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It has been established previously, in a pilot study, that the spreading of liquids in granular porous
materials at low levels of saturation, typically less than 10% of the available void space, has very
distinctive features in comparison to that at higher saturation levels. It has been demonstrated
by direct comparison with experiments that the spreading process can be adequately described
by a special type of diffusion model, the super-fast non-linear diffusion equation. In this paper,
the problem of capillary transport at low levels of saturation has been systematically studied in
depth, both experimentally and theoretically. First of all, our simplified theoretical model has been
substantially refined to be able to provide more accurate description of spreading processes at low
saturation levels. At the same time, a series of experiments have been conducted to identify main
scaling properties of the phenomenon and to directly verify theoretical assumptions made in the
model development. Analysis of the mathematical model and the experimental data, and their
mutual comparison have shown that the model can quantitatively reproduce main features of the
diffusion process and can be used in practical applications involving liquid spreading in particulate
porous materials.

I. INTRODUCTION

Even a small amount of a liquid added to a dry granu-
lar material may dramatically change its structural prop-
erties due to the appearance of a strong capillary cohe-
sion force between the particles [1–4]. The strong cap-
illary force, of the order of F ∼ 2πRγ cos θc, is due to
the liquid bridges (pendular rings) formed at the point
of particle contact [1–3, 5, 6]. Here, R is the average
particle radius, γ is the surface tension of the liquid and
θc is the static contact angle of the liquid formed at the
three-phase contact line on the flat surface of the particle
material. A simple estimate for water at room temper-
ature (γ = 72 mN/m) and sand particles (θc = 30◦) of
400µm in diameter results in F ≈ 8 × 10−5 N, which is
much larger than the gravity force acting on each particle
≈ 8× 10−8 N. It is interesting to note, that the cohesive
force is practically independent of the liquid content, that
is the value of saturation, as far as the liquid morphology
consists of isolated pendular rings.

The formation of isolated liquid bridges is the main
characteristic feature of the so called pendular regime of
wetting in porous materials, when liquid volumes inside
the porous matrix are only connected via thin films de-
veloped on rough surfaces of the particles, Fig. 1. The
pendular regime of wetting is observed in a range of satu-
rations 0.2% ≤ s ≤ 10%, where the saturation s is defined
as the ratio of the liquid volume VL within a sample vol-
ume element V to the volume VE of available void space
s = VL

Ve
[1–3, 7].

The minimal saturation level s0 ≈ 0.2% is observed
when the liquid bridges start to disappear, and when the
porous network starts to lose its cohesive and transport
properties. At this level of saturation, the bridges are
predominantly formed between asperities on the grains,

Liquid bridge
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FIG. 1. Illustration of isolated bridges at low levels of satu-
rations. (a) Micro-x-ray computer tomography (MicroXCT)
image, typical from our experiments. (b) 3D image recon-
struction of MicroXCT data. The liquid within the grain
roughness is invisible to MicroXCT, since resolution is lim-
ited to a few micrometres.

as is illustrated in Fig. 2. So that permeability of the en-
tire porous network is getting greatly reduced, when the
saturation is approaching the critical level [1, 8]. As a re-
sult, the value of s0 is defined, to the large extent, by the
roughness of the grains, that is by the non-dimensional
parameter δR

R , where parameter δR has the dimension of
length and can be interpreted as the characteristic av-
erage thickness of the surface roughness, where the liq-
uid films connecting the pendular rings reside. That is,
in fact, parameter δR represents the characteristic aver-
age thickness of the liquid films residing on the rough
surfaces of porous media particles. For example, the
bridge formation threshold value s0 ≈ 0.2% has been ob-
served in experiments using spherical particles, average
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radius R = 187.5µm, with the maximum surface rough-
ness amplitude of approximately 500 nm determined by
scanning force microscopy [1]. At the same time, in our
experiments with the Ottawa sands, average grain radius
R ≈ 250µm with the surface roughness amplitude dis-
tributed between 250 nm and 3µm [9], a minimal value
of s0 ≈ 0.6% was observed. One can see the trend that
the lower is the surface roughness on average, the lower
is the critical value s0.

If we now consider spherical (or nearly spherical) grains
and take into account that only some part of the volume
4πR2δR corresponding to the rough surface layer of thick-
ness δR is available for the liquid during the spreading,
then one gets that the value of saturation due to the
liquid distributed on the rough surface of the grains is

s0 = 3αR
1− φ
φ

δR
R
, (1)

where parameter αR is the fraction of the surface volume
occupied by the liquid. Parameter αR is defined by the
properties of the surface roughness, and to some extent
defines the permeability of the surface layers [10–12].

In our experiments, as we will show further, parameter
αR is found to be αR ≈ 0.2 at equilibrium. It is not
difficult to estimate then using (1), that to get s0 = 0.6%
at R = 250µm and φ = 30%, one needs to have δR ≈
1µm, and to get s0 = 0.2% at R = 187.5µm and φ =
30%, one needs to have δR ≈ 270 nm.

R

δR

FIG. 2. The contact zone between two rough spherical parti-
cles.

Above the critical level of saturation sc ≈ 10%, liq-
uid bridges coalesce into more complex structures, like
trimers and pentamers, when the pendular wetting state
gradually transforms into the so called funicular wetting
regime, while the global connectivity of the liquid vol-
umes is still absent, Fig. 3. Finally, at s ≈ 30% a perco-
lation transition occurs when the largest cluster contains
about 90% of the available liquid.

Our prime concern here is liquid transport in the range
of saturations corresponding to the pendular regime of

Funicular Pendular

Complex clusters

Isolated bridges

250 μm

FIG. 3. An UV fluorescence image of the dyed liquid (TEHP)
distribution (the bright areas) in sands in the transition from
the funicular to the pendular regimes of wetting, at s > 10%.

wetting, which is important for accurate representation
of soil-liquid characteristic curves at the lower end of sat-
urations to study biological processes, such as plant water
uptake and microbial activity, and spreading of persis-
tent (non-volatile) liquids in arid environments and dry
industrial installations [7, 12].

The peculiar character of the diffusion processes in the
pendular regime of wetting, when porous network con-
nectivity is conditioned by thin liquid films, has been
recognized previously [7, 10–15]. It has been shown that
specific features of liquid transport at low levels of sat-
uration should lead to a special class of mathematical
problems, when effective coefficient of non-linear diffu-
sion D(s) diverges at the lower end of saturation, that is
in the limit lim

s→0
D(s) = sλ with λ < 0.

For the first time, the diverging behaviour of the
diffusion coefficient D(s), named hyperdispersion, was
predicted in the analysis of spreading in porous net-
works driven by the disjoining pressure Π(h) of nanoscale
(thickness h ∼ 1 − 100 nm) wetting films [14, 15]. A
range of admissible λ has been predicted depending on
the behaviour of the disjoining pressure Π(h) as a func-
tion of the film thickness h, including hyperdispersive
exponents λ < 0. Evidence of hyperdispersive behaviour
has been observed in two-phase fluid flows with the ex-
ponent λ ≈ −1 [16]. At the same time, studies of
persistent liquids spreading in sands have revealed an-
other mechanism leading to the formulation of a super-
fast non-linear diffusion model [7]. The driving force in
the model is due to macroscopic capillary pressure de-
veloped on the scale of the surface roughness δR with
D(s) ∝ (s − s0)−3/2, diverging at much higher values of
saturation s = s0 ≈ 0.6% than that anticipated in [14, 15]
and with a different exponent value λ = −3/2. A com-
parison between a lead-in theoretical model of superfast
diffusion and experimental observations has shown very
good agreement [7]. In this work, we study in depth, the-
oretically and experimentally, the process of spreading at
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low levels of saturation and the superfast non-linear dif-
fusion model to identify the main scaling parameters of
the phenomenon.

II. EXPERIMENTAL OBSERVATIONS

Our experiments have been conducted by carefully
placing a small liquid drop of a controlled volume
3 mm3 ≤ VD ≤ 12 mm3 on a naturally packed sand bed
(slightly shaken to level the bed) with porosity levels of
φ ≈ 0.3. Low-dispersed sand samples were used, which
were processed from the standard Ottawa Sand (EMD
Chemicals, product SX0075) using a mini-sieves set (Bel-
Art Products). Several samples were prepared of the
average radii R = 0.32, 0.26, 0.25, 0.2 and 0.14 mm with
the standard deviation around the average radius wR, as
is presented in Table I. In the experiments, we have
used several well-wetting, low-volatility (organophos-
phate) liquids of varying viscosity and surface tension:
tributyl phosphate (TBP, molar weight 266.32 g/mol),
CAS 126-73-8; Tris(2-ethylhexyl) phosphate (TEHP, mo-
lar weight 434.63 g/mol), CAS 78-42-2 and tricresyl phos-
phate (TCP, molar weight 368.37 g/mol), CAS 1330-78-5
(Sigma-Aldrich), the details can be found in Table I.

The wettability of quartz or glass surfaces by the first
two liquids was similar, while TCP had a larger static
contact angle. The contact angles θc of TBP, TEHP and
TCP measured on smooth/rough flat glass surfaces in our
laboratory at 20 C◦ were found to be at 10◦/0◦, 10◦/0◦

and 30◦/20◦ respectively.
The spreading process has been controlled by time-

lapse photography using UV-excited fluorescence of the
liquid by adding a small amount (1% by weight) of
Coumarin 503 dye. We have verified that the liquid prop-
erties were unaffected by the presence of the dye. The
photographs, Fig. 4, were taken by 10.7 MP digital cam-
eras (Lumenera Corporation) equipped with a macro-lens
and focused to resolve individual grains. The lens was
covered by long-pass glass filters to cut off scattered ex-
citation light. No significant background signal could be
detected in the absence of the dyed liquid in the range of
exposures used in the experiments.

