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A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is
presented. It is intended for problems describing the Stokes flow in the situations where one has corners
or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on
these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence
have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation
method for the main part of the flow domain and the finite-element method which is used to resolve the
corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as
a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the
course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’,

a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to
what happens in the corner region formed, physically, by the free surface and the solid boundary. The
‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation
model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed
function of the contact line speed, as in the so-called ‘slip models’.

Keywords Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes
equations.

1. Introduction

The necessity to describe low Reynolds number free surface flows arises in many modern applications
of fluid mechanics, especially in microfluidics and biological processes, where the volumes involved are
often on the nanoliter scal&{uires & Quake2005 and, even for low-viscosity fluids, like water, the
Reynolds numbers characterizing the flow can be of the order of.Ihe complexity of the mathe-
matical problems one encounters in the applications calls for efficient and flexible numerical algorithms
capable of handling a wide range flow conditions and geometries.

A powerful numerical algorithm of solving free boundary problems intensively used in the past
two decades is the finite-element method (FEM) based on tessellating the flow domain into finite ele-
ments and using the Galerkin approximation of the bulk equations on each of Greishp & Sani
2000. However, the straightforwardness of this approach becomes its disadvantage in the situations
where the geometry of the flow domain is complex so that tessellation turns into a non-trivial prob-
lem and remeshing the grid in the process of iterations causes additional difficulties of controlling the
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computational accuracy. This disadvantage is particularly obvious in the case of the Stokes flows where
an exact analytic free space solution to the bulk equations is avaiRbeiKidis 1992).

The exact solution to the Stokes equations is utilized in the boundary integral equation method
(BIEM) where the problem is reduced to that on the boundaries confining the flow domain. This allows
one to reduce the dimensionality of the problem and eliminate the difficulties caused by the complex
geometry of the domain. The method has been used to describe a wide variety oflfiswsitet al,

1967 Jaswon & Symm1977 Rallison & Acrivos 1978 Kelmanson1983ab, 2004 Pozrikidis 1992
Zinchenkoet al, 1999 Zinchenko & Davis2002). The problem arises when the boundary of the flow
domain has sharp corners or cusfjasivoret al,, 1967 Jaswon & Symm1977 Kelmanson1983h

2004 Pozrikidis 1992 Zinchenkoet al, 1999. Computations show that for non-trivial flows near a
corner, the numerical solution oscillatelagworet al,, 1967 Jaswon & Symm31977) thus making it
impossible to achieve the required accuracy. The situation becomes even less satisfactory in an often
encountered situation where the flow variables have large gradients near the corner. In this case, the
combined effect of all adverse factors leads to poor conditioned matrices and the loss of accuracy and
convergenceelmanson1983h 2004 Zinchenkoet al., 1999.

In the case of corners formed by solid boundaries, a way of dealing with large gradients of the flow
variables has been proposed Kglmanson(1983h, who factored out the singular part of the solu-
tion to improve conditioning and convergence. Naturally, this method requiraspaiori knowledge
of the shape of the corner and of the asymptotic form of the singularity. A largely similar approach
has been used ¥inchenkoet al. (1999 to develop a curvatureless algorithm for flows near regions
of the free boundary, where the free surface curvature can become singular as the flow evolves. This
method of taking out the singularity (which in itself could be an artifact from the physical viewpoint)
allows one to substantially improve convergence of the algorithm though the problem as such remains
(Kelmanson2004.

The aforementioned problem turns into a difficulty of principle in the situation where the flow
parameters near the corner have a global effect on the flow domain and hence poor accuracy has catas-
trophic consequences. Most notably, this is the case in the modelling of dynamic wetting where, on
the one hand, the boundary of the flow domain is invariably hon-smooth as it has the ‘contact angle’
formed by the free surface and the solid boundary at the ‘contact line’ and, on the other, as experiments
show Blakeet al,, 1999 and hence the mathematical model must follow, the value of the contact angle
depends on the flow field near the contact line. Then, even relatively small computational errors, and es-
pecially oscillations of the solution near the contact line, will result in errors in the contact angle which,
being the boundary condition for the equation determining the free surface shape, will generate global
errors and spurious large-amplitude waves on the free surface and in the bulk. The latter will come back
to the contact line region causing more (this time, induced) oscillations in the flow parameters.

In the present paper, we develop a combined BIE-FE method that uses advantages and, to a large
extent, compensates disadvantages of the two constituent techniques. The idea is as follows. One can
single out a region with a relatively simple geometry to include the singularity of curvature of the flow
domain’s boundary (a corner or an inward-pointing cusp (An outward-pointing cusp and a contact angle
equal to 0 are a special case and require some analytic work before they can be incorporated into a
numerical code.)) and use there the full power of the FEM to compute the flow parameters with very
high accuracy and spatial resolution. Outside this region, the standard BIEM can be used to efficiently
handle the overall Stokes flow. The two regions are separated by an artificial ‘internal interface’ where
the flow variables expressed in terms of the two methods must be matched with sufficient smoothness.
The range of positions and shapes of the internal interface must be chosen in such a way that, on the
one hand, this interface is sufficiently close to the corner to ensure simplicity of the domain subject
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FiG. 1. Definition sketch for curtain coatindy is the ‘actual’ contact angle, i.e.the angle at which the free surface meets a solid
boundary in the macroscopic fluid mechanics modelling of the flow, i.e.the angle used as a boundary condition for the equation
determining the shape of the free surfaég;p is the so-called ‘apparent’ contact angle often used as an adjustable parameter in
interpreting the results of experiments.

to the FEM and avoid tessellation of large spaces and, on the other hand, it must be sufficiently far

away from the corner to avoid having a high curvature and hence compromising the accuracy of the
BIEM. Besides this, the shape of the internal interface has to make the boundary of the BIEM domain

sufficiently smooth and at the same time it should not degenerate the finite elements adjacent to the
points where the internal interface and the actual boundaries of the flow domain intersect. Naturally,

there should be no variation of the computed flow parameters caused by shifting the internal interface
that would be outside the overall accuracy of the method.

The idea of splitting the computational domain into exterior and interior parts where different meth-
ods operate is not new and has been previously utilized in hybrid techniques to solve problems involving
a combination of components with essentially different physical propeNasjuezet al,, 2004 Li &

Aluru, 2004 Ballandrast al,, 2004). For exampleMarquezet al. (2004 used a hybrid technique to sim-

ulate fluid—solid interactions in acoustic problems. The solid vibrations and the near-field effects have
been approximated by means of the FEM, whereas the far-field dynamics for an inviscid liquid has been
solved using the BIEM. In a slightly different way, a hybrid algorithm has been utilized to carry out elec-
trostatic analysis of nanoelectromechanical systeém& Aluru , 2004 and to simulate surface acoustic
wave devices built on stratified medigdllandraset al,, 2004). Obviously, a necessary condition to use

a hybrid technique of that kind is the availability of an analytic solution in the exterior domain to apply
the BIEM, e.g. a solution to the Laplace equatidMetquezet al., 2004). In our combined method, the
exterior problem is set up for the Stokes equations with the classical set of boundary conditions.

