturbed half–plane is developed

to calculate sound propagation out of a cutting of arbitrary cross–section and surface

impedance onto surrounding flat rigid or homogeneous impedance ground. Specifi-

cally, the case considered is that of propagation from a monofrequency coherent line

source in a cutting which is assumed to be straight and infinitely long with cross–

section and surface treatment that do not vary along its length. The impedance is

allowed to vary in the cutting in the plane perpendicular to the line source so that
1
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it is possible to model, for example, a road running down the centre of the cutting,

with grass banks on either side.

Let U = {(x1, x2) : x1 ∈ R, x2 > 0} be the upper half–plane with boundary

∂U = {(x1, 0) : x1 ∈ R} and let x(1) = (a, 0), x(2) = (b, 0) ∈ ∂U with a < b,

γ2 := {(x1, 0) : a ≤ x1 ≤ b} and γ3 := ∂U\γ2. Let γ1 be any simple arc connecting

and including x(1) and x(2) which lies entirely (apart from its end–points x(1) and

x(2)) below the closed upper half–plane U and is such that γ1 ∪ γ3 is an infinite arc

of class C2. Then γ1 ∪ γ3 divides the plane into two regions. Let D be the region

above γ1 ∪ γ3 = ∂D, containing U , and let S be the region enclosed by γ1 ∪ γ2; see

Figure 5.1.

We will discuss the solution of the boundary value problem (BVP) consisting

of the Helmholtz equation in the region D with an impedance or Robin boundary

condition on ∂D and its reformulation as a boundary integral equation (BIE). We

will assume throughout that γ3 has a constant admittance βc with βc = 0 (rigid

boundary) or <βc > 0 (energy absorbing boundary).

Boundary integral equation formulations for this problem but assuming an en-

tirely rigid boundary (leading to a Neumann boundary condition) are given in the

context of predicting water–wave climates in harbours in [1, 2, 3]. The harbour res-

onance problem is of importance in coastal engineering, where small harbour oscilla-

tions excite large motions in ship–mooring causing considerable damage. To minimize

such events the characteristics of harbour response must be determined. Hwang and

Tuck [1] adopt a single–layer potential method which determines the wave–induced

oscillations using a distribution of sources along the boundary of the harbour (γ1) and

coastline (γ3) with unknown source strengths. Lee [2] applies Green’s second theorem

in both the regions inside and outside the harbour, S and U , respectively, which is the

method adopted in this paper, and matches the wave amplitudes and their normal

derivatives at the harbour entrance (γ2). The same integral equation approach as

Lee [2] is used by Shaw [3]. These methods were compared with experimental scale
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model measurements for rectangular basins and real harbours and good agreement

was found.

Gartmeier [4] applied the integral equation method to the Dirichlet and Neumann

problems in the three–dimensional case where the region is a half–space with a local

disturbance directed into the medium of propagation. Chandler–Wilde et. al. [5]

and Hothersall et. al. [6] consider a similar integral equation formulation for the

two–dimensional case with impedance boundary conditions, as a model of outdoor

sound propagation over noise barriers on an impedance plane. Peplow et. al. [7] make

numerical predictions of sound attenuation, in excess of free-field propagation, for a

traffic noise spectrum for a real site where the traffic noise is propagating out of a

cutting and onto surrounding flat ground similar to the model used in this study.

Proving uniqueness here guarantees non–spurious solutions at all wavenumbers for

the numerical solutions in [7].

Willers [8] considers a general local disturbance and writes the solution of the

Dirichlet problem in the perturbed half–space in the form of a double–layer potential

with a density defined on the whole of the boundary, ∂D. An integral equation for

this density is found by imposing the Dirichlet data on ∂D. Willers reformulates this

integral equation as an integral equation with compact integral operator and proves

uniqueness and existence of solution for this integral equation and his original BVP

formulation. Willers derives a similar BIE formulation for the Neumann problem, but

his method does not appear to extend to the case of impedance (Robin) boundary

conditions considered here.