It has been demonstrated previously that in the ex-
periments in a three-dimensional case a spreading wet
volume, after several minutes following the drop contact
with the porous bed, has the shape of a hemisphere [7].
This implies, first of all, that the effects of gravity play no
significant role in our case. Secondly, as a result, the ob-
served wet spot diameter can be directly converted into
the wet volume V . The wet volume, in turn, can be
converted into average saturation s̄ = VD

φV if one can dis-

regard evaporation of the liquid on the time scale of the
spreading experiments. Typical evolution dynamics of
the wet volumes obtained by depositing TCP liquid drops
of different volumes (VD = 3, 6 and 12 mm3) is shown in
Fig. 5. One can see that the wet volume monotonically
increases with time eventually saturating at s̄ = sf ≈ s0,

Table I, with parameter sf apparently being independent
of VD. Theoretically, one can presume that the thin liq-
uid film formed on the rough surface of the grains should
be ultimately drained out by the capillary action form-
ing even thinner, nano-scale (∼ 1 nm) liquid films, so
that the observed steady state would be in fact a quasi-
steady state with much longer relaxation times involved.
In reality, of course, this would require tremendously long
periods of time (tens of years to reach full equilibrium),
so that any, even low volatile liquids would be removed
by evaporation or by chemical reactions. We note that
while sf ≈ s0, those two values are supposed to be always
different such that sf > s0. Parameter sf corresponds
to a steady state when the porous network is still con-
nected through the liquid bridges (though characteristic
spreading times become tremendously long), while at s0

the connectivity of the porous network is supposed to
be completely broken. To put this differently, s0 in our
model is assumed to be only related with the liquid dis-
tributed on the grain surface, while sf also takes into
account the bridges connecting the grains, see further
discussion.

At s̄ ≈ 10% one can observe the onset of the pendular
regime of wetting, when the behaviour of the wet vol-
ume with time becomes a power law V (t) ∝ tλ3 with
λ3 ≈ 0.75, that is the wetting front radius in this three-
dimensional case X3(t) ∝ t0.25. The power law behaviour
has been previously identified to be universal for the pen-
dular regime in the case of three dimensional geometry
of the wetting volumes [7].

One may notice that using reduced time t/t0 with the

scaling dictated by a diffusion law, that is t0 =
V

2/3
D

De
,

one can bring the evolution curves corresponding to dif-
ferent drop volumes VD into a master curve. Parameter
De = 1.85× 10−10 m2/s (effective coefficient of diffusion)
has been chosen to get the reduced time at the beginning
of the pendular regime of wetting, when the average sat-
uration level s̄ = 0.1, to t/t0 = 1. The result indicates
that macroscopically the process of spreading can be de-
scribed by a diffusion-like model, which will be explored
in the next parts.

In another set of experiments, we studied liquid spread-
ing in essentially one-dimensional geometry, Fig. 6. As
in the three dimensional geometry, the behaviour is char-
acterized by an initial phase of liquid spreading and a
power law corresponding to the main phase of the pendu-
lar regime, Fig. 7. As is expected, the spreading is faster
for less viscous well-wetting TBP liquid and slower for
more viscous TCP liquid with a larger contact angle. We
did not follow the moving front evolution to the stand-
still due to much longer characteristic times involved in
one-dimensional cases, on the time scale of persistence of
TBP with relatively high vapour pressure at room tem-
peratures [17].

The power law observed in the evolution of the mov-
ing front in the one-dimensional geometry, X1(t) ∝ t0.5,
and in the three-dimensional case, X3(t) ∝ t0.25, sug-
gests that in general there should be universal behaviour
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Xn(t) ∝ t1/(n+1), which can be associated with moving
fronts, where n designates the dimension of the experi-
mental setup. In what follows, we consider a macroscopic
non-linear diffusion model, which will be further used to
simulate the spreading behaviour at low saturation levels.

Set III Set II Set I

30 mm

FIG. 4. UV fluorescence images of wet areas taken after ≈
45000 min of spreading from above the sand bed prepared
using R ≈ 0.26 mm sand. From left to right the image is for
the sets III, II and I, as in Table I.
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FIG. 5. Spreading of TCP liquid drops of different volumes
VD = 3, 6 and 12 mm3 in R ≈ 0.26 mm sand in a three-
dimensional case. Normalized volume V φ/VD (inverse aver-
age saturation s̄−1) as a function of reduced time t/t0, where

t0 =
V

2/3
D
De

, De = 1.85 × 10−10 m2/s (t0 ≈ 300 min at VD =

6 mm3). The solid line is the fit V φ/VD = A+B(t/t0)0.75 at
A = 3.6 and B = 8.

III. MACROSCOPIC MODEL

Consider the pendular regime of wetting, when the liq-
uid bridges are completely isolated and only connected
via liquid films on the particle surfaces. In a macro-
scopic volume element containing many particles V , the

d c=6.15mm

d c

FIG. 6. Channels in Teflon (diameter of the hemicylinder
dc = 6.15 mm) filled in by the standard Ottawa sand (R ≈
0.25 mm) before depositing VD = 3 mm3 liquid drops.
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FIG. 7. Spreading of TCP, TEHP and TBP liquid drops
(VD = 3 mm3) in R ≈ 0.25 mm sand in the channels, as in Fig.
6. Normalised wet volume V φ/VD (inverse average saturation
s̄−1) as a function of time. The experimental data are shown
by symbols and the solid lines (brown) are the fits V φ/VD =
A+Bt0.5.

averaged value of pressure in the pendular rings should
be the same as the average pressure in the macroscopic
liquid films in the creeping flow conditions. In each in-
dividual pendular ring, the pressure is a function of the
liquid content. For example, for a liquid bridge formed
between two identical spheres of radius R, one can find
a closed form analytical solution relating surface shape,
and hence the liquid volume contained in the ring, and
the capillary pressure [5]. Even in this ideal case, the
analytical expressions are quite lengthy, but, as we have
verified numerically using results from [5], can be approx-
imated at small contact angles θc � 1 (between 0◦ and
approximately 30◦) via

p ≈ p0

{
C0 − C1

(
R3

VB

)1/2
}

(2)

where p0 = 2γ
R , C0 = 3.7 and C1 = 1.3 [7]. One can see

that with the liquid content increases, the capillary pres-
sure tends to a constant value independent of saturation.
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Set Liquid µ ( mPa · s) γ (mN/m) Pve (Pa) VD (mm3) R (mm) wR (mm) sf (%) sf − se0 (%) δR(µm) Df (10−14 m2/s) De
0 (10−14 m2/s)

I TCP 20 42.5 8 × 10−5 3 0.26 0.06 0.61 0.043 1 7 ± 1.6 7 ± 3.2

II TCP 20 42.5 8 × 10−5 6 0.26 0.06 0.61 0.043 1 7 ± 1.6 7 ± 3.2

III TCP 20 42.5 8 × 10−5 12 0.26 0.06 0.61 0.043 1 7 ± 1.6 7 ± 3.2

IV TCP 20 42.5 8 × 10−5 6 0.32 0.08 0.49 0.028 1 5.2 ± 1 4.7 ± 2.4

V TCP 20 42.5 8 × 10−5 6 0.2 0.06 0.73 0.073 1 6.4 ± 1 12 ± 7.2

VI TCP 20 42.5 8 × 10−5 6 0.14 0.04 1.16 0.15 1 4.9 ± 1 25 ± 14

VII TBP 3.9 28 1.5 × 10−1 6 0.25 0.08 0.68 0.046 1 100 ± 22 100 ± 64

VIII TEHP 15 29 1.1 × 10−5 6 0.25 0.08 0.68 0.046 1 33 ± 6 27 ± 17

TABLE I. Parameters of the drop spreading experiments: liquid viscosity µ at 20◦ C , surface tension γ at 25◦ C, equilibrium
vapour pressure Pev at 20◦ C [17, 18], drop volume VD, average grain radius R, standard deviation around the average grain
radius wR, steady state saturation level sf , the model parameter sf − se0 calculated at Bf = 29µm2 on the basis (23), the
length scale of capillary pressure δR calculated using (17) and (23) at Bf = 29µm2, coefficient of diffusion Df obtained in the
comparison with experimental data, coefficient of diffusion De

0 calculated on the basis of (8), (27) and parameters of the liquids
and the sands at δR = 1µm, θc = 30◦ in the case of TCP and θc = 0◦ in the case of TBP and TEHP, and εp = 0.15.

Liquid Solid

Gas

Solid

Liquid film

δR

δR

θ0

θc≈0

FIG. 8. Illustration of the model groove geometry with an
opening angle θ0 and a contact angle θc used in the estima-
tions of κ0 and s0. In the illustration, the capillary pressure
is p = −γ/δR, the opening angle θ0 = π/2 and the contact
angle θc = 0◦ (complete wetting).

This trend was observed in both spherical grains and real
sieved sands [2]. Since in the pendular regime of wetting
s � 1, the main pressure law in the model (2) can be
further simplified to

p ≈ −p0 C1

(
R3

VB

)1/2

. (3)

To parametrize saturation, we split average liquid con-
tent in a sample volume V containing N grains into two
parts: the liquid contained on the rough surface of par-
ticles of volume Vr = 4παRR

2δRN and the liquid con-
tained in the capillary bridges Vc = VBNcN . Here, pa-
rameter Nc is the coordination number, that is the num-
ber of bridges per a particle. In our experiments the value
of Nc was found to be around Nc ≈ 7.