We will illustrate the new algorithm by considering the flow known as ‘curtain coating’. Curtain
coating, where a sheet of liquid impinges onto a moving solid substratelffig.used in applications
as an efficient way of depositing thin liquid films on solid surfadést{ier & Schweizer 1997). As
a basis for the numerical code, we will use the theory of dynamic wetting as an interface formation
process $hikhmurzaey1993 1994 2006 2007, which, to date, is the only model where the dynamic
contact angle is part of the solution rather than an input.

2. The problem formulation

We will be looking for a solution of the Stokes equations

V.u=0, Vp=uVu+pg (1)
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in the flow configuration shown in Fid. subject to the following boundary conditions. On an unknown
free surface with the outward normaj the boundary conditions are given bghfkhmurzaey1993
2006 2007

vi.-n=0, 2
p—un-[Vu+ (Vu)*]-n=0¢V-n, 3)
un-[Vu+ (Vw*]-(I —=nn) — Vo =0, 4)
pu-n=—(p°=pi)r 7, (5)
V- (pV®) = —(p° — pi)r . (6)
(1+ 4ap)Vo = 4B(V° —u) - (I — nn), 7)

whereas on the solid surface moving parallel to itself with veldditpne has
ve.n=0, 8
an - [Vu+ (Vu)*] - (1 =nn) = $Vo = U -u)- (1 —nn), (9)
pu-n=—(p°—p)r 1, (10)
V- (pSVS) = —(p° — pi)r (11)
[vs - S+ U)] (I = nn) = aVo. (12)

Here,o is the surface tension in the interfacial layer which is modelled as a 2D ‘surface phaisethe
surface density in this phase (mass per unit areayaisithe velocity with which it is transported along
the interfacen, S, y, 7, p{,(i = 1, 2) are phenomenological material constamtis the metric tensor;
and the tensofl — nn) singles out the tangential projection of a vector so that,ie.gl — nn) = u;.

The model has been established and examined in a number of v@&kdhihurzaey1993 1994
2006, so that here we will only briefly comment on the meaning of equations. On the free surface, in
addition to the usual conditions on the normal and tangential stre3sand @), the model takes into
account mass exchange between the bulk and the surface phasel (6) that takes place when the
surface density® deviates from its equilibrium valugg,. Similar to €) and 6), conditions {0) and
(11) describe mass exchange between the bulk and the liquid—solid interface. Importantly, the tangential
components of the velocity in the surface phasehe bulk velocity evaluated on the liquid-facing side
of interfaceau and the velocity of the solid substradfieare, in a general case, different due to the torques
acting on the surface phase. On the free surface, the conditions relating tangential compow®nts of
andu are given by 7), whereasg) and (L2) related tangential components\df u andU on the solid
boundary. It is assumed that the solid surface is impermeable for, and chemically inert with respect to,
the fluid and there is no actual slip on the solid surface. Hence, conditRyre¢sentially has the form
of a ‘Darcy law’ in the interfacial layer.

The equation of state in the surface phase that closes the set of equatib®sfér the surface
variables is taken in a simple ‘barotropic’ form linking the surface tensiavith the surface density

o =75 - p°), (13)
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wherey andpg are phenomenological constants. This equation is the simplest way of accounting for
the fact that the surface tension decreases from its equilibrium value: o (p3,) in the free surface
to that in the liquid—solid interfacege = o (p3,), when the interfacial layer becomes more compressed
(or, more generally, less rarified) due to the action of intermolecular forces from the bulk phases that
determine the equilibrium values pf. The dependence of phenomenological material constants on vis-
cosity and their estimates for particular fluids have been obtained by analysing experiments on dynamic
wetting available in the literatur&hikhmurzaey1993 1997 Blake & Shikhmurzaey2002).

Distributions of the surface parameters along the interfaces are linked at the contact line via the mass
and momentum balance conditions

piVi- €1+ p5vs - € =0, (14)
01C0S0y = 03 — 02, (15)

where the subscripts 1 and 2 refer to the limiting values as one approaches the contact line along the free
surface and the solid—liquid interface, respectivelyande, are unit normals to the contact line directed

along the appropriate interfaces (Fig.andos is the tangential component of the reaction force acting

on the contact line from the solid substrate. For the cosine of the dynamic contactangle has

cosfy = e - e. In equilibrium, the dynamic contact angle is related to the static @peyia the
classical Young equation

01eC0S0s = 03 — 02 (16)

that links the material constantge, o2¢ andas (or, alternatively, after usingl@), p3., P35 G, 7> 03)
and hence allows one to replace one of them Withwhich is a material constant characterizing the
interaction of all three contacting media and a quantity relatively easy to measure in experiments.

The boundary condition®2£15) make the surface phases and the contact line regular ‘elements’ of
a fluid mechanical model. Importantly, in this model we have fQ&s part of the solution, unlike the
case of the so-called ‘slip models’, whekgis prescribed as a function bf and hence becomes a given
input. (The slip models have to interpret the experimentally measured contact angle as an ‘apparent’ one
(see Figl) which then also becomes part of the solution, though dependent on an adjustable parameter,
namely, the distance of the point where this angle is calculated from the contact line. However, as shown
recently {Vilson et al,, 2006, even with this adjustable concept added, the slip models fail to describe
experimental observations.)

Itis important to emphasize that itis#£ 0O that is at the core of the interface formation phenomenon
and hence at the core the model we are using. Otherwise, the model would degenerate into the standard
Navier slip model that has been used in many works and whose deficiencies, alongside those of other
slip models, have been analysedshiknmurzae{2006.

In order to model curtain coating, we need to formulate additional boundary conditions specifying
this particular flow. After introducing a Cartesian coordinate system as shown ih, Fog the bulk flow
one can set the inlet velocity and thickness of the falling liquid sheet

u=U, for —h/2<x<h/2, y=H, a7

where the inlet velocityd, is assumed to be uniform and have only theomponent, together with
boundary conditions far downstream, which we will set in a soft form

ou(x, y)

7 0 asx — 400, 0<y<hu,/U, (18)
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whereh is to be determined. For the surface variables, we will assume that at the top of the curtain the
interfaces are in equilibrium, i.e.
p>=ple, VP =u forx==+th/2, y=H, (19)
and that far downstream along the solid surface, the liquid—solid interface tends to its equilibrium state
p° = p5e (X — 400,y =0). (20)

Equations {-15) and (L7-20) fully specify the problem.