Using boundary integral equation or coupled integral equation/finite element

methods, various authors [9, 10, 11, 12] have considered the related problem of electro-

magnetic scattering by an indented perfectly conducting screen. In two dimensions,

with transverse magnetic polarization, this electromagnetic problem reduces to the

rigid boundary (Neumann condition) case of the problem considered here. In the

most recent of these papers, Asvestas and Kleinman [12] derive by an ingenious ar-
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gument a formulation of this electromagnetic problem as a single integral equation

on the local perturbation γ1 (as opposed to the system of three integral equations we

derive in this paper). For the case of an entirely rigid boundary their formulation as a

single integral equation must be preferred for efficient numerical computation to the

system of equations we discuss (with the caveat that Asvestas and Kleinman do not

establish that their integral equation is uniquely solvable at all frequencies). How-

ever, just as with the formulation of Willers [8], although their formulation applies to

both Dirichlet and Neumann boundary conditions, it appears that it is not possible

to extend it to the impedance boundary condition case. It must be emphasised here

that this study of a coupled system of three integral equations does not include a

proof of existence of solutions for the Robin problem. The construction of the proof

leads specifically to the uniqueness result. However recent results by Krutitskii [13]

and [14] give constructive methods that may lead to solvability. Indeed an entirely

different reformulation of the boundary value problem, to the one stated here, may

be necessary for a solvability proof.

Section 2 describes the formulation of the boundary value problem in the un-

bounded domain. It is proved in this section that the boundary value problem has a

unique solution at all wavenumbers by a modification of usual arguments employing

Green’s first theorem. Some known properties needed later of single–layer and double–

layer potentials and of a non-standard modified single–layer potential are summarised

in section 3.

The boundary integral equation is formulated in section 4, derived from the BVP

via applications of Green’s second theorem in U and S. Our formulation coincides

with that of Lee [2] when the boundary is completely rigid (βc = 0). For βc 6= 0

we use, as the fundamental solution in U , the Green’s function for the Helmholtz

equation in a half–plane with constant impedance boundary condition.

The integral equation formulation is a coupled system of three integral equations,

two second–kind Fredholm equations and one first–kind Fredholm equation. A com-
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mon problem with integral equation formulations in wave scattering is non–uniqueness

of solution at a discrete set of irregular wavenumbers: indeed, it appears that Asvestas

and Kleinman [12], in their introductory remarks, criticise our formulation, at least

in the rigid boundary case, as suffering from precisely this problem at resonances of

the region S. To the contrary, we establish in section 4 (and this is our main re-

sult) equivalence of our integral equation formulation with the original BVP and thus

uniqueness of solution of the integral equation formulation at all wavenumbers. Thus

the validity of our formulation and that used previously by Lee [2] is established.

Throughout, for x = (x1, x2) ∈ R2 let x′ = (x1,−x2) denote the image of x in

∂U . For G ⊂ R2 let G′ := {x′ : x ∈ G}. Let BR denote the open ball of radius R

centred on the origin

2. Formulation as a boundary value problem. For any domain G with

boundary ∂G of class C2, we introduce the linear space R(G) of all complex–valued

functions p ∈ C2(G) ∩ C(G) for which the normal derivative on the boundary exists

in the sense that the limit

∂p

∂n
(x) = lim

h→0
h>0

(n(x).∇p(x− hn(x))), x ∈ ∂G,

exists uniformly on ∂G, where n(x) is the unit normal at x ∈ ∂G directed out of G.

Given a source at x0 somewhere in the region D, the pressure induced at x, de-

noted by p(x) (a harmonic time dependence e−iwt is assumed and suppressed through-

out), may be written as the sum of the incoming field and the scattered field, that

is p(x) = Gf (x, x0) + P (x) where Gf (x, x0) := − i
4H

(1)
0 (k|x − x0|) (H(1)

0 the Hankel

function of the first–kind of order zero and k the wavenumber) is the free–field Green’s

function.

The pressure p is assumed to satisfy the following boundary value problem.

BVP1 Given k > 0 and β ∈ C(∂D) such that β is constant (=βc) on γ3, find

p : D\{x0} → C such that

p(x) = P (x) + Gf (x, x0), x ∈ D\{x0},(2.1)
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with P ∈ R(D)∩R(U)∩C1(D\γ1), and such that p satisfies the Helmholtz equation,

(∇2 + k2)p(x) = 0, x ∈ D\{x0},(2.2)

the impedance boundary condition,

∂p(x)/∂n = ikβ(x)p(x), x ∈ ∂D,(2.3)

and the Sommerfeld radiation and boundedness conditions,

∂p(x)/∂r − ik p(x) = o(r−1/2),

p(x) = O(r−1/2),(2.4)

uniformly in x as r := |x| → ∞.