Combining both contributions, saturation s =
Vc + Vr
φV

can be presented as

s = VBR
−3As + s0, (4)

where

As =
3

4

1− φ
φ

Nc
π
, s0 = 3αR

1− φ
φ

δR
R
.

Using (3) and (4), the average capillary bridge pressure
P =< p >l can be presented as

P = −p0
C1A

1/2
s

(s− s0)1/2
, (5)

where < ... >l= V −1
l

∫
Vl
d3x is intrinsic liquid averaging,

Vl is liquid volume within the sample volume V . We have
assumed previously in developing our preliminary theo-
retical model that parameter s0 is constant, that is inde-
pendent of the capillary pressure. This is a good approxi-
mation in a range of capillary pressures, but could be pos-
sibly violated at small values of s ≈ sf ≈ s0. Indeed, con-
sider a model groove geometry shown in Fig. 8. Surface
flows in that kind of geometry have been studied experi-
mentally and theoretically in [10–12]. The liquid in this
case is contained both inside the large scale grooves (large
scale surface roughness), in capillary menisci, and on the
surface with much smaller scale roughness. At very large
capillary pressure, the meniscus curvature could be much
lower then the characteristic length scale of the groove,
so that the groove would be only partially filled in. On
the other hand, at very low capillary pressure, the ra-
dius of curvature could be much larger than the size
of the groove, and the groove would be fully saturated
with the liquid. Consider some numerical example. At
s = sc = 10% taking R = 250µm and s0 = 0.6% from (5)
the radius of curvature of the meniscus in Fig. 8 would
be around 16µm. This value is much larger than the
surface roughness amplitude (the maximum size of the
grooves) in our sand grains, about max(δR) ≈ 3µm, so
that the groove can be assumed to be fully filled in. But
as s tends to sf , the radius of curvature would be com-
parable to the characteristic length scale of the groove,
as is shown in Fig. 8. If we assume a linear relation-

ship s0 = B0(s − sf ) + se0, where B0 =
sm0 −s

e
0

sc−sf , such
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that s0 changes in between some minimum value se0 cor-
responding to partially saturated grooves and some max-
imum value sm0 corresponding to fully saturated grooves,
se0 ≤ s0 ≤ sm0 , while s is changing from sf to sc, then

P

p0
= − C1A

1/2
s

(1−B0)1/2(s− se0)1/2
= − Pc

(s− se0)1/2
. (6)

The minimum value of s0, as it has been found in
our experiments, is about se0 = 3αR

1−φ
φ

δR
R ≈ 0.6%,

while the maximum value sm0 should be bounded sm0 <
3
2

1−φ
φ

max(δR)
R ≈ 4%. Since sc � sm0 , this introduces a

small correction to the coefficient in the pressure law,
B0 � 1, and parameter se0 is now taken at the equilib-
rium value.

Consider now the local transport on the surface of
particles. The surface flux density q, according to the
previous study of liquid spreading on rough surfaces
made of microscopic grooves of various shapes and di-
mensions [19, 20], obeys a Darcy-like law

q = −κm
µ
∇ψ, (7)

where µ is liquid viscosity, ψ is local pressure in the liquid
averaged within the surface roughness and κm = κ0δ

2
R

is the effective coefficient of permeability of the surface
roughness, which is proportional to the square of the
length scale parameter δR. To understand the order of
magnitude of κm = κ0δ

2
R, one can again consider the

surface groove of a simplified geometry, as is shown in
Fig. 8. We note, that the fluid flow mostly occurs
within large scale surface grooves. Then, assuming a
fully developed rectilinear Hagen-Poiseuille flow in the
open channel at θ0 = π/2 and θc = 0, Fig. 8, and
the results of analysis of liquid flows in corners in [21],
κ0 = ε0

β1

(
1− π

4

)
, where non-dimensional parameter β1

was found to be β1 ≈ 100 [21] and parameter ε0 < 1 is
the ratio of the total cross sectional area of the grooves
to the total cross sectional area of the surface layer of
width δR. Due to the capillary pressure variations in the
grooves and, as a consequence, variations of the cross-
section area of the groove volume occupied by the liquid,
parameter κ0 would vary in the idealized case between
ε0
β1

(
1− π

4

)
≤ κ0 ≤ ε0

β2
, where parameter β2 in the case

of a fully saturated groove was found to be β2 ≈ 50 [21].
This implies that κ0 = κ0(s). When s changes from sf
to sc, assuming again a linear relationship

κ0(s) =
κ2

0 − κ1
0

sc − sf
(s− sf ) + κ1

0,

κ1
0 =

ε0

β1

(
1− π

4

)
, κ2

0 =
ε0

β2
.

The minimum value of the channel permeability is de-
fined by the maximum capillary pressure in the system.
We note, while in unbounded V-shaped grooves, espe-
cially at small opening angles θ0, the free surface is also

unbounded, so that the capillary spreading in the absence
of external forces, like the gravity force, is unbounded, in
our case, a quasi-steady state is observed corresponding
to the maximum capillary pressure [22]. If the contact
angle θc is not equal to zero, then the amount of the liq-
uid contained in the groove at a fixed value of pressure,
that is at a fixed value of δR is reduced. Then

κ1
0 =

ε0

β1

(
cos θc(cos θc − sin θc)−

π

4
+ θc

)
, κ2

0 =
ε0

β2
.

One needs to note that those estimates ignore any con-
tributions from tortuosity and other details of the open
channel geometries, which may substantially reduce (or
change) the value of the channel permeability [11, 21, 23].
For example, a change in the groove corner opening an-
gle θ0, as is shown in Fig. 8, may result in almost an
order of magnitude change of the surface permeability of
the channel [11, 21]. So that we introduce an adjusting
parameter εp of the model, which will be determined on
the basis of comparison with experimental observations,
so that

κ1
0 =

εp
β1

(
cos θc(cos θc − sin θc)−

π

4
+ θc

)
, (8)

κ2
0 =

εp
β2
.

Parameter εp < 1 incorporates parameter ε0 < 1 and
effects of tortuosity and the opening groove angle θ0.
The parameter also takes into account that some grooves
while filled in with the spreading liquid may be dead ends,
so that they do not participate with liquid conductivity.
Realistically, considering that at least ε0 < 0.5 (that is
only half of the surface area is likely to be available for
the liquid) and that the tortuosity can reduce permeabil-
ity at least two-fold, εp < 0.25. Further improvement
of the model may require careful implementation of the
surface groove, surface roughness flow details [11, 21].

According to the spatial averaging theorem [24], ap-
plying intrinsic liquid averaging < ... >l

−κm
µ

{
∇ < ψ >l +V −1

l

∫
Sl

ψ n dS

}
=< q >l, (9)

where Sl is the area of the liquid interface confined inside
the volume element V and with normal vector n. The
surface integral in the creeping flow conditions, when the
pressure variations across the liquid layer are insignifi-
cant, can be neglected V −1

l

∫
Sl
ψ n dS ≈ 0 and

−κm
µ
∇ < ψ >l=< q >l . (10)

Now, one can cast the continuity equation, presuming
conservation of mass, that is neglecting evaporation pro-
cesses,

∂φs

∂t
+∇Q = 0
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into

∂φs

∂t
= ∇

{
K

µ
∇P

}
. (11)

Here,

Q =
Se
S
< q >l, (12)

S is the surface area of the sample volume V with the
effective area of entrances and exits Se and coefficient
K = κm

Se

S . It is assumed that in the creeping flow con-

ditions P =< p >l≈< ψ >l. Note, that the ratio Se/S
is not strictly speaking just a geometric factor. It is an
average quantity defined by (12), which incorporates con-
nectivity and the shape of the surface elements.

We note, that the effects of gravity have been ne-
glected in the model. To understand the accuracy of
this approximation, we first notice that, the capillary
pressure, in our case, is assumed to be generated on a
length scale δR ∼ 1µm, which is comparable with the
length scale of the surface roughness. If we now com-
pare the capillary length lc =

√
γ/ρg ∼ 2 mm, where

ρ is liquid density and g is the gravity constant, with
the length scale associated with the gradient of capillary
pressure

√
δRL0, where L0 ∼ 10 mm is the characteristic

length scale of the wetting area in our experiments, then
lc �

√
δRL0 ∼ 0.1 mm. This implies that the gravity ef-

fects can be ignored. At the same time, the length scale
associated with the gradient of capillary pressure

√
RL0

in the funicular regime may be comparable with lc so
that the accuracy of our approximation may be reduced.

Assuming further that porosity φ is constant and using
expression (6) for the average pressure, one can transform
the governing equation (11) into a non-linear diffusion
equation for the saturation s(x, t)

∂s

∂t
= ∇

{
Ds∇s

(s− se0)3/2

}
, (13)

where

Ds =
1

2

K

µ

p0Pc
φ

.

To address a moving boundary value problem set in an
open domain with a smooth boundary ∂Ω moving with
velocity v, the governing equation (13) is complemented
with the boundary conditions

s|∂Ω = sf , sf > se0 (14)

and

v · n|∂Ω = vn|∂Ω = −Ds
n · ∇s

sf (sf − se0)3/2
, (15)

where n is the normal vector to the boundary ∂Ω. The
boundary value of the saturation sf is defined by the
capillary pressure developed at the moving front. To be

precise, the inverse of the reduced capillary pressure (cap-
illary pressure normalized by 2γ/R) is related with the
difference of two parameters sf − se0. Parameter sf de-
fines a steady state saturation level, when the network
connectivity is reduced but not broken, while parameter
se0 can be associated with the saturation levels, when the
network connectivity is broken.