UsingU, h, xUh™%, 51¢ and pg as scales for velocity, length, pressure, surface tension and the
surface density, respectively, to bring-{5) and (L7-20) to a non-dimensional form, we have that the
problem is characterized by the following set of similarity parameters:

U h Uh S S
Ca= ,Ll_, BO:&, ﬁ ﬂ A:aﬂ, ,{:m’ :&’
Ole Ole ote O1le pUzt
Ut _ 03 _s P - U, - H
= > = > = T3> 99 U*:_a H=—.
€ h o3 O1e Ple ,08 S U h
After introducing the stream function,
0 0
Uy = _Wa uy = __l/ja
oy oX

one arrives at a biharmonic equati®y = 0, which is convenient to split into two second-order
equations

Vzt// =w, Vw=0, (21)
where
_ Ouy  OUy
oy ox

is the value of the vorticity vector directed perpendicular to the plane of flow. Using the natation-n
for the free surface curvature, we can write down the boundary condition in the following way.
On the free surface:

de dw 0% oy
A(1=p%>— =Bog, C——2C ——C 22
(19" =Bog a_ 25y~ Cacw (22)
o’y dp®
Caw = 2Ca— + 2Ca§— +ige
oy _ d(p°v®) _
E = _Q(ps _ple)9 GT = _(PS - ple)a (23)

(s, oV dp® _
4B (u + - + (1 + 4A) & =0, (24)
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and on the solid substrate:

Py AdpS  (oy
Caw=2Ca— + - — — —+1 25
a0 422 (an+), (25)
oy _ d(p°v®) _
EZ_Q(pS_pZe)a ds _(ps_p2e)9 (26)
1 /oy A/ dpS
S+ = -1 ——=0. 27
v 2 (an )+ p ds @"
At the contact line, one hag4) and (5), i.e.
(p%0°)1 = (p°0°%)2, 01C080y = 3 — 02, (28)
whereas at the top of the curtain and far downstream, the boundary conditie@€)(take the form
0 - -
a—‘r‘]’ =0, y=U,(x+1/2) (-1/2 <x <1/2,y = H), (29)
W o (xS s0<y <y (30)
an B anz > y h * )
pS=p5e v =20, (x=F1/2.y=H), (31)
PS> P (x> 00,y =0). (32)

In (22-27), 6/on, 6/8s and d/ds stand for differentiation with respect to the outward normal and
the arc lengtls, measured anticlockwise in the direction of the tangdRig. 1), respectivelyp® is the
only non-zero (i.e.tangential) component of the surface velocitygarid the tangential component of
the unit vector in the direction of gravity.

The characteristic feature of the proble?i-{32) is that the dynamic contact angle, as introduced by
(28), is determined by the distributions of the surface parameters along the interfaces. These distributions
are coupled with the bulk variables through the boundary conditions thus making the dynamic contact
angle a functional of the entire flow field. On the other hand, as is always the case in dynamic wetting
problems, the dynamic contact angle itself determines the position of the contact line and, ultimately,
the shape of the interfaces thus affecting the global flow field. This interplay between the bulk and the
interfacial variables introduced via the modified boundary conditions changes all the familiar patterns of
the standard hydrodynamics. For example, near the contact line for the steady problem, the interfaces are
no longer coinciding with streamlines, and the boundary conditid8sgnd @6) for the normal com-
ponent of the bulk velocity depend on the distributions of the surface parameters along the interfaces.
The interrelatedness of the flow parameters, the distributions of the surface variables and the shape of
the flow domain make a numerical solution of the probl@&-82) rather difficult to obtain since, in
addition to the known difficulties of computing free surface flows {esgi & Yue 1996, one has to
pay special attention to properly resolve the surface distributions, especially near the contact line.

3. Implementation of the combined algorithm

Preliminary computations of(-32) have shown that, as suggested by an asymptotic analysis of the
interface formation modelShikhmurzaey1993 1994, the surface variables vary steeply only near
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the contact line where the liquid—gas ‘surface phase’ turns into the liquid—solid one and the surface
parameters have to relax to new equilibrium values over some relaxation length. This length is typically
small compared with the characteristic size of the flow domain so that away from the contact line, the
surface densities have their (constant) equilibrium values, the surface velocity is equal to the tangential
component of the bulk velocity and the bulk variables satisfy the standard boundary conditions on the
free surface,

oy
= =25 33
y=const =2—-, (33)
de ow 0% oy
— =Bog, — Ca— — 2Ca— — — Calw, 34
ds g on 852 on Lo (34)
and the Navier condition,
_ 61//
w =const Caw+ S (a_n + 1) =0, (35)
on the solid boundary. For small ¢, the Navier condition turns into no slipy/on = —1, but, to

avoid switching between boundary conditions of different types, we will 88g the far field, though
for all physically realistic values of parameters, the result is that the no-slip condition is satisfied with a
very high accuracy.

On the upper free surface, for all physically realistic values of parameters, the surface variables
satisfy 83) and 34) with a very high accuracy so that one can use these conditions inste2?-24),
though numerical implementation of the latter causes no difficulties.

To implement the combined BIE-FE technique, it is convenient to split the computational domain
into two regionsQy (outer region) and. (inner region), see Fida. In Q¢, where the surface variables
vary steeply, the FEM is applied t@1-28), whereas in2, we can use the BIEM applied t@7), (29),

(30), and B3-35) together withp® = 53, p° = p5,, andv® = u - t on the appropriate parts of the
boundary. Conditions3(l) and @2) transform into the corresponding matching conditions at points

(b)

FIG. 2. (a) Sketch of the computational domain for curtain coating. (b) Computational domain in the corner region tessellated for
the FEM. The blow-up of the mesh near the contact line is given inFig.
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a andb. The bulk variables in the two regions are linked by the matching conditions

oy oy
) —— = 36
¥in = Yout, (6n )in (Gn )out’ (36)

6(0) (aa))
in = ts —_— = — - (37)
" o (8n in on out

we pose on the curvéyp (numerical ‘internal interface’) separating, and Qc. In (36) and @7), the

normal is pointing outwards with respect to the corresponding domain. The size of @gimist be

chosen in such a way that along the interfaces, its dimensions are large compared with the relaxation
length for the surface variables. The main elements in implementing the combined algorithm are asso-
ciated with the way of expressin§&-37) in terms of inner and outer variables, the shape and evolution

of I';p and the organization of the iteration procedure.