Remark 2.1. The regularity assumption that P ∈ R(U) is superfluous in that

it is not required to prove uniqueness of solution of BVP1 (see Theorem 2.1). It is

included in the formulation to aid in deriving the boundary integral equations given

below, and with BVP1 as stated we will prove equivalence with the integral equation

formulation. The authors suspect that the other assumptions of BVP1 imply that

P ∈ R(U) but have not been able to prove this for a general β ∈ C(∂D). However,

if β is Hölder continuous in neighbourhoods of x(1) and x(2) then local regularity

arguments [15] can be used to show that ∇P is continuous in neighbourhoods of x(1)

and x(2). From this and P ∈ R(D) it follows that P ∈ R(U).

The above boundary value problem (BVP1) has at most one solution by the

following modification of usual arguments using Green’s first theorem [15].

Theorem 2.1. If <β(x) ≥ 0, x ∈ ∂D, and <βc > 0 or βc = 0, then BVP1 has

at most one solution.

Proof. Suppose that p1 and p2 both satisfy BVP1. Then p := p1 − p2 ∈ R(D) ∩
R(U) ∩ C1(D\γ1) satisfies the Helmholtz equation (2.2) in D, the Robin boundary

condition (2.3), and the Sommerfeld radiation and boundedness conditions (2.4). That

p ∈ R(D) ∩C1
(
D\γ1

)
and satisfies the Helmholtz equation suffices to guarantee the

validity of Green’s first theorem applied to p and its conjugate p in the domain BR∩D
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with R > maxx∈γ2 |x|. Thus

∫

BR∩D

(p∇2p + |∇p|2)dS =
∫

∂(BR∩D)

p ∂p/∂n ds.(2.5)

Since p satisfies the Helmholtz equation, the left hand side is real, so using the bound-

ary condition (2.3) and taking the imaginary part gives

0 = k

∫

∂D∩BR

<(β)|p|2ds + k

∫

∂BR∩D

|p|2ds + =
∫

∂BR∩D

p(∂p/∂r − ikp)ds.(2.6)

By the Sommerfeld radiation and boundedness conditions (2.4) the third term tends

to zero as R →∞. Since the other terms in equation (2.6) are non–negative it follows

that

∫

∂D

<(β)|p|2ds = 0(2.7)

and

lim
R→∞

∫

∂BR∩D

|p|2 = 0.(2.8)

From the first of these equations, by the boundary condition (2.3), it follows that

∂p/∂n = 0 on ∂D\γ2.

Now choose R1 > maxx∈γ2 |x| and define D := D\BR1 . Define p in D ′ by p(x) =

p(x′), x ∈ D ′. Then p ∈ C
(
R2\BR1

)
, p satisfies the Sommerfeld radiation and

boundedness conditions uniformly as x →∞ in R2\BR1 , and limR→∞
∫

∂BR
|p|2ds =

0.

By Green’s representation theorem [15, Theorem 3.3], applied in the regions D

and D ′,

∫

∂D

(
p(y)

∂Gf (x, y)
∂n(y)

− ∂p(y)
∂n

Gf (x, y)
)

ds(y) =





p(x), x ∈ D ,

0, x ∈ R2\D ,
(2.9)

∫

∂D ′

(
p(xs)

∂Gf (x, y)
∂n(y)

− ∂p(y)
∂n

Gf (x, y)
)

ds(y) =





p(x), x ∈ D ′,

0, x ∈ R2\D ′,
(2.10)
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where the normal is directed out of D and D ′ in the respective equations. Adding

the two equations, and since ∂p/∂n = 0 on ∂D\γ2, we obtain

p(x) =
∫

∂BR1

p(y)
∂Gf (x, y)

∂n(y)
− ∂p(y)

∂n
Gf (x, y) ds(y), x ∈ R2\BR1 .