To get an estimate of the typical values of the boundary
pressure and the saturation, we assume that the pressure
is generated by the capillaries with a characteristic size of
the order of δR. Then, for example for TCP liquid, taking
characteristic value of the surface tension γ = 42.5 mN/m
at 25◦ C, one can obtain that at δR = 1µm the capillary

pressure |P | = γ

δR
= 4.25×104 Pa. As a result, from (6),

taking typical parameter values R = 250µm and φ = 0.3,
parameter sf−se0 ≈ 4×10−4, which is close to the values
found in the previous analysis of experimental data in [7].

Note that
sf−se0
se0
� 1, considering that se0 ≈ 0.006.

In general, using (6), one can obtain the following scal-
ing

sf − se0 = 4P 2
c

(
δR
R

)2

. (16)

That is, taking into account (1)

sf = 3αR
1− φ
φ

δR
R

+ 4P 2
c

(
δR
R

)2

. (17)

Global surface permeability of a system of spherical
particles.

To simulate liquid spreading with the help of (13), the
coefficient of permeability K and hence the parameter
Se/S should be determined by considering surface diffu-
sion processes in a system of particles coupled through
capillary bridges.

To obtain an estimate of these parameters, we consider
just one single particle with a closed surface Γ, which is
split into three sub-domains Ω0, Ω1 and Ω2 with the sur-
face boundaries between them ∂Ω1 and ∂Ω2, Fig. 9. The
sub-domains Ω1 and Ω2 correspond to the area covered
by the liquid in the bridges, while the surface flow, de-
scribed by (7), takes place in Ω0.

The diffusion process in the surface layer of the gran-
ular elements is described by a Darcy’s like law (7). The
liquid is assumed to be incompressible, that is ∇ ·q = 0,
and the capillary pressure variations on the scale of one
grain particle are assumed to be small enough, so that
κm ≈ const. The problem then can be reduced to a
boundary-value problem for the Laplace-Beltrami equa-
tion

∆Ω0
ψ = 0 (18)

defined on the surface element Ω0 of the particle.
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At the same time, liquid pressure variation in the
bridges is negligible in slow creeping flows (neglecting ef-
fects from the inertial and convective terms in the Navier-
Stokes equations) in comparison to that in Ω0. So that,
one can assume that

ψ|∂Ω1
= ψ1 = const, ψ|∂Ω2

= ψ2 = const, (19)

which are the boundary conditions to the Laplace-
Beltrami problem (18). The boundary-value problem
(18)-(19) has a unique solution, which, if it is found, al-
lows to calculate the total flux QT through any contour
∂Ω on Ω0, which can not be contracted to a point

QT = δR
κm
µ

∫
∂Ω

n · ∇ψ dl,

where n is the normal vector to the contour ∂Ω on the
surface, δR is the average amplitude of the surface rough-
ness, that is the width of the surface layer conducting the
liquid flux, and we assumed that ψ is roughly constant
across the liquid layer. In particular, due to the conser-
vation of the liquid and in a steady state

QT = δR
κm
µ

∫
∂Ω1

n · ∇ψ dl = −δR
κm
µ

∫
∂Ω2

n · ∇ψ dl.

To obtain analytical results, we restrict ourselves to
the case of a spherical particle of radius R. In this case,
domain boundaries ∂Ω1 and ∂Ω2 will be circular cross
sections of the spherical surface Γ, Fig. 9. The loca-
tion of the sub-domains Ω1 and Ω2 with respect to each
other on the surface is fixed by an angle β. We con-
sider an azimuthally symmetric case, β = π, with equal
in size (radius of curvature) domain boundaries ∂Ω1 and
∂Ω2, as is shown in Fig. 9. Then, due to the nature of
the boundary conditions (19), the problem (18)-(19) is
equivalent to

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
= 0, θ0 ≤ θ ≤ π − θ0, (20)

with the boundary conditions

ψ|θ=θ0 = ψ1, ψ|θ=π−θ0 = ψ2, (21)

where we used a spherical coordinate system with the
polar angle θ counted from the axis of symmetry.

Apparently, the problem (20)-(21) admits an analyti-
cal solution, which is, after applying the boundary con-
ditions,

ψ =
ψ2 − ψ1

2

{
1−

ln sin θ
1+cos θ

ln sin θ0
1+cos θ0

}
+ ψ1.

One can now calculate the total flux

QT = −2πδR
κm
µ

sin θ0
∂ψ

∂θ

∣∣∣∣
θ=θ0

= −πδR
κm
µ

ψ2 − ψ1

ln 1+cos θ0
sin θ0

.

One can define the effective coefficient of permeability of
a sphere K1, which is approximately equivalent to K, by

QT = −4R (ψ2 − ψ1)
K1

µ

so that

K1 =
δR
4R

πκm

ln 1+cos θ0
sin θ0

.

One can see that the permeability coefficient K1 is di-
vergent at θ0 = π/2 and tends to zero at θ0 = 0 as
expected, that is

K1 →
δR
4R

πκm
π
2 − θ0

θ0 →
π

2

and

K1 → −
δR
4R

πκm
ln θ0

θ0 → 0.

In what follows, we approximate the coefficient of per-
meability K by K1 obtained in an azimuthally symmetric
case. To incorporate K1 into the model, we should ex-
press it through the saturation s. Using an approximate
relationship between the radius of curvature R sin θ0 of
the boundary contour ∂Ω1 and the pendular ring vol-
ume [1], one can get

sin2 θ0 ≈
√
s− se0.

That is at θ0 � 1 or (s− se0)� 1,

K1 ≈
δR
R

πκm
| ln(s− se0)|

.

So, finally, one can cast (13) into

∂s

∂t
= ∇

{
D0∇s

| ln(s− se0)|(s− se0)3/2

}
, (22)

where

D0 =
δ3
R

R2

πκ0(s)

µ

γ Pc
φ

.

The obtained non-linear partial differential equation is
known in mathematical literature as the superfast non-
linear diffusion equation, which has distinctive mathe-
matical properties [25]. In particular, while many non-
linear diffusion models, such as the porous medium equa-
tion, exhibit the so called self-similar behaviour. There
are, for example, compactly supported Barenblatt self-
similar solutions satisfying a natural set of boundary con-
ditions with finite velocity of the moving boundary [26–
28]. The super-fast diffusion model in our case does not
demonstrate this behaviour. Indeed, consider a simplified
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non-dimensional version of (22), omitting the logarithmic
term and neglecting relatively slow κ0 dependence on s,
in a one-dimensional case

∂u

∂t
=

∂

∂x

{
1

u3/2

∂u

∂x

}
, x ∈ R, t > 0

and the group of transformations of the variables t→ εt,
u→ εqu and x→ εmx, where 3

2q+ 2m = 1 to obtain the
invariant equation. Using the freedom to choose one of
the two parameters q and m, and setting q = −m = −2,
one finally gets

u =
1

t2

(
1

C − 3x2

t4

)2/3

,

where C > 0 is a constant of integration. Note, the
second integration constant has been eliminated by the
requirement that at x = 0 the derivative ∂u/∂x = 0
provided that u is finite at x = 0.

One can see that the obtained self-similar solution has
indeed compact support, as is expected, with a moving
boundary of the domain. That is −xs(t) ≤ x ≤ xs(t),

and t4

3

{
C − 1

u
3/2
0 t3

}
= x2

s(t), where u0 is the value of

u at the moving boundary. But, the obtained solution
would immediately violate the boundary condition u =
u0 = const > 0, provided that, as it is in our case, u > u0.
We note, that the existence of the logarithmic correction
in the non-linear coefficient of diffusion would destroy
even this invariant behaviour.

Ω0

Ω1

Ω2

∂Ω1

∂Ω2Γ

θ0

β

FIG. 9. Illustration of the surface diffusion domains.

IV. RESULTS AND DISCUSSION

The steady state distributions

Consider first steady state liquid distributions obtained
in a series of experiments with TCP liquid drops placed
on sands with different grain sizes R, that is sets II, IV,
V, and VI, details in Table I. The dependence of the
equilibrium saturation in the end of the spreading process

sf on the inverse particle radius R−1 is shown in Fig.
10. Assuming scaling (17), we fit the dependence by a
function

sf = se0 +BfR
−2 = AfR

−1 +BfR
−2 (23)

at Af = 1.5µm ± 0.2µm and Bf = 29µm2 ± 24µm2.
This implies that one can only determine one parameter
with sufficient accuracy, and upper and lower bounds for
another parameter.