3.1 Boundary integral equation formulation

Using the Green'’s theorem, the coupled fof2i)(of the biharmonic equation can be written down as a
set of two integral equations far, w and their normal derivativeg,, wn:

1
n(Xo) y (Xo) = Z/w Iw(x)n -Vinr —yn(x)Inr
b

+%a)(x)n -V(@?Inr —r?) — %wn(x)(rzlnr —r?td, (38)

n(Xo)w(Xg) = %/@Q {o)N-VInr —wn(X) Inrid,
b

wherer = |x — Xg|. The integrals are taken over the cont@upy, that confines regiom2,. Where
necessary, they must be interpreted in the principal value. The normal veistpointed outwards the
regionQy. The function;(x) is given by

0, X & Qp+ 0Qp,
77(X) = 1’ X e ‘Qb5
2%, X € 0Qp,

wherea is the internal angle between the two tangent&®p on each side af.

To solve problem 38) numerically, we will use the classical BIEM formulation which has being
applied successfully for decades to solve a variety of problemgés\gon & Symm1977 Kelmanson
19833. We will use as an illustration the simplest variant of the method. The domain boundary is
subdivided intoN smooth boundary elementg2, = Z}\'zl 48j. On each element, the functions
v, wn, ® andwy are approximated by a step function, i.e. on jlieelement

X) = yj, X) = wnj, Xe 4Q;,
y(X) =y, wn(X) = ynj j (39)
o(X) = o), on(X)=onj, Xe 4Qj.

This approximation is adequate for a large variety of Stokes flow problems, though for some problems
a higher-order approximation is need&bgrikidis 1992).
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Using the discretized representati@9), system 88) takes the form

1 1
n(Xo) v (Xo) o Ej Vi /Ag- n-Vinrd o Ej Wnj /Ag- Inrd

I I

2
+ — wj
8r Z]: J 49; j

1
2 2 . 2 2
n-vsinr —r4d 5 Ej wnJ/A _(r Int —r%)dl, (40)

1 1
n(Xo)w (Xo) ZEZJ.:COJ /Agj n-Vinrd — ZJZa)nj/A Inrd. (41)

Qj

Equations 40) and @1) are then collocated at the midpoints of each intexgat 42, j =1,..., N,
resulting in a system of 1 algebraic equations forM unknowns. All geometrical characteristics of
the surface profile in40) and @1) and in the boundary conditions, ile.and&, are calculated at the
midpoints of each interval on the basis of a cubic spline.

In a standard situation, to get a unique solution one would just set any two independent combinations
of the variablesy, yn, @, wn on the boundary. In terms of the number of unknowns, one needs to leave
2N unknown values after prescribing\2zknown values on the boundary. In our casdl 2quations
specifying the latter have different form on different parts of the boundary. On the free surface (contour
01 — a andd; — 0y), one has

A
w=2—" (42)

together withy = 0(o; — a) or y = U,(d; — 0p). On the solid substrate (contoi— ds), the Navier
condition applies

v =w(xp), Caw+p (Z—Vr: + 1) =0. (43)

Note that, since in the regia@. the boundary is not a streamline due to adsorption—desorption processes
on the interfaces, the value of the stream functiorcend; is, generally, not equal to zero. The inlet
boundary conditions20) can be implemented in different equivalent forms. It has been found that a
convenient way of setting up a uniform flow is to ugg = 0, w, = 0 onoz — 01 since this condition
allows for self-corrections in the course of iterations. The uniform flow far downstream can be set up in
a similar way. Control computations have been performed with condit@®)sapd @0) implemented
explicitly. The lengthL of the film in the downward direction (Fig@a) was chosen sufficiently large to
guarantee the full recovery of the uniform flow downstream along the solid substrate and to ensure that
there is no influence of the position of the contdar— d; on the computational results.

In our BIEM formulation so far, no conditions have been imposed on the comtguiThis means
that at the moment, we havéNg equations for Rlg + 2Nap unknowns, wherdNg is the total number
of intervals onéQy and Nyp, is the number of intervals oi,p. After calculating all the kernel inte-
grals and applying the conditions formulated above, systéinand @1) can be represented in a matrix
form as

Agiefie = Bgig, (44)

where the solution vectdge has the length Blg + 2Nap andApgig is a 2Ng x (2Ng + 2Ngap) matrix.
All non-singular kernel integrals irtQ) and @1) are taken numerically by means of a standard 20-point
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Gaussian quadrature with double precision nhumerical accuracy. On the intervalsxwvhetg = 0
occurs, the kernel integrals are taken analytically in a similar way Kelimansorn(19833.

3.2 Finite-element representation

The solution inQ. is obtained using a Galerkin-weighted finite-element technique. The domain is tes-
selated into contiguous three-node triangular elements @gand3). The size of the elements is
gradually increasing by 3-8% while moving radially from the contact line to account for the natural
length scales of the problem (Figb). Each element in the physical space is mapped onto the standard
‘master’ element with the local coordinate bagis ) (Fig. 4) by means of the linear transformation

3
X(ram = D Xi®i(x, 1), (45)
i=1

where
qsl()(a’?):l_)(_’?, ¢2(X377)=X9 ¢3(X9;1):’7 (46)

andx; = (¥, y;) are the coordinates of the element’s nodes in the physical space. Then, on the ‘master’
element, functiongy andw are approximated by the same linear shape functgrihirough the nodal
valuesy;, wj:

3 3
v =D widi(r.n, olnn =Y oadi(y,n). (47)
i=1 i=1

The approach is similar to that reportedReeterset al. (1987 and Gaskellet al. (1999, where
second-order elements were used. Here, we use linear elements as an illustration and a benchmark for
the higher-order schemes; as for the BIEM, an increase of the order of approximation is technically
straightforward.

FiG. 3. Blow-up of the corner region down to the last finite element. The spatial resolution in the transversal direction is not
important for the final solution since, as shown asymptoticallghikhmurzae2006 and confirmed by our computations, near
the contact line it is a uniform flow; however, it is crucial for the convergence of the code.
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A
n y ;
143
é 2
1
1 2
0' 1 g X

FIG. 4. Left: The ‘master’ element, with local coordinate bagisz), which is used to derive the FEM equations. Right: A general
element in the physical space; the element is mapped onto the ‘master’ element by means of the linear transfégnation (
both elements, the numbered black circles are the nodes at which the stream function and vorticity are calculated.

The systemZ1) can be written in a weak form using; as weighting functions as follows:

/ V@iVl//dQ+/ @ia)dQ—/ @ ypds =0, (48)
Qc Qc 08Q¢

/ V& Voo dQ —/ ®iwnds =0, (49)
Q¢ 09¢

where the integrals over the domain boundaf3; must be dropped since equations for the boundary
nodes are replaced by the weak formulation of the appropriate boundary conditions.