Hence p ∈ C2(R2\BR1) and satisfies the Helmholtz equation in this region. Since

lim
R→∞

∫

∂BR1

|p|2 = 0,

from a result due to Rellich [16], p ≡ 0 in R2\BR1 . By analytic continuation [15,

Theorem 3.5], p ≡ 0 in D.

For future reference a theorem on uniqueness of solution of an exterior Dirichlet

problem is also stated. A proof is outlined in Jörgens [18] (and see Colton and Kress

[17]).

Theorem 2.2. Let Ω be an unbounded open connected subset of R2 with a

bounded boundary ∂Ω. Suppose that u ∈ C2(Ω) ∩ C(Ω) satisfies

(∇2 + k2
)
u = 0 in Ω,

u = 0 on ∂Ω,

and the Sommerfeld radiation and boundedness conditions (2.4). Then u ≡ 0 in Ω.

3. Single and double–layer potentials. Let γ be a closed curve of class C2

which encloses a bounded region Ω. Given a function φ ∈ C(γ), the function

u(x) = Sγφ(x) =
∫

γ

Gf (x, y)φ(y)ds(y), x ∈ R2,(3.1)

is called the single–layer potential with density φ, and, given ψ ∈ C(γ),

v(x) = Kγψ(x) =
∫

γ

∂Gf (x, y)
∂n(y)

ψ(y)ds(y), x ∈ R2,(3.2)

is called the double–layer potential with density ψ, where n(y) is the normal at y

directed out of Ω.

When x ∈ γ the integrals in (3.1) and (3.2) are well–defined as improper integrals

[15]. We shall distinguish by subscripts + and − the limits obtained by approaching
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the boundary γ from inside Ω and R2\Ω, respectively. It is easy to see that u, v ∈
C∞(R2\γ). In the following lemmas the regularity of u and v in the neighbourhood

of γ is addressed.

Lemma 3.1. [15, Theorem 2.12] The single–layer potential u with continuous

density φ is continuous throughout R2.

Lemma 3.2. [15, Corollary 2.20] For the single–layer potential u with continu-

ous density φ we have the jump relation

∂u+

∂n
− ∂u−

∂n
= −φ on γ,

where

∂u±
∂n

(x) = lim
h→0
h>0

∂u

∂n(x)
(x∓ h n(x)) , x ∈ γ,(3.3)

and the convergence in (3.3) is uniform on γ.

Lemma 3.3. [15, Theorem 2.13] The double–layer potential v with continuous

density ψ can be continuously extended from Ω to Ω and from R2\Ω to R2\Ω with

limiting values

v(x)± = Kψ(x) ± 1
2
ψ(x) on γ,

where

v±(x) := lim
h→0
h>0

v(x∓ h n(x)).

Lemma 3.4. [15, Theorem 2.15] The double–layer potential v with continuous

density ψ is continuous on γ.

Lemma 3.5. [15, Theorem 2.21] For the double–layer potential v with continuous

density ψ, we have

∂v+

∂n
=

∂v−
∂n

on γ,

in the sense that

lim
h→0
h>0

{
∂

∂n
v(x + h n(x)) − ∂

∂n
v(x− h n(x))

}
= 0, x ∈ γ,
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uniformly for x on γ.

Lemma 3.6. [15, Section 3.2 and Theorem 3.2] The single–layer potential u and

the double–layer potential v satisfy the Helmholtz equation (2.2) in R2\γ and the

Sommerfeld radiation and boundedness conditions (2.4).

Remark 3.1. Lemmas 3.1, 3.4 and 3.6 are still valid if γ is an open arc.

We denote by Gβc
(x, x0) the fundamental solution of the Helmholtz equation in

U which satisfies the Sommerfeld radiation and boundedness conditions (2.4) and

the impedance boundary condition ∂Gβc
(x, x0)/∂n(x) = ikβcGβc

(x, x0), x ∈ ∂U .