Then, using obtained value of Af and the most prob-
able value of Bf , from (17), one can determine δR and

αR. From Af = 3αR
1−φ
φ δR using φ = 0.3, one gets

αRδR ≈ 2µm. Then, from Bf = 4P 2
c δ

2
R, one can esti-

mate that δR ≈ 1µm and αR ≈ 0.2.
The equilibrium value of saturation sf observed in the

spreading of TEHP drops is consistent with the above es-
timates, while the observed value for TBP is slightly off.
Indeed, the equilibrium level of TEHP in R = 0.25 mm
sand was found to be sf ≈ 0.68%, while the value of
sf = 0.67% was expected according to (17). At the same
time, the final saturation level of TBP in the sand with
the same average grain radius, estimated assuming con-
servation of mass of the liquid, was found to be at much
higher level sf = 0.93% after about 6 days of spreading.
Such deviation is likely to be due to much higher equilib-
rium vapour pressure of TBP, Table I, and hence much
higher evaporation rates involved in this case. The larger
value of sf suggests that about 27% of the liquid had been
removed by evaporation. This is qualitatively consistent
with our experimental estimate of TBP persistence in the
one-dimensional case (with two times larger surface to
volume ratio) equal to approximately 10 days (almost to-
tal evaporation). This in turn is quantitatively consistent
with an estimate of evaporation rates calculated on the
basis of the vapour pressure in quiescent conditions [29].
Indeed, the evaporation rate at Pve = 0.15 Pa in qui-
escent conditions (no air flow) for TBP (molar weight
266.32 g/mol) is ≈ 5.84 × 10−2 g/m2h [29]. Then, given
the characteristic surface area of the wet spot of about
3×10−4 m2, the amount of liquid equivalent to a quarter
of a liquid drop VD = 6 mm3 would evaporate in about
three days. Note, this is an upper estimate given that
the spot radius is growing during the spreading, so that
in reality this liquid amount would be removed by evap-
oration in about six days.

The dynamics of spreading

To understand the dynamics of liquid spreading and
evolution of the moving front, that is the wetting vol-
ume, consider the superfast diffusion model (22). One
can present (22) in non-dimensional form by normalizing
distances x̃ = x/L0 and time t̃ = t/t0. As the character-
istic length scale, we use the wet spot radius L0 at some
moment of time, which will be initial time for simula-
tions t̃ = 0, and t0 = L2

0/D
e
0. Then, omitting tilde in the
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FIG. 10. Saturation sf as a function of R−1 shown by sym-
bols. The solid line is the fit sf = AfR

−1 + BfR
−2 at

Af = 1.5µm and Bf = 29µm2.

notations, equation (22) can be presented as

∂s

∂t
= ∇

{
κ̂0(s)∇s

| ln(s− se0)|(s− se0)3/2

}
, (24)

with two boundary conditions

s|∂Ω = sf (25)

and

vn|∂Ω = − κ̂0(s) (n · ∇)s

sf | ln(sf − se0)|(sf − se0)3/2
. (26)

Here

De
0 =

δ3
R

R2

πκ1
0

µ

γ Pc
φ

(27)

and

κ̂0(s) =
κ2

0/κ
1
0 − 1

sc − se0
(s− se0) + 1

in

se0 ≤ s ≤ sc

otherwise

κ̂0(s) = κ2
0/κ

1
0.

So, the problem has three essential non-dimensional pa-
rameters sf , sf−se0 and VD/L

3
0. The last parameter only

contributes through the initial profile of saturation s(x, 0)
at t = 0. We have already seen that variations of initial
drop volume VD at sf = const and sf −se0 = const result
in self-similar behaviour, such that evolution curves of
the moving front collapse on a single master curve after

re-normalizing time t by a factor of V
2/3
D . This implies

that one can further assume that L3
0 ∝ VD, so that pa-

rameter L0 can be solely defined by the initial drop vol-
ume VD. This leaves us with just two non-dimensional
parameters.

The role of parameter sf is clear, it defines the final
level of saturation and the final size of the wetting zone in
porous media after the spreading comes to standstill. To
understand the role of the remaining parameter sf − se0,
which represents the capillary action, that is the inverse
of the reduced capillary pressure at the moving front,
consider numerical solutions to the problem. The details
of the numerical moving mesh method can be found in
the appendix.

Augmented superfast diffusion model

In the experiments, only the spot wetting area is mea-
sured giving the average value of saturation, while accu-
rate estimation of the liquid distribution is still unattain-
able. This implies that the initial saturation profile at
the onset of the pendular regime of wetting is basically
unknown and should be simulated starting from a liquid
distribution at much higher saturation levels s > 10%,
that is in the funicular regime of wetting, where the per-
meability is also a function of saturation [30].

To obtain realistic distributions of the liquid at the
onset of the pendular regime of wetting, we augment
the diffusion law (24) using empirical permeability re-
lationships found in sands [30]. In unsaturated porous
media (in particular in sands) at high saturation values,
permeability decreases very fast with liquid saturation
log10K ∝ s, as it could be anticipated, such that the
augmented diffusion law takes the form

0.01 0.1
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FIG. 11. Permeability function g(s) versus saturation s at
αg = 16.5, βg = 1.65 and f0 = 1.

∂s

∂t
= ∇

{
κ̂0(s) g(s)∇s

| ln(s− se0)|(s− se0)3/2

}
, (28)
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where augmenting permeability function g(s), Fig. 11,

g(s) = 1 + f0 10αgs−βg (29)

with

αg = 16.5, βg = 1.65

and

f0 =

(
R

Rm

)2
γ

µ

µw
γw

. (30)

The values of the coefficients in (29) have been chosen
such that, according to [30], in the medium fine sands
(Rm ≈ 260µm) and water (surface tension γw and vis-
cosity µw)

g(s) |s=0.1 = 2, g(s) |s=0.3 = 2000

and f0 = 1. As one can see, Fig. 11, the augmenting
function g(s) due to the strong decline with the satura-
tion has a very short crossover region quickly reaching
a constant value g(s) ≈ 1 at s ≈ 0.1, where the pendu-
lar regime begins. We note that we still use pressure-
saturation relationship (6), which provides a reasonable
approximation considering strong variations of perme-
ability. Alternatively, the model can be easily generalized
by using a Leverett J-function [31].
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FIG. 12. Simulation of spreading in a three-dimensional
spherically symmetric case using augmented superfast diffu-
sion model (28) with initial distribution (31) at λa = 0.3,
sa = 0.4, αg = 16.5, βg = 1.65, f0 = 1 and sf = 0.0052,
but at different values of parameter sf − se0. Normalised wet
volume V φ/VD (inverse average saturation s̄−1, solid lines)
as a function of the reduced time t/t0, t0 = L2

0/D
e
0. From

left to right: (I) sf − se0 = 0.0001, (II) sf − se0 = 0.0002,
(III) sf − se0 = 0.0004, (IV) sf − se0 = 0.0008. Insert shows
the power law V φ/VD = A + B(t/t0)0.75 (solid line, brown)
in comparison with the numerical data (symbols, black) at
sf − se0 = 0.0008.

Numerical simulations and experimental results in
three-dimensional spherically symmetric cases

To compare numerical solutions of the superfast diffu-
sion model (28) with experimental observations, we first
consider simulations in a three-dimensional spherically
symmetric case, where saturation s(r, t) is a function of
time and the radius r in a spherical coordinate system
with its origin at the centre of the hemisphere repre-
senting the wet volume, Fig. 4. We have started our
simulations in this case with

s(r, t) |t=0 = sf + sa cosλa(πr/2), 0 ≤ r ≤ 1 (31)

at different values of parameters 0.2 ≤ sa ≤ 1 − sf and
0.2 ≤ λa ≤ 0.4. The value of L0 then is defined by con-
servation of the liquid, neglecting the evaporation effects,

2πφ

∫ 1

0

s(r, 0) r2 dr = VDL
−3
0 .

We note, that due to the use of a spherical coordinate
system, we also require that at r = 0 the first derivative
∂s/∂r = 0 to avoid singular spurious solutions.

The choice of parameter sa in the initial distribution
and even its functional form is not obvious. We ob-
served in the experiments that just in about ten min-
utes of spreading, the wetting spot volume shape becomes
spherically symmetric, when the average saturation level
s̄ ≈ 0.5, Fig. 5. But what is the liquid distribution at
this stage?

If we fix parameters of the initial distribution (sa and
λa) and parameter sf , then evolution of the moving front
at different values of sf −se0 represents a family of curves
shown in Fig. 12. One may notice that, first of all, the
smaller is the parameter sf − se0 (that is the higher is the
reduced capillary pressure at the moving front) the faster
the spreading occurs. Secondly, the power law found in
the experiments V ∝ A+B(t/t0)0.75 is very well observed
in the simulations, see insert in Fig. 12.