On the boundary, for each element, the surface varialilesdo® are approximated using 1D shape
functions 4; (¢):

2 2
P @) =D pPAi(®), v3W) =D oPAi (), (50)
i=1 i=1
where
A1=1-9, Ar=1, 0<9 <1 (51)

One may note that the set of functior&sl) is actually a projection of the se#) onto an element
boundary. For example, the séfjf on the boundary0 < y < 1, 4 = 0), between nodeg =0, =0
andy =1, n =0, becomes

CDl(X?”):l_Xs ®2(X9’7)=X’ ®3(Xs;7):O (52)
That is, identifyingy with 9, one has
D1 = A1, Dy = A>.

All the boundary conditions used in the FE part of the code are transformed into a weak formulation
using the setg1) as weighting functions. On the free surface fr&g)(to (24), one has

. dp® A dpS
/GQAI ’CD+2QE—2§V/n—a‘E]dS—O’ (53)

/ A [2—W+Q(ps—p‘1e)]d5=0, (54)
FYe) S
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d S S
/ 4 [ewwmtﬁm)]ds:o, (55)
o0 S
[ o &)
Ai V4B (S + ) + (L + 4A) 22 ds = 0. (56)
a0 ds

Similarly, on the solid boundary we have

, dp*> 4 dp® B B
0
[Q 4 [6—Z + Q- ﬁze)] ds =0, (58)
d S S
/m 4 {e% + Q(ps—p‘Ze)} ds =0, (59)
afs 1 dp® _
/69 A [ﬁ(v +E(l//n—1))+A/1E}ds_O. (60)

The non-linear terms ir2@) and @6), and consequently irbg) and 69), have been linearized to use
an iterative procedure. As an initial guess, it was sufficient t(p%g:lto its equilibrium value on each
surfacep, = p1 e

The surface shape and its curvature have been approximated by means of a cubic spline. In the weak
formulation, on the boundary of each element, the curvature is approximated using the set of functions
Aj through the nodal boundary valugsobtained from the spline procedure, £€%) = Zizzl &G 4i (D).

Now, to match solutions in region@; and 2, one needs to use conditior3gf and @7) on I 4p.
They can be written down in the weak form as follows:

e — _ (v oy _
‘/BQ A|{l//|n Wout}ds = 0, ‘/BQ A| [(an )In + (an >0ut} dS = O, (61)
ow ow
/ag Ai{win — wout}ds = 0, /ag Aj [(%)m + (%)out] ds=0. (62)

In (61) and ©2), the variables in the inner regiom, andwin, are represented by means of the set
of functions 4; (¢), i.e. on each interval, e.g. far,, one has

2
vin(@) = > " 4i (),
i=1

whereas the variablegoyt, wout, 0 /0Nout anddw/oNgyt in the outer region are approximated by the
representation39) used in the BIEM, i.e. on each interval?; one has, e.g. fopout and (wn)out,

ow
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It is worth emphasizing here that the shape and position of the coitgushould be chosen, on
the one hand, with some caution and, on the other, that this choice can substantially reduce computation
costs. To avoid degeneration of the finite elements comprising the paqirdad xy, the angled,p at
which I';p meets the free surface and the solid substrate at pringsid x,, should be about 30and
kept constant during iterations (heflg, is measured througk;). Higher values o, increase the
local error of the BIEM, whereas much lower values do the same with the accuracy of the FEM. The
position of the contour can be chosen using the asymptotic estimates for the actual relaxation length for
the surface variablds = k;l (see 1)) such thatRy, =~ 20-30,. This allows one to avoid tessellation
of large parts of the domain and, on the other hand, ensures complete relaxation of the surface variables
to their equilibrium values.

Alternatively, the matching of the FEM and the BIEM can be performed by using two cufygs,
and 7}, that make region®y, andQ. overlap. This way of matching removes the above restrictions on
the shape of p at the expense that now the curve lying insidgis no longer formed by the sides of
the finite elements, and one has to apply a suitable interpolation procedure to implement the matching
conditions.

Equations48), (49) and 63-62) provide a weak formulation of the problem in the inner regian
To complete the formulation, we have to add algebraic boundary condition at the conta28)inse(
the surface density at poinisandb to equilibrium values,

Pi(Xa) = ples  P3(Xb) = Pe, (63)
and set the stream function and the surface velocity to their initial values at
y(xa) =0 (64)
and, according to31),
v5(Xa) + ¥n(Xa) = O. (65)

Then, in the assembly procedure, the integration of the residual equat®)n&40) and 63-62) is
achieved on an element-by-element basis using the ‘master’ element with local coordinatg basis
and transformatiord) by means of standard Gaussian quadrature to form a system of algebraic equa-
tions. For example, during the assembly procedut8) i6 integrated on each physical elememtas
follows:

le/V@iV‘I’ij(X,’?)dX df7+wj/¢i¢ij(x,f7)dxdn=O, (66)

wherej = 1,...,3andi = 1,..., 3 are the node numbers, adfl'(y, ) = a(x, y)/d(x, ) is the
Jacobian of transformatiod®), i.e.the actual integration is performed over the ‘master’ element. The
procedure is carried out for each elemenfldpand the results are assembled to form a system of linear
equations. The actual assembly procedure is standard (se&resino & Sani2000, and below we
only outline key elements relevant to our particular case.

First of all, @8) and @9) are integrated for all elements B¢ resulting in a system ofi2; algebraic
equationsNc is the number of nodes i2.. Then, boundary conditions are integrated for each element
located on the relevant boundary @. Namely, 63) and 64) are integrated on the free surfacg7)
and 68) are integrated on the solid substrate and finafl§) (@are integrated o ,p. The algebraic
equations obtained from the integration of boundary conditi@3}, (54), (57), (58) and ©1) then
replace the corresponding algebraic equations obtained #8pa(d @9) at the nodal points located
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on the particular boundary. The other algebraic equations resulting from the integration of conditions
(55), (56), (59), (60) and 62) are added to the system to form in total a systemaflinear equations for
Ni2 unknowns, wherdi1 = 2N¢ + 2N s+ 2Nss+ 2Nap, Nt2 = 2N¢ + 2N¢s + 2NgsandN¢g, Ngs are
the number of nodes on the free surface and the solid substrate, respectively. Finally, algebraic boundary
conditions 63-65) must be applied. They replace equations at nogemdxy, for each variableS, w
ando®, respectively.

After completing the assembly procedure, the result can be presented in a matrix form as

Aremfrem = Brem, (67)

whereArenm is a(Ni1 x Ni2) matrix andfggy is a solution vector of lengthlo.
Combining @4) and 67), one has in total a system oNg + 2N¢ + 2N¢s + 2Nss + 2Ngp linear
equations for the same number of unknowns or

AHybeyb = BHyb~ (68)

Matrix Apyp has a hybrid structure: the part of the matrix resulting from the FEM is sparse, whereas the
one coming from the BIEM is full. The matrix is stored in a sparse coordinate format and then inverted
by the LU factorization with an iterative refinement.