Gβc
(x, x0) may be written as [19]:

Gβc
(x, x0) = Gf (x, x0) + Gf (x, x′0) + P̂βc

(k(x− x′0))(3.4)

where, for −∞ < ξ < +∞, η ≥ 0,

P̂βc ((ξ, η)) :=





0, βc = 0,

iβc

2π

∫ +∞
−∞

exp(i(η(1−s2)1/2−ξs))
(1−s2)1/2((1−s2)1/2+βc)

ds, <(βc) > 0.
(3.5)

with <√1− s2,=√1− s2 ≥ 0. The impedance boundary condition satisfied by Gβc

is a consequence of the equation [19]

∂P̂βc

∂η
((ξ, η)) = −iβcP̂βc((ξ, η))− 1

2
βcH

(1)
0

(√
(ξ2 + η2)

)
, (ξ, η) ∈ U\{0}.(3.6)

It can be seen from (3.5) that P̂βc ∈ C(U)∩C2(U) and satisfies (with k = 1) the

Helmholtz equation in U . From an alternative representation for P̂βc [19, equation

(21)] we can see that P̂βc ∈ C∞(U\{0}) and satisfies (with k = 1) the Sommerfeld

radiation and boundedness conditions in U .

Given φ ∈ C(γ2), call the function

w(x) = Sβcφ(x) =
∫

γ2

Gβc(x, y)φ(y)ds(y), x ∈ U,(3.7)

the modified acoustic single–layer potential with density φ. Clearly w ∈ C∞(U\γ2)

and from Remark 3.1 and the above–mentioned properties of P̂βc we have the following

results.
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Lemma 3.7. The modified single–layer potential w with continuous density φ is

continuous in U .

Lemma 3.8. The modified single–layer potential w ∈ C2(U\γ2) satisfies the

Helmholtz equation (2.2) and the Sommerfeld radiation and boundedness conditions

(2.4) in U .

Let C0(γ2) := {ψ ∈ C(γ2) : ψ(x(j)) = 0, j = 1, 2}. From Lemmas 3.1 and 3.2

and equation (3.6) we obtain easily the following result.

Lemma 3.9. If φ ∈ C0(γ2) the modified single–layer potential w satisfies w ∈
R(U) and

∂w

∂n
(x) − ikβcw(x) =




−φ(x), x ∈ γ2,

0, x ∈ γ3.

In the next theorem and subsequently we abbreviate Sγj as Sj and Kγj as Kj , for

j = 1, 2. The direction of the normals in the definitions of K1 and K2 are as shown

in Figure 5.1. The following is a straightforward extension of Lemma 3.3 – see [20,

p. 76]. We distinguish by subscripts + and − limits obtained by approaching γ1 ∪ γ2

from inside and outside, respectively.

Theorem 3.10. If ψ1 ∈ C(γ1), ψ2 ∈ C(γ2) and ψ1(x(j)) = ψ2(x(j)), for j = 1, 2,

then the double–layer potential K1ψ1(x)−K2ψ2(x) can be continuously extended from

R2\S to R2\S and from S to S with limiting values

(K1ψ1 −K2ψ2)± (x) =





(K1ψ1 −K2ψ2) (x)± 1
2ψ1(x), x ∈ γ1\{x(1), x(2)},

(K1ψ1 −K2ψ2) (x)± 1
2ψ2(x), x ∈ γ2\{x(1), x(2)},

(K1ψ1 −K2ψ2) (x) + ( 1
2 ± 1

2 )ψ2(x), x = x(1), x(2).

Define single–layer potential operators Sij , i, j = 1, 2, on C(γi) by

Sijφ(x) =
∫

γi

Gf (x, y)φ(y) ds(y), x ∈ γj ,(3.8)

and define double–layer potential operators Kij , i, j = 1, 2, on C(γi) by

Kijψ(x) =
∫

γi

∂Gf (x, y)
∂n(y)

ψ(y) ds(y) + (−1)j(1− δij)
1
2
ψ(x)E(x), x ∈ γj ,(3.9)
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where E(x) = 1, x = x(1), x(2), and E(x) = 0 otherwise.

Define the modified single–layer potential operator Sβc

22 on C(γ2) by

Sβc

22φ(x) =
∫

γ2

Gβc
(x, y)φ(y) ds(y), x ∈ γ2.(3.10)

A consequence of Remark 3.1, Lemma 3.7 and Theorem 3.10 is the following result.