As one can see from the distribution of the liquid at t >
0, Fig. 13 (a)-(b), the saturation profile quickly relaxes to
a universal distribution at fixed values of sf , sf − se0 and
VD. The distribution s(r, t) at t = t2 = 6 × 10−5, when
the average value of saturation is already s̄ ≈ 0.1, does
not depend much on the details of the initial conditions.
This implies that we may not need to worry about the
initial profile in the simulations as far as the spreading at
low saturation levels is concerned. The profile shape is
very distinctive and is in good qualitative agreement with
direct nuclear magnetic resonance imaging of inflow in
porous materials such as gypsum building plaster, Port-
land lime stone and Portland cement [32]. It is flat in
the central part, where the saturation levels are still in
the funicular regime, and sharply declines to the bound-
ary value s = sf through a zone with an accentuated
tail, where the saturation levels are characteristic to the
pendular regime of wetting. We note that the saturation
profile with the value in the central part s ≈ 0.3 already
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FIG. 13. Simulation of spreading in a three-dimensional
spherically symmetric case using augmented superfast diffu-
sion model (28) at different initial distributions (31). Satura-
tion s(r, t) as a function of the reduced spot radius r/L0 at
t/t0 = 0, t/t0 = t1 = 3 × 10−6 and t/t0 = t2 = 6 × 10−5 at
fixed values of αg = 16.5, βg = 1.65, f0 = 1, sf = 0.0052 and
sf −se0 = 0.0002. (a) λa = 0.3 and sa = 0.4; (b) λa = 0.2 and
sa = 0.5. The inserts show variation of the saturation pro-
file at t = t2 with the parameters of the augmenting function
g(s). Here (I) αg = 12.5 and βg = 1.25, (II) αg = 14.5 and
βg = 1.45, and (III) αg = 16.5 and βg = 1.65.

corresponds to an average saturation level s̄ ≈ 0.1. This
implies that, first of all, there is no purely pendular or
funicular regimes of spreading in dry porous materials
and both mechanisms are in operation simultaneously.
The overall dynamics of the wetting spot area seems to
be defined to the large extent by the superfast diffusion
processes in the tail region of the saturation distribu-
tion, while the role of the standard diffusion mechanisms
inherent to the funicular regime is to level the liquid dis-
tribution by smoothing the profile in the central part.
This can be directly seen, if we change the values of the
augmenting function parameters αg, βg keeping the other
model parameters f0, sf and sf − se0 at the same level.
One can observe that such a change has almost no influ-

ence on the overall dynamics at t = t2, see the inserts in
Fig. 13. Indeed, while in the central part the permeabil-
ity coefficients are almost two orders of magnitude differ-
ent, the position of the front at s = sf is practically the
same and the saturation level in the centre has only vari-
ations within approximately 15%. In what follows, we fix
parameters of the augmented function at αg = 16.5 and
βg = 1.65 and scale parameter f0 according to (30) using
particular properties of the sand and the wetting liquid.

To understand the origin of the sharp transition ob-
served in the saturation profiles, consider an intermedi-
ate asymptotic in the pendular regime of wetting, when
g(s) ≈ 1. Introducing new variable ξ = (r − r0)/ε,
ε = const and r0 = const, ε � 1, and neglecting terms
of the order of ε and relatively slow variations in the log-
arithmic term and in κ̂0(s), from (28)

∂2

∂ξ2

1

(s− se0)1/2
≈ 0.

Then

s ≈ s0 +
1

(W0(r − r0) +W1)2
. (32)

As one can see, Fig. 14, the asymptotic behaviour
matches very well the simulated saturation profiles at the
point of the sharp transition and even in the tail region.
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FIG. 14. Simulation of spreading in a three-dimensional
spherically symmetric case using augmented superfast diffu-
sion model (28) with initial distributions given by (31) at
λa = 0.2 and sa = 0.5. Saturation s(r, t) as a function of the
reduced spot radius r/L0 at fixed values of αg = 16.5, βg =
1.65, f0 = 1, sf = 0.0052 and sf − se0 = 0.0002. A compari-
son between the asymptotic solution (32) (solid line, brown)
and the numerical solution at t = t1 = 3 × 10−6 shown by
symbols, W0 ≈ 287. The insert shows a similar comparison,
but at t/t0 = t2 = 6 × 10−5, W0 ≈ 62.
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Universal scaling laws of the moving front propagation and
the super-fast diffusion model

The distinctive shape of the saturation profiles sug-
gests an explanation of the characteristic power laws of
the front motion observed in the experiments. First of
all, the total flux Π0(t) at the moving front Xn(t) should
be proportional to the moving front velocity, that is

Π0(t) ∝ Xn−1
n

dXn

dt
,

where index n designates here the dimension of the dif-
fusion problem. At the same time, the asymptotic be-
haviour (32) suggests that parameter W0(t), Fig. 14
and the insert, should be inversely proportional to the
length of the tail region Xn(t) − r0(t). Hence, when
Xn � r0, the total flux Π0(t) (since it is proportional
to the gradient of saturation) should scale with Xn(t) as
Π0(t) ∝ 1

Xn(t) . That is in the one-dimensional case

dX1

dt
∝ 1

X1
.

This results in X1(t) ∝ t1/2, which is the well-known
Lucas-Washburn law for fluid motion in a circular capil-
lary observed in our one-dimensional experiments. In a
general case

Xn(t) ∝ t1/(n+1),

which in the three-dimensional case would give rise to
X3 ∝ t1/4 or V (t) ∝ X3

3 ∝ t0.75 - the power law ob-
served in the three-dimensional experiments and simu-
lations. We have also verified by numerical solution of
the model that X2(t) ∝ t1/3 in two-dimensional radially
symmetric cases.

A comparison between numerical simulations and
experimental results

Consider now a comparison between numerically found
evolution curves of the moving front using (28) and the
experimental observations. In all simulations we start
from a profile with λa = 0.3 and sa = 0.4, such that
L0 = 3.24 mm at VD = 6 mm3. Consider spreading
of TCP liquid drops (VD = 6 mm3) in R = 0.26 mm
sand, Fig. 15. In the simulations, we fixed the value of
sf = 0.0061 according to the experimental observations,
Table I, and sf − se0 = 4.3× 10−4 according to the scal-
ing (17) at Bf = 29µm2. The experimentally observed
evolution curves V (t) have been shifted by renormalising
time (t − ts)/t0, t0 = L2

0/Df , where an effective coef-
ficient of diffusion Df was the fitting parameter. The
time ts corresponds here to the actual time when the
simulations started (about 30 − 90 minutes of spread-
ing), when the average saturation levels s̄ observed in the
experiments coincide with the initial average saturation

levels in the simulations. As one can see the numeri-
cal solution is a good match to the observations giving
Df = 7 × 10−14 m2/s, while De

0 = (7 ± 4) × 10−14 m2/s
can be obtained assuming εp = 0.15 and θc = 30◦.

Now, in a similar way, we compare evolution of the
moving front for TEHP and TBP liquid spots with nu-
merical solutions, but with already fixed value of εp =
0.15. Those liquids have much smaller contact angle on a
flat smooth/rough surface of quartz, θc ≈ 10◦/0◦ against
θc ≈ 30◦/20◦ in the case of TCP liquids. Therefore, one
can expect much higher permeability according to (8).
In the comparison, we presume that for both TEHP and
TBP the equilibrium saturation level is sf = 0.68% ig-
noring the higher value of sf = 0.93% found for TBP.
This implies that the formation (and the thickness) of
the liquid film on the rough surfaces of the sand grains,
given similar wetting properties of both liquids, should
be the same. One can observe, Fig. 15, very good agree-
ment between numerical solutions and the experimental
data, demonstrating the scaling of the propagation rates
with the surface tension γ, liquid viscosity µ and contact
angle θc through the permeability of the surface layer κ1

0,
(8), suggested by the diffusion coefficient De

0.
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FIG. 15. Spreading of TCP, TEHP and TBP liquid drops
(VD = 6 mm3) in R = 0.25 mm sand (R = 0.26 mm for TCP
liquid). Comparison between experimental data and simula-
tions using superfast diffusion model (28) with initial distri-
bution of saturation given by (31). Normalised wet volume
V φ/VD (inverse average saturation s̄−1) as a function of the
reduced time t/t0, t0 = L2

0/Df . Experimental data are shown
by symbols and simulations are presented by the solid lines.
Parameters of the simulations and the fitting are summarized
in Table I.

Consider now how the average grain size affects the
spreading in the pendular regime. We have done a series
of experiments using TCP liquid drops (VD = 6 mm3)
placed on sand beds with different average radius R, sets
II, IV, V and VI, Table I. The results of a comparison
between numerical solutions of the model and the data
are shown in Figs. 15 and 16. In the simulations and in
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FIG. 16. Spreading TCP liquid drops (VD = 6 mm3) in sands
with different grain radii R = 0.14, 0.20 and 0.32 mm. Com-
parison between experimental data and simulations using su-
perfast diffusion model model (28) with initial distribution
of saturation given by (31). Normalised wet volume V φ/VD

(inverse average saturation s̄−1) as a function of the reduced
time t/t0, t0 = L2

0/Df . Experimental data are shown by sym-
bols and simulations are presented by solid lines. Parameters
of the simulations and the fitting are summarized in Table I.

the comparison, we used scaling (17) with Bf = 29µm2

to estimate parameter sf−se0 and κ0 at εp = 0.15. As one
can see from the comparison, the model demonstrates the
same trend as it was observed in the experiments. That
is that the evolution is slower for smaller grain sizes R.
In the model, this is a manifestation of the scaling of
the parameter sf − se0 ∝ R−2. The obtained values of
the fitting parameter Df were also in agreement with
the values predicted by the theory De

0. The only excep-
tion is observed at the smallest value of R, which can
be in principle mitigated by adjusting parameter sf − se0
within the uncertainty window. Alternatively, one can
think that properties of the surface roughness, while not
seen in the equilibrium distribution of the liquid, may
be different for large and small grains. So that further
improvement of the model would require, perhaps, more
accurate characterizations of the sand particles and con-
siderations of the flows within surface roughness, at the
micro-scale.

Consider now, how the dynamics observed in three-
dimensional spherically symmetric cases can be trans-
lated into one-dimensional geometry.

Dynamics of spreading in one-dimensional
geometries

The liquid spreading was observed in the open chan-
nels, as is shown in Fig. 6, by placing a VD = 3 mm3

liquid drops of TCP, TEHP and TBP at one end of the
groove. The numerical solutions were obtained by solving

the augmented model (28) with αg = 16.5 and βg = 1.65,
as before, and with initial distributions given by

s(x, t) |t=0 = sf + sa cosλa(πx/2), 0 ≤ x ≤ 1 (33)

at λa = 0.3, sa = 0.2. We use the same set of boundary
conditions, together with ∂s/∂x = 0 at x = 0 to reflect
the absence of the flux at the end of the channel.