3.3 Computation of the free surface profiles

Free surface profiles in the problem are determined iteratively from boundary con@Bowlich is
considered as a second-order differential equation for the @rfglened by the tangential unit vector
to thex-axis (Fig.1):

2
i1 — pS)% — Bog, — Cawy — 2@% _Catw, &= %. (69)

At each step of the iteration9) are solved with two boundary conditions and given distributions of
wn, @, wn, p° andg, along the surface. The boundary conditions are

04, =7, GOo,=m/2, ondp— 0y,

0oy =37/2, Oc=m+6y, o0nop—_cC.

Once new functiod(s) is obtained, new surface profile is calculated from a system

dy .
P cost, e sing

with initial conditions
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Since in an iterative procedure, in a general case, ong(sgs# 0 andx (sdl) #+ L, we have to rescale
the new profiles

X'(8) = X (Sop) + (X(8) = X (s0,)) %

=) - I

to ensure that for theng’(sc) = 0 andx’(sdl) = L. The iterations are terminated when the following
criterion is satisfied:

g X (8) —x(s) < 0.0,

where N is the number of points on the boundary asidis the arc length calculated on the new
profile x’.

4. Flow in the corner region

Before applying the combined algorithm in full, its most essential, and in terms of the boundary condi-
tions, new component, the FE code, has been tested for the flow in a corner ¢rgidrere, for some
limiting cases, analytical solutions are available.

Although the set of boundary conditior2-27) looks rather complicated, in some asymptotic limits
one can arrive at analytical results for the velocity dependence of the contact angle that can be used as
a benchmark for the code. One of such results is the steady flow & Qé&or a fluid whered > 1
(Shikhmurzaey1994. In this limit, the ‘moving contact line problem’ becomes a local one and the free
surface near the contact line is, to leading order, planar so that one can consider the contact angle as a
feature determined by the prescribed outer flow.

To consider the flow in a corner region (Figh) computationally on the outer boundary of this
region, we use the stream function and vorticity distributions fhdaifatt (1964,

r((@ — 6g) sind — 0 cosfy sin(@ — by)) COSH — coshy cogH — G4)
M= oM =

= 70
sindy cosfy — Oy ’ M r(sindqcosfy — 6g) ’ (70)

as in the asymptotic solution. Using the size of the corner region as a characteristic length scale of the
flow domainh, we can rewrite the asymptotic solution for the surface density in the form

P =5 S = 5 —Cpi texp(—k,r), (71)
where
—1 =5 - ~ 2V A(P3e + Pield)
k, =2Ve 1(p5) " /V2+p5. —V], C,= 2e T Ple7d)
P 2e 2e P (p_§e+ V2)1/2 +V
_sinfy — 04 c0Sy 2 ep e o3 N coShs

4= Sindq cosd — 0g’ Tt 4A); PETETTTT
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The resulting dependence of the contact angle on the contact line speed is given by

2V A(5S, + pela)

C0Sfs — COSHy = — .
(Poe+ VA2 +V

(72)

The results of comparing the numerical solution witti)(and (72) are summarized in Figs—7.
Figures5 and 6 show the dependence of the surface density on the distance from the contact line at
different values of the substrate velocity, i.e.for the capillary numbers-Q#—2 and Ca= 1072. As
one can see, the numerical solution matches the asymptotic one with the accufiaéy ot ~ 5x 10~%
to 3 x 10~3. Given that, unlike the leading-order asymptotics in Ca as<C8, the code fully accounts
for the influence of the bulk flow on the distributions of the surface parameters, one should expect the
difference between the numerical and the asymptotic results being proportional to Ca. This difference
goes down indeed as the capillary number decreases. For low capillary numbers, the difference between
the numerical and the analytical results is due essentially to the limited spatial resolution of the code
in these runs where fal; = 242Q Nts = Nss = 110, we had justN;; = 85 mesh points over the
length of 3; (I, = k/jl is the actual relaxation length). The tested accuracy of the code in calculating

0.951 T[T TTTTT T T T DT T T T T T 1T
| ps _
0950 | — - - - - - - - - - =-==—=
S
0.949 T T T T T T T T TTIm) T IO T T T T T
0.01 0.10 1.00 10.00 100.00 1000.00 10000.00
pS
1.024 —
1.022 —
1w020—  ~ 777 s
0.01 0.10 1.00 10.00 100.00 1000.00 10000.00

FiG. 5. The distribution of the surface density along the free surface (top) and along the liquid—solid interface (bottom) in the
corner flow for Ca= 0.001, 65 = 60°, 2 = 20, = 25 Q = 0.4,¢ = 1074 andA = 1. The asymptotic distribution7(), is

shown by the dashed line. The distaisdeom the contact line is scaled withz; the data point correspondingsc= 0 and a few
neighbouring points are taken out.
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B I SR B
0950 o - - =-=--=-== ===
S
0-949—‘[1Tn1'| TTTTI] T TTTm T TTIm T IO T T v rromm|
0.001 0.010 0.100 1.000 10.000 100.000 1000.000
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ps
1.02 —
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FiIG. 6. The distribution of the surface density along the free surface (top) and along the liquid—solid interface (bottom) in the
corner flow for Ca= 0.01,6s = 60°, 1 = 20, f = 250, Q = 0.04,¢ = 10-3 andA = 1. The asymptotic distribution7 (), is

shown by the dashed line. The distaisdeom the contact line is scaled withz; the data point correspondings$e= 0 and a few
neighbouring points are taken out.

the contact angle is consistent with the estimated error given by
A0q =~ ApSL

and was about.6°-1° at A = 20. This value is in a good agreement with the observed deviation of the
dynamic contact angle calculated numerically from the asymptotic valueqfig.

The convergence of the solution illustrated in Rguggests that the number of mesh poiNgs=
2420 is sufficient for most applications. It should be noted, though, that for higher values-ofOC3),
the approximation error is expected to increase, and a better spatial resolution (or/and a higher order of
approximation) is required to keep the accuracy withify ~ 0.5°-1°.

5. Simulations of curtain coating

In this section, we will give some results illustrating the performance of the combined algorithm in the
simulations of curtain coating in the parameter range relevant to the water—glycerol solutions used in
experiments as a convenient test fluid. Using characteristic physical parameters of the water—glycerol
solutions and estimates of the phenomenological material constants of the m@del, z, p§ and
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110 1 | 1 | 1 | I I I
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0.000 0.002 0.004 0.006 0.008 0.010

Fic. 7. The dependence of the dynamic contact angle on the substrate veldsitywn as the dependence on Ca) in the corner
flow for 1 = 20 andfs = 60°. Other parameters scaled with (5, Q ande) were changing accordingly. The asymptotic
dependencey@), is shown by the dashed line.