Theorem 3.11. For i, j = 1, 2 the operators Sij and Kij have the mapping

properties,

Sij : C(γi) → C(γj),

Kij : C(γi) → C(γj).

Further,

Sβc

22 : C(γ2) → C(γ2).

In fact each of the mappings in Theorem 3.11 is continuous but we will not need this

property subsequently.

4. Reformulation of BVP1 as an integral equation. For simplicity we as-

sume henceforth that x0 6∈ γ2, so that x0 ∈ D\γ2.

Theorem 4.1. Suppose that p satisfies BVP1. Then

p(x) =
∫

γ2

Gβc(x, y)
(

ikβc p(y) − ∂p(y)
∂n

)
ds(y) +

η(x0)Gβc(x, x0), x ∈ U\{x0},(4.1)

where

η(x0) =





1, x0 ∈ U,

0, x0 ∈ S,

and

ε(x)p(x) =
∫

γ2

(
Gf (x, y)

∂p(y)
∂n

− ∂Gf (x, y)
∂n(y)

p(y)
)

ds(y) +

∫

γ1

p(y)
(

∂Gf (x, y)
∂n(y)

− ikβ(y)Gf (x, y)
)

ds(y) +

(1− η(x0))Gf (x, x0), x ∈ S\{x0},(4.2)



BOUNDARY INTEGRAL EQUATIONS FOR PERTURBED HALF–PLANES 13

where

ε(x) =





1, x ∈ S,

1
2 , x ∈ ∂S\{x(1), x(2)},
0, x ∈ {x(1), x(2)},

and the directions of the normal are as indicated in Figure 5.1.

Proof. We first consider the case x ∈ U\{x0} and apply Green’s 2nd theorem

to the functions u = p and v = Gβc
(x, .) in a region E consisting of that part of U

contained in a large circle of radius R centred on the origin, excluding small circles of

radius δ surrounding x and x0. Since ∇2u + k2 u = ∇2v + k2 v = 0 in E, we obtain

∫

∂E

(
u

∂v

∂n
− v

∂u

∂n

)
ds = 0.(4.3)

Letting δ → 0 and R →∞ in (4.3) we obtain, for x ∈ U\{x0},

p(x) = η(x0)Gβc(x, x0) +
∫

∂U

(
p(y)

∂Gβc(x, y)
∂n(y)

−Gβc(x, y)
∂p(y)
∂n

)
ds(y),(4.4)

where η(x0) = 1 for x0 ∈ U , and 0 for x0 ∈ S. In (4.4) the terms p(x) and Gβc(x, x0)

are the limits as δ → 0 of that part of the integral in (4.3) around the small circles

surrounding x and x0 respectively. The part of the integral on the circular arc of

radius R in (4.3) vanishes as R → ∞ since u and v both satisfy the Sommerfeld

radiation and boundedness conditions (2.4).

Utilising the boundary condition satisfied by p on ∂U (equation (2.3)) and by Gβc

on ∂U we obtain equation (4.1) for x ∈ U\{x0}. Using the continuity of p and that of

the modified single layer potential (Lemma 3.7) we extend the validity of (4.1) from

U\{x0} to U\{x0}.
To obtain equation (4.2) for x ∈ R2\∂S we proceed similarly, choosing R >

maxy∈γ1 |y|, |x|, |x0|, and applying Green’s second theorem first in U ∩ BR and then

in D ∩ BR, but excluding in each case small circles of radius δ surrounding x and

x0. (These applications are valid since P ∈ R(D) ∩ R(U) ∩ C1(D\γ1). ) Letting

δ → 0, subtracting the resulting equations, and utilising the boundary condition (2.3)

satisfied by p on γ1 we obtain equation (4.2) for x ∈ S\{x0}. Using the continuity of
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p in D\{x0} and of ∂p/∂n on ∂D and ∂U we extend the validity of (4.2) from S\{x0}
to S\{x0} via Lemma 3.1 and Theorem 3.10.