A comparison between the experimental data and the
numerical solutions is shown in Fig. 17. In the compar-
ison, we have taken all parameter values directly from
the similar comparison in the three-dimensional geome-
try, Table I, with parameter L0 defined according to the
initial distribution (33)

πd2
cφ

∫ 1

0

s(x, 0) dx = 8VDL
−1
0 .

We note that practically all parameter values in the com-
parison were fixed, we have only taken the liberty to vary
L0 within 1 mm to take into account the fact that the
shape of the groove is hemispherical rather than cylin-
drical at the ends, Fig. 6, so that the one-dimensional
model is an approximation.

As is seen, Fig. 17, the numerical solutions follow the
propagation law observed in the experiments X1(t) ∝
t0.5. Secondly, one can observe that the scaling sug-
gested by the diffusion coefficient, D0 ∝ κ1

0
γ
µ , is well

observed. Indeed, after re-scaling the time t/t0, t0 =
L2

0

Df
,

the TCP, TBP and TEHP data collapsed into a single
curve. Though the numerical solutions slightly overshoot
the experimental curves, the overall comparison is look-
ing very good considering that there were practically no
fitting parameters involved.

Spreading in pre-wetted porous media

Even kiln-dried sands in open-chamber conditions
would absorb some amount of the liquid present in the
gas phase due to capillary condensation processes [33].
So we have conducted a series of spreading experiments
in the presence of some background level sr of the wet-
ting liquid in the porous matrix to understand how the
spreading dynamics would be affected by the pre-wet con-
ditions. The pre-wetted sand samples were prepared by
shaking and mixing a certain amount of the TEHP liquid
with the sand in a closed container over a long period
of time to ensure that the liquid is equally distributed
in the sample. The experimental results of spreading of
VD = 6 mm3 TEHP liquid drops in R ≈ 0.25 mm pre-wet
sands are shown in Figs. 18 and 19 at different levels of
sr. The main question here is to understand if the mixing
and shaking of the pre-wetted sand samples would have
produced a similar liquid distribution on the grain sur-
faces to that obtained during the natural liquid spreading
at similar saturation levels.

Apparently, one might expect that the distributions
would be different due to the hysteresis effect commonly
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FIG. 17. Spreading TCP, TEHP and TBP liquid drops
(VD = 3 mm3) in sands with R = 0.25 mm in one-dimensional
geometry. Comparison between experimental data and sim-
ulations using superfast diffusion model model (28) with ini-
tial distribution of saturation given by (33). Normalised wet
volume V φ/VD (inverse average saturation s̄−1) as a func-
tion of the reduced time t/t0, t0 = L2

0/Df . Experimental
data are shown by symbols and simulation is presented by
the solid line. Parameters of the simulations and the fitting
are summarized in Table I. The dashed line (brown) is the fit
V φ/VD = A+B(t/t0)0.5 at A ≈ 8.5 and B ≈ 440.

observed at low saturation levels during capillary conden-
sation in porous media and during drainage-imbibition
processes [31, 33, 34]. For example, if some areas on the
grain surfaces were inaccessible to the liquid flow at low
saturation levels [11], then during shaking and mixing
those areas might be wet. The assumption is in agree-
ment with the analysis presented in [11] and our observa-
tions that the equilibrium value of αR ≈ 0.2 after natural
spreading is small. That is, during the natural spread-
ing, large surface areas of the grains were left dry. This
implies that the liquid content in equilibrium would de-
pend on the way this equilibrium was achieved, and this
seemed to be observed in our experiments, Figs. 18 and
19. Indeed, as is seen from the figures, the rate of the
front evolution and the final size of the wet spot area were
practically independent of the value of sr, as if the sand
was almost dry. One can observe some small effect of
the background moisture presence, but as we will argue
below, this was way too low.

Theoretically, if we presume for a while that our pre-
wetted sands with some background level of saturation
sr have similar liquid morphology to that during the nat-
ural spreading, one should distinguish two cases. In the
first case, when sr > se0, there should be liquid bridges
present in the background porous material. In the second
case, when sr < se0, the global network connection is bro-
ken. In the former case, the notion of the moving wetting
front is absent as a matter of fact. Consider, as an ex-
ample, again a spherically symmetric three-dimensional

sr=0.005 sr=0.01 sr=0.02

t=3 min

t=6 days

30 mm

FIG. 18. Spreading of TEHP liquid drops (VD = 6 mm3) in
pre-wetted sands with different background saturations levels
sr = 0.5, 1 and 2%. UV fluorescence wet spot areas taken at
t = 3 min and at t = 6 days after the deposition of the drops
on the sand bed.
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FIG. 19. Spreading of TEHP liquid drops (VD = 6 mm3) in
pre-wetted sands with different background saturations levels
sr = 0, 0.5, 1 and 2%. Normalised wet volume V φ/VD (inverse
average saturation s̄−1) as a function of the reduced time t/t0,
t0 = L2

0/Df . The experimental results are shown by symbols.
The results of numerical simulations are shown by solid lines
(sr = 0%) and by dashed lines sr = 1% and sr = 0.5%.

case, when initial liquid distribution at t = 0 is given by

s(r, 0) = sr + sa cosλa(πr/2), 0 ≤ r ≤ 1 (34)

s(r, 0) = sr, 1 ≤ r ≤ ra

and there is no flux at the end of the simulation domain
at r = ra, Fig. 20. Due to the nature of our numerical
method, which is using moving meshes, the amount of the
liquid is conserved in between any moving mesh points.
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FIG. 20. Simulation of spreading of TEHP liquid drops (VD =
6 mm3) in pre-wetted sands with the background saturations
level sr = 1% using the augmented model (28) with initial
conditions (34) at sa = 0.4, ra = 4 and λa = 0.3 with se0 ≈
0.0068.

Hence, one can easily follow the evolution of a bench-
mark point xm(t), as is shown in Fig. 20. The result
at sr = 1%, shown in Fig. 19 in terms of the evolution
of the volume contained within 0 ≤ r ≤ xm, indicates
that while there is some initial plateau in the distribu-
tion of the saturation, as is observed in the experiments
presented in the same figure, in general the evolution
is much slower. One can conclude then that, while the
initial plateau observed during the volume evolution at
high average saturation values s̄ ≈ 20% at both sr = 2%
and sr = 1% indicates that the mechanism of spreading
is sensitive to the background levels, see Fig. 19, to the
large extent the spreading dynamics is still defined by the
front capillary pressure generated on the scale of surface
roughness. One can also conclude that the liquid mor-
phology of that background liquid distribution seemed to
be different from the liquid morphology observed at these
saturation levels during the natural spreading.

In the second case, sr < se0, one needs to modify the
original model to include the presence of some back-
ground saturation level. Using conservation of the liq-
uid in the domain Ω with a front ∂Ω(t) moving into the
area with background saturation sr and the transport
Reynolds theorem

d

dt

∫
Ω(t)

s d3x =

∫
Ω(t)

(
∂s

∂t
+∇ · (sv)

)
d3x =

=

∫
∂Ω(t)

(v · n) sr dS,

where n is the normal vector to ∂Ω.

Transforming the surface integral into the volume in-

tegral ∫
Ω(t)

(
∂s

∂t
+∇ · ((s− sr)v)

)
d3x = 0.

This implies that an equivalent moving boundary-value
non-linear diffusion problem of transport in pre-wetted
sands can be formulated in terms of a function ϕ = s−sr

∂ϕ

∂t
= ∇

{
κ̂0(ϕ) ĝ (ϕ)∇ϕ

| ln(ϕ− ϕ0)|(ϕ− ϕ0)3/2

}
, (35)

ϕ0 = se0 − sr

with the boundary conditions

ϕ|∂Ω = sf − sr

and

vn|∂Ω = − κ̂0(ϕ) ĝ (n · ∇)ϕ

(sf − sr)| ln(sf − se0)|(sf − se0)3/2
. (36)

One can see that in general due to a smaller factor at
the moving front sf − sr (instead of just sf ), the front
motion is expected to proceed with much higher velocity.
This is understandable, since one requires lesser amount
of the liquid to move the front by an infinitesimal value
∆x within a time interval ∆t, and this is exactly what
was observed in the numerical solutions of (35)-(36) at
the parameters of set VIII, Table I, and initial distribu-
tion (31) at λa = 0.3 and sa = 0.4. As one can see, the
propagation of the front is indeed much faster than at
sr = 0 shown in the same figure. One might expect that
the value of the parameter sf − se0 would be larger in
this case, since in the pre-wetted sand the small length
scales of the surface roughness may not be available. This
might reduce the capillary pressure at the moving and
slow down the propagation rate. But, we have checked
that increasing the value of sf − se0 by three times was
insufficient to match the slower propagation observed in
the experiment. This again indicates that the liquid mor-
phology is different at sr = 0.5% than one would antici-
pate. Basically, the wetting process is unaffected by the
presence of small background levels. In a way, this result
is in accord with the characteristic values of the coeffi-
cient αR ≈ 0.2 obtained in the comparison with experi-
mental data. This indicates, that only a limited part of
the surface area of the grains is fully participating in the
liquid transport in the system. These are very interesting
results, which definitely require further, specific studies.