103 T T T | T T T T T
B4

102 — —
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100 — —
99 — —
Ne

98 T T T | T I T | T | T
500 1000 1500 2000 2500 3000 3500

FiG. 8. The dependence of the dynamic contact angle calculated numerically for the corner flow on the total number of mesh
points at Ca= 0.01; the number of mesh points over the lendthiBcreases proportionally. Other parameters are the same as in
Fig. 6.

pje, | = 1,2, obtained irBlake & Shikhmurzaey2002), we calculate steady curtain profiles and the
corresponding distributions of the variables for different values of the substrate véJodigriations of
the substrate velocity simultaneously change several non-dimensional paramet@s@Qd, ande),
whereas other parameters (BW 1, 43, p1e, H andds) remain fixed. (For the analysis of the role played



20 of 26 A. V. LUKYANOV ETAL.
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0d

120 — —
100 — —

80 — —

Ca
60 T I T T T | T | T
0.00 0.01 0.02 0.03 0.04 0.05

Fic. 9. Dependence of the dynamic contact angle in the curtain coatiky @hown as the dependence on Ca). Here= 1;
other non-dimensional parameters scaled Wwitlis, Q ande) were changing accordingly. The asymptotic dependence for the
corner flow, 72), is shown by the dashed line.

FiG. 10. Typical profiles of the curtain for different contact line speeds. H@re; 1,05 = 60° andH = 5; 1: Ca= 0.0025; 2:
Ca= 0.02; 3: Ca= 0.04; other non-dimensional parameters scaled WitfB, Q ande) change accordingly. In the horizontal
direction, the plot is clipped at approximatelyl ®f the actual size of the computational domain.

by the dimensionless parameters, sekyanov & Shikhmurzagv20086) In our test simulations, we
useA = 1,1 = 25,63 = 0,p1e = 06,H = 5,05 = 60° and keepU, = 1. Although for the
typical flow conditions the code is intended to describe the Bond number is smatt, B6 x 107°,
in the computations we chose to keep the body force terl2hds a stabilizing factor for the film
far downstream the solid substrate. The numerical resolution of the combined method was taken at
the level sufficient to ensure that the accuracy of the contact angle is afidit-2° in all the runs,
i.e.Ng = 680 N = 3010 withN;; = 80 over the distancel3 Note that while the actual relaxation
lengthl, was changing with Ca, the spatial resolution in that region, i.e.the number of pgintwas
kept the same.
The results of our simulations are summarized in Bigk3. In Fig. 9, the dynamic contact angty
is shown as a function of the capillary number Ca. Remarkably, as@g the contact angle is getting
close to the values predicted by the asymptotic soluti éven though, in this case, the parameter
A ~ 0O(1), whereas the asymptotics was obtained/for 1. At higher values of the substrate velocity,
as one should anticipate, the dependence diverges from the asymptotic one. The reason for this effect
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FiG. 11. Apparent contact angtigpp and the distribution of the surface densityin curtain coating for Ca= 0.04. The equilib-
rium values of the surface density are shown by the dashed line.

is that the terms proportional to Ca in the boundary conditions are, to leading order, neglected in the
asymptotics, whereas in the code they are fully taken into account and, as Ca increases, so does the
influence of the bulk flow on the surface parameters distribution that ultimately influences the contact
angle.

The corresponding curtain profiles and distributions of the surface density are shown IOFigs
for some values of Ca. The curtain profiles (Fig) clearly demonstrate the trend routinely observed in
experiments: as the substrate velocity increases, the contact angle also increases, and, as a consequence,
the contact line moves downstream.

Since in the model the contact angle is ‘negotiated’ by the surface densities at the contact line through
the modified Young equatiori ), the origin of the velocity dependence of the contact angle can be also
illustrated by the calculated profiles of the surface density distributions along the interfaces. As one can
see in Figsl1-13, variations in the substrate velocity lead to almost no variations in the surface density
on the free surface, which remains close to its equilibrium vafuewhereas on the solid substrate the
surface density varies strongly from the equilibrium vaijg far downstream to a much smaller value
at the contact line. AB increases, the latter gets closer to the surface density value on the free surface.
Thus, the contact angle appears to be controlled by the surface density in the liquid—solid interface and
increases ad becomes larger.
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FiG. 12. Apparent contact angtiapp and the distribution of the surface densityin curtain coating for Ca= 0.02. The equilib-
rium values of the surface density are shown by the dashed line.

Itis important to note that, as one can see in Hifjsl 3, the actual relaxation of the surface variables
to their equilibrium values takes place over a length scale which is much larger than the ‘nominal’
relaxation lengthJ z. If we formally define the actual ‘length of exponential relaxation’ along the liquid—
solid interfaces! by

ps(srn) = /5§e - (ﬂ_ge - p;(O))/e

(eis the base of the natural logarithm), then, as one can see in Tafledrjes approximately from2z

to 30Uz as Ca decreases fronD@ to Q0025. It is also interesting to note that the values'obbtained

in this formal way are very close to the asymptotic valljesalculated by means of{). Remarkably,
despite strong variations in the distributions of the surface parameters along the solid surface on the
scales < 39", there is little variation in the free surface profile on the same scale. This is illustrated by
the plots of the apparent andlg,, (see Fig.1 for the definition) on the distance from the contact line
shown in Figsl1-13for different capillary numbers.

Finally, consider the performance of the matching of the BIE and FE solutions that the combined
method uses at the ‘internal interfacg;p. This can be illustrated by the picture of the streamlines as
they cross this ‘interface’. In Fid.4, the arrows outside the frame show whétg intersects with it, but
an inspection of the plots of the streamlines does not allow one to note where the cjfagtually
lies within the picture. In other words, the internal interface has no effect on the flow. This has, of course,
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FiG. 13. Apparent contact anglpp and the distribution of the surface densijty in curtain coating for Ca= 0.0025. The
equilibrium values of the surface density are shown by the dashed line.