Equations (4.1) and (4.2) express the pressure in D in terms of the unknowns p and

∂p/∂n on γ2 and p on γ1. Let p1 := p|γ1 , p2 := p|γ2 and q := ikβcp2−(∂p/∂n)|γ2 . The

values of q at the end–points of γ2 are zero since ∂p/∂n ∈ C(∂U) and ∂p/∂n = ikβcp

on γ3. In terms of the integral operators defined in section 3, Theorem 4.1 shows that

p1, p2 and q satisfy the following integral equation problem:

IEP1 Find p1 ∈ C(γ1), p2 ∈ C(γ2) and q ∈ C0(γ2) such that

p2 = Sβc

22 q + gβc ,(4.5)

1
2
p2 = K12p1 − ikS12(βp1) + ikβcS22p2 − S22q + g2,(4.6)

1
2
p1 = K11p1 − ikS11(βp1) + ikβcS21p2 − S21q −K21p2 + g1,(4.7)

where gβc , g2 ∈ C(γ2), g1 ∈ C(γ1) are defined by gβc(x) := η(x0)Gβc(x, x0), g2(x) :=

(1− η(x0))Gf (x, x0), x ∈ γ2, and g1(x) := (1− η(x0))Gf (x, x0), x ∈ γ1.

The next theorem, our main result, shows that, conversely, if p1, p2, and q satisfy

IEP1 and p is defined by (4.1) and (4.2) then p satisfies BVP1. As a corollary of this

theorem and the uniqueness result, Theorem 2.1, we have immediately that IEP1 has

at most one solution for all wavenumbers k > 0.

Theorem 4.2. If p1, p2 and q satisfy IEP1 and p : D\{x0} → C is defined by

p(x) = Sβcq(x) + η(x0)Gβc(x, x0), x ∈ U,(4.8)

ε(x)p(x) = K1p1(x)− ikS1(βp1)(x) + ikβcS2p2(x)− S2q(x)

− K2p2(x) + (1− η(x0))Gf (x, x0), x ∈ S\γ2,(4.9)

then p satisfies BVP1, and p1 = p|γ1 , p2 = p|γ2 and q = ikβcp2 − ∂p/∂n|γ2 .

Proof. With p defined by (4.8) and (4.9), define P by (2.1), i.e. P (x) = p(x) −
Gf (x, x0), x ∈ D\{x0}. The proof is split into several steps.

Step I. We show that P ∈ C2(U\γ2) ∩ R(U), that p satisfies the Sommerfeld

radiation and boundedness conditions, that p is continuous on ∂D, and that p2 = p|γ2 ,

p1 = p|γ1 , q = ikβcp2 − ∂p/∂n|γ2 and ∂p/∂n = ikβcp on γ3.
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With p defined by (4.8), p|γ2 = p2 follows immediately from (4.5). By Lemma

3.8 it is clear from (4.8) that p satisfies the Sommerfeld radiation and boundedness

conditions (2.4) and, by Lemmas 3.8 and 3.9, that P ∈ C2(U\γ2) ∩ R(U). From

Lemma 3.9 and (4.5) the value of the normal derivative is

∂p

∂n
=





ikβcp2 − q, on γ2,

ikβcp, on γ3.
(4.10)

Observe from (4.6) and (4.7) that p1(x(j)) = p2(x(j)), for j = 1, 2 (note that

K21p2(x(j)) = 0 , for j = 1, 2). With p defined by (4.9) that p(x) = p1(x) for

x ∈ γ1\{x(1), x(2)} is immediate from (4.7). Since p1 ∈ C(γ1) it follows that p is

continuous on ∂D and that p1 = p|γ1 .

Step II. Next, we show that the function defined by the right hand side of (4.9)

is identically zero in R2\S.

Let φ : R2\S → C be defined by

φ(x) :=





K1p1(x)− ikS1(βp1)(x) + ikβcS2p2(x)− S2q(x)

−K2p2(x) + (1− η(x0))Gf (x, x0), x ∈ R2\S,

0, x ∈ ∂S.

(4.11)

From Lemma 3.6 it follows that φ ∈ C2(R2\S) and satisfies in R2\S the Helmholtz

equation and the Sommerfeld radiation and boundedness conditions. We shall show

that φ ∈ C(R2\S) and hence φ ≡ 0 by Theorem 2.2.