CONCLUSIONS

In our previous, pilot study of liquid spreading in par-
ticulate porous media, such as sand, at low levels of sat-
uration [7], we established that:
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• The process of spreading can be described by a spe-
cial type of non-linear diffusion model, the super-
fast diffusion equation, where the driving force is
the capillary pressure at the moving front gener-
ated by the particle surface roughness and the coef-
ficient of diffusion has a characteristic singular form
D(s) ∝ (s− se0)−3/2. We have established that the
diffusion process follows the scaling law suggested
by the scaling of the coefficient of diffusion with
viscosity and surface tension D ∝ γ/µ, which is
expected in capillary flows.

• Motion of the wetting front X3(t) in a three-
dimensional spherically symmetric case (when the
wet volume has a shape of the hemisphere) exhibits
universal scaling behaviour with time t, such that
X3(t) ∝ t1/4, and then goes to standstill at finite
saturation levels s0 ≈ 0.6%. This behaviour led us
to a conjecture, confirmed in numerical simulations
of the superfast diffusion model, that in general,
depending on the geometry of the experiments, ba-
sically on its dimension n, Xn(t) ∝ t1/(n+1), which
may be used in practical applications to analyse
such kind of spreading processes.

While we were able to identify the main non-
dimensional parameters governing the process of spread-
ing, the theoretical model was too crude to determine
them with sufficient accuracy. More experiments were
needed to understand how the microscopic parameters of
the porous media are related to non-dimensional parame-
ters of the model, and how the properties of the superfast
non-linear diffusion are related to the universal scaling
behaviour of the moving front observed in the experi-
ments and in the numerical simulations. For this reason,
first of all, we have substantially refined our theoretical
model to calculate more accurately the permeability of
the porous media at low saturation levels. At the same
time, we have augmented the model to be able to de-
scribe the spreading process starting from the funicular
regime of wetting, so that to obtain realistic initial dis-
tributions of saturation. We have performed a series of
experiments with a set of low-dispersed (with small devi-
ations of the grain radius R from its average value) well
characterized sands using different geometric set-ups and
regimes of spreading, one- and three-dimensional sym-
metric regimes. We have established experimentally and
theoretically, that:

1. Using geometrically different set-ups and regimes of
liquid spreading, that the motion of the liquid wet-
ting front Xn(t) indeed follows the universal scaling
law Xn(t) ∝ t1/n+1, which is solely defined by the
dimension of the moving front diffusion problem
n. In particular, in the one-dimensional case, when
the spreading occurs along an open semi-cylindrical
channel filled in with sand, we have recovered the
well-known Lucas-Washburn law X1(t) ∝ t1/2, as
it might have been actually expected. As it was

shown by the numerical analysis, the augmented
superfast diffusion model (28) clearly demonstrates
this universal behaviour, which may be used in the
practical applications for the analysis of spreading
at low saturation levels. Analysis of the mathemat-
ical model has revealed that this universal scaling
behaviour of the moving fronts is manifestation of
the specific shape of the saturation profile (a Mexi-
can hat) predicted by the model, with a distinctive
tail at almost equilibrium saturation levels s ≈ sf .

2. As a consequence, the overall evolution of the wet-
ted volume is predominantly defined by the diffu-
sion rates in the tail region, that is by the processes
described by the super-fast diffusion model. While
the standard diffusion mechanisms, commonly ap-
plied for the analysis of spreading in the funicular
regime of wetting, only smooth out the distribution
profile at higher levels of saturation, usually found
in its central part. This implies that, in fact, con-
trary to the rather common view, there is no for-
mal separation, sharp border line between the two
regimes of wetting, the funicular and the pendular
regimes, and they simply simultaneously operate
but in different locations.

3. Analysis of the experimental data obtained using
liquids of different viscosities and wettabilities has
shown that the observed dynamics of the liquid
spreading follows in general the scaling laws pre-
dicted by the superfast diffusion model. In partic-
ular, we have confirmed our previous finding that
the spreading dynamics of different liquids obeys
the scaling law usually expected when the driving
force is the capillary pressure, and the coefficient
of diffusion D ∝ γ/µ. We have been able to iden-
tify the scaling behaviour of diffusion with wettabil-
ity of the porous material, that is with the contact
angle θc. As it might be expected, the diffusion
rate is found to be smaller for larger contact an-
gles. This effect was found to be directly related
with the amount of the surface roughness groove
filling, which is getting reduced when the contact
angle increases.

4. A set of experiments using low-dispersed sand sam-
ples with different distributions of the grain sizes
has allowed to more accurately estimate the main
non-dimensional parameters of the model. There
was practically only one adjusting parameter εp
left, which incorporates only specific microscopic
parameters of the surface roughness. Spreading
dynamics observed in sands with different grain
size distributions was found to be slightly counter-
intuitive. The spreading was slower when the grain
size reduces, while the effective surface area per
unit volume ST ∝ 1/R (and hence the effective
free surface energy) increases. As we have demon-
strated, this behaviour is in accord with the math-



18

ematical model and is manifestation of the scal-
ing of the main non-dimensional model parameter
sf − se0 ∝ 1/R2, which is in fact the inverse of the
capillary front pressure, the main driving force of
the process.

5. Experimental and theoretical analysis of spread-
ing behaviour in pre-wet sands with a small back-
ground level of saturation sr ∼ 2% allowed to con-
clude that, first of all, there is a hysteresis effect
of wetting similar to that during capillary conden-
sation in disordered porous materials or drainage
and imbibition processes [31, 33, 34]. On the other
hand, if the small background level of saturation
was achieved by a mixing process, it does not
change dramatically the dynamics of spreading pre-
dicted by the superfast diffusion model. This would
definitely require further studies.

6. While the dynamics of liquid spreading was found
to depend on the liquid and porous media proper-
ties, the equilibrium thickness of the liquid film on
the surface of grains was solely defined by the sur-
face roughness, at least for the well wetting liquid-
solid combinations used in our study. Such uni-
versal behaviour allows to predict one of the main
parameters of the model sf ≈ s0 with sufficient ac-
curacy only on the basis of the effective surface area
ST ∝ 1/R.

One can then finally conclude that on the basis of com-
parison with experimental data the augmented super-
fast non-linear diffusion model (28) provides adequate
description of liquid transport at low saturation levels,
which can be used in practical applications.
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APPENDIX: NUMERICAL MOVING MESH
METHOD.

The numerical technique used to solve the partial dif-
ferential equations in this study is a moving mesh method
driven by conservation, similar to that presented in [35]
and described in [36]. A nodal velocity v is constructed
from a combination of a non-linear diffusion equation, for
example the 3-D radially symmetric nonlinear diffusion
equation

∂s

∂t
=

1

r2

∂

∂r

(
r2D(s)

∂s

∂r

)
,

and the conservation law

∂s

∂t
+

1

r2

∂

∂r

(
r2sv

)
= 0, (37)

yielding the velocity formula

v(r, t) = −D(s)

s

∂s

∂r
(38)

where v(0, t) = 0. An equation for ds/dt following the
motion is then

ds

dt
=
∂s

∂t
+ v(r, t)

∂s

∂r
= − 1

r2

∂

∂r

(
r2sv

)
+ v(r, t)

∂s

∂r

= −s 1

r2

∂

∂r

(
r2v
)

= s
1

r2

∂

∂r

(
r2D(s)

s

∂s

∂r

)
(39)

Introducing moving nodes r̂i(t) and corresponding sat-
uration values ŝi(t), (i = 1, . . . , N), an approximation to
(38) is

vni+1/2 = −
D(ŝni+1/2)

ŝni+1/2

ŝni+1 − ŝni
r̂ni+1 − r̂ni

(40)

The system (39) is approximated by the first-order-in-
time semi-implicit scheme

ŝn+1
i − ŝni

∆t
=

ŝni
(r̂ni+1/2 − r̂

n
i−1/2)(r̂ni )2

{
(r̂ni+1/2)2D(ŝn)

ŝn

∣∣∣∣
i+1/2

(ŝn+1
i+1 − ŝ

n+1
i )

(r̂ni+1 − r̂ni )

− (r̂ni−1/2)2D(ŝn)

ŝn

∣∣∣∣
i−1/2

(ŝn+1
i − ŝn+1

i−1 )

(r̂ni − r̂ni−1)

}
(41)

(i = 1, . . . , N − 1) where ∆t is the time step, which has
the property that no new local extrema in ŝi are created
in the interior of the domain in a time step, thereby pre-
serving positivity of ŝi and avoiding oscillations. This
allows arbitrarily large numbers of nodes without∆t be-
ing restricted by stability conditions.

The scheme (41) can be written in the matrix form

Bŝn+1 = ŝn (42)

where ŝn+1 = {ŝn+1
i }, ŝn = {ŝni }, and B is a tridiagonal

matrix modified to take into account the boundary con-
dition ŝN = sf and the continuity condition ∂s/∂r = 0
at r = 0.

Once the ŝn+1
i have been obtained the mesh nodes r̂n+1

i
can be found from the Lagrangian form of the conserva-
tion principle (37), i.e.∫

ŝ(r, t)r2dr is constant in time, (43)

valid when s(r, t) > 0.
A discretisation of (43) is

{(r̂n+1
i+1 )3ŝn+1

i+1 − (r̂n+1
i )3ŝn+1

i } = its initial value (44)

(i = 2, . . . , N), yielding r̂n+1
i by recursion over i, given

r̂n+1
0 = 0. Since the sn+1

i are positive the recursion pro-
cess ensures that the nodes remain ordered.

To summarise the algorithm, given the rni and sni val-
ues at time step n,

• approximate the vni+1/2 from (40)

• determine the ŝn+1
i from (41), equivalently (42)

• recover the rn+1
i from (44).
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