To see that φ ∈ C(U), let x → y ∈ γ2, with x ∈ U . By Theorem 3.10 and Remark

3.1,

φ(x) → (K12p1 − ikS12(βp1) + ikβcS22p2 − S22q) (y) + (1− η(x0))Gf (y, x0)− 1
2
p2(y)

= 0

by (4.6). Similarly, let x → y ∈ γ1, with x ∈ R2\D. By Theorem 3.10 and Remark

3.1,

φ(x) → (K11p1 − ikS11(βp1) + ikβcS21p2 − S21q −K21p2) (y) +
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(1− η(x0))Gf (y, x0)− 1
2
p1(y)

= 0

by (4.7). Thus φ ∈ C(R2\S).

Step III. We now introduce a C2–contour Γ with end–points x(1) and x(2) as

shown in Figure 5.2. The key features of Γ are that it lies in U , that Γ ∩ γ2 =

{x(1), x(2)}, that Γ coincides with ∂U near its end–points x(1) and x(2) and that x0

lies inside Γ∪γ1. Let Dj , j = 1, 2, denote the C2 region which is the interior of Γ∪γj .

We may apply Green’s representation theorem [15] to p in D2 and use Lemma

3.1 and Lemma 3.3 to obtain that

ε1(x)p(x) =
∫

∂D2

(
∂Gf (x, y)

∂n(y)
p(y)−Gf (x, y)

∂p(y)
∂n

)
ds(y) +

η(x0)Gf (x, x0), x ∈ R2\{x0},(4.12)

where

ε1(x) :=





1, x ∈ D2,

1/2, x ∈ ∂D2,

0, x ∈ (R2\D2).

(4.13)

Step IV. We finish the proof by recovering the regularity properties of p in S and

the boundary condition on γ1 and by showing that p satisfies the Helmholtz equation.

For x ∈ R2\ (S ∪ γ1) add equation (4.12) to equation (4.11) (noting that φ ≡ 0

in this region by Step II) and, for x ∈ S ∪ γ1, add equation (4.12) to equation (4.9).

Using the boundary conditions (4.10) recovered in Step I we obtain

ε2(x)p(x) =
∫

∂D1

(
∂Gf (x, y)

∂n(y)
p(y)−Gf (x, y)a(y)

)
ds(y)

+Gf (x, x0), x ∈ R2,(4.14)

where

ε2(x) :=





1, x ∈ D1,

1/2, x ∈ ∂D1,

0, x ∈ R2\D1,

(4.15)



BOUNDARY INTEGRAL EQUATIONS FOR PERTURBED HALF–PLANES 17

and

a(x) :=





∂p
∂n (x), x ∈ Γ,

ikβcp(x), x ∈ γ1\{x(1), x(2)}.
(4.16)

From (4.10) and the continuity of p on ∂D it follows that a ∈ C(∂D1). In operator

form we may rewrite equation (4.14) as

ε2(x)p(x) = (K∂D1p)(x)− (S∂D1a)(x) + Gf (x, x0), x ∈ R2.(4.17)

Now, S∂D1a ∈ R(R2\D1) from Lemma 3.2, which implies immediately that K∂D1p ∈
R(R2\D1); and that K∂D1p ∈ R(D1) follows from Lemma 3.5. Since also S∂D1a ∈
R(D1) it follows that P ∈ R(D1). Further, from Lemma 3.6, P ∈ C2(D1) and satisfies

the Helmholtz equation in D1. The impedance boundary condition on γ1 is retrieved

via Lemmas 3.2 and 3.5 which give that

∂S∂D1a(x)+
∂n

− ∂S∂D1a(x)−
∂n

= a(x),
∂K∂D1p(x)+

∂n
=

∂K∂D1p(x)−
∂n

, x ∈ γ1.

Since D1 ⊂ D may be arbitrarily large we have completed the proof.

5. Conclusions. In this paper the problem of acoustic scattering from a source

within a a disturbance of arbitrary cross-section and surface impedance out onto a

homogeneous impedance plane has been formulated as a boundary value problem for

the Helmholtz equation and then reformulated as a coupled system of three boundary

integral equations. Equivalence of the boundary value problem and integral equation

formulation at all wavenumbers has been demonstrated so that uniqueness of solutions

is ensured. Hence the formulation does not suffer from irregular frequencies often

encountered in numerical treatment of scattering problems.
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