TABLE 1 A comparison of the actual relaxation length calculated nu-
merically §' with the asymptotic value = k;l calculated by means of
(71). Both §' and | are scaled with U

Ca 0.04 0.03 0.02 0.01 0.005 0.0025
% 2.3 2.9 4.3 8.8 16.7 33.1
P 2.5 3.2 4.5 8.4 16.3 32.2

been checked quantitatively. In the whole range of parameters, it has also been routinely checked that
the simulation results are not sensitive, within the accuracy of the computations, to the positign of
which was varied between 30 and 150

A feature of the flow field worth noting is that, as a magnified view of the stream lines in the close
vicinity of the contact line shows (Fidl5), the streamlines go into the liquid—solid interface. This
follows from p® being significantly below its equilibrium valyg, along the relaxation zone and hence,
according to 26), one has adsorption of the fluid by the liquid—solid interface. The plog ah the
free surface indicate that there is desorption from the liquid—gas inteiéce 3, there) so that in the
immediate vicinity of the contact line, one has a uniform flow from the free surface into the liquid—solid
interface. This type of flow is described qualitatively8hikhmurzaey2006. What is important to note
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FIG. 14. Typical pattern of streamlines with the distances measured in nominal relaxation lengtfi®ie points where the
numerical ‘internal interfacel’,p, intersects the frame are indicated by the arrows:=Ca02.
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FiG. 15. A magnified view of the flow near the contact line showing adsorption of the fluid by the liquid—solid interfaee}.G2.

for numerical calculations of dynamic wetting is that the interface disappearance/formation process

leads to the interfaces no longer being streamlines, even for steady flows. This should be taken into
account in adapting standard packages to incorporate the interface formation model since in many such
packages, the ‘impermeability’ of interfaces is built in on a very deep level.
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6. Conclusions

The developed method allows one to solve a variety of free boundary problems for the Stokes equations,
including problems arising in the area of dynamic wetting, in an efficient way, with the finite-element
component providing the accuracy and high spatial resolution in the key regions and the boundary
integral equation component ensuring overall efficiency in describing the flow parameters in the main
part of the flow domain. The matching of the two elements is straightforward, and it can be used to
optimize the algorithm. The calculations of free boundary problems in the framework of the interface
formation model, where the dynamic contact angle is part of the solution and hence the bulk, surface
and contact line parameters become interrelated, require special attention to the accuracy and the spatial
resolution within the relaxation zone which can stretch far beyond the ‘nominal’ relaxation lgrgth
especially when this length is small. The existing asymptotic solution provides an accurate estimate for
the size of the relaxation zone.

REFERENCES

BALLANDRAS, S., REINHARDT, A., LAUDE, V., SOUFYANE, A., CAMOU, S., DANIAU, W., PASTUREAUD, T.,
STEICHEN, W., LARDAT, R., SOLAL, M. & VENTURA, P. (2004) Simulations of surface acoustic wave
devices built on stratified media using a mixed finite element/boundary integral formulatidppl. Phys.

96, 7731-7741.

BLAKE, T. D., BRACKE, M. & SHIKHMURZAEV, Y. D. (1999) Experimental evidence of nonlocal hydrodynamic
influence on the dynamic contact andgkhys. Fluids 11, 1995-2007.

BLAKE, T. D. & SHIKHMURZAEV, Y. D. (2002) Dynamic wetting by liquids of different viscosity. Colloid
Interface Sci 253 196-202.

GASKELL, P. H., THOMPSON H. M. & SAVAGE, M. D. (1999) A finite element analysis of steady viscous flow
in triangular cavitiesProc. Inst. Mech. Eng213C, 263-276.

GRESHQ, P. M. & SaNI, R. L. (2000)Incompressible Flow and the Finite Element Methiddw York: Wiley.

Jaswon, M. A., MAaITI, M. & Symm, G. T. (1967) Numerical biharmonic analysis and some applicatlans.

J. Solids Struct.3, 309-332.

JASWON, M. A. & Symm, G. T. (1977)integral Equation Methods in Potential Theory and Elastostationdon:
Academic Press.

KELMANSON, M. A. (1983a) Boundary integral equation solution of viscous flows with free surfdcdésmg.
Math., 17, 329-343.

KELMANSON, M. A. (1983b) An integral equation method for the solution of singular slow flow problén@om-
put. Phys.51, 139-158.

KELMANSON, M. A. (2004) Hypersingular boundary integrals in cusped two-dimensional free-surface Stokes flow.
J. Fluid Mech, 514, 313-325.

KISTLER, S. F. & SCHWEIZER, P. M. (eds) (1997)iquid Film Coating London: Chapman & Hall.

L1, G. & ALURU, N. R. (2004) Hybrid techniques for electrostatic analysis of nhanoelectromechanical systems.
J. Appl. Phys.96, 2221-2231.

LUKYANOV, A. & SHIKHMURZAEV, Y. D. (2006) Curtain coating in microfluidics and the phenomenon of nonlo-
cality in dynamic wettingPhys. Lett. A358 426—430.

MARQUEZ, A., MEDDAHI, S. & SELGAS, V. (2004) A new BEM-FEM coupling strategy for two-dimensional
fluid-solid interaction problemsl. Comput. Phys199, 205-220.

MOFFATT, H. K. (1964) Viscous and resistive eddies near a sharp calnéluid Mech, 18, 1-18.

PEETERS M. F., HABASHI, W. G. & DUECK, E. G. (1987) Finite-element stream function-vorticity solutions of
the incompressible Navier-Stokes equatidnt.J. Numer. Methods Fluids, 17-27.



26 of 26 A. V. LUKYANOV ET AL.

PozrikiDIS, C. (1992)Boundary Integral and Singularity Methods for Linearized Viscous Fl@ambridge:
Cambridge University Press.

RALLISON, J. M. & ACRIVOS, A. (1978) A numerical study of the deformation and burst of a viscous drop in an
extensional flowd. Fluid Mech, 89, 191—-200.

SHIKHMURZAEV, Y. D. (1993) The moving contact line on a smooth solid surfaee.J. Multiphase Flow19,
589-610.

SHIKHMURZAEV, Y. D. (1994) Mathematical modeling of wetting hydrodynami€lsiid Dyn. Res.13, 45-64.

SHIKHMURZAEV, Y. D. (1997) Spreading of drops on solid surfaces in a quasi-static regimes. Fluids 9,
266-275.

SHIKHMURZAEV, Y. D. (2006) Singularities at the moving contact line. Mathematical, physical and computational
aspectsPhysica [ 217, 121-133.

SHIKHMURZAEV, Y. D. (2007)Capillary Flows with Forming Interfaced ondon: Taylor & Francis.

SQUIRES, T. M. & QUAKE, S. R. (2005) Microfluidics: fluid physics at the nanoliter sc&ev. Mod. Phys77,
977-1026.

TsAl, W.-T. & YUE, D. K. P. (1996) Computation of nonlinear free-surface flousnu. Revy.28, 249-278.

WILSON, M. C. T., SUMMERS, J. L., HIKHMURZAEV, Y. D., CLARKE, A. & BLAKE, T. D. (2006) Nonlo-
cal hydrodynamic influence on the dynamic contact angle: slip models versus expeftmgntRev. E73,
041606.

ZINCHENKO, A. Z. & DAvIS, R. H. (2002) Shear flow of highly concentrated emulsions of deformable drops by
numerical simulationsl. Fluid Mech, 455 21-62.

ZINCHENKO, A. Z., ROTHER, M. A. & DAvIs, R. H. (1999) Cusping, capture, and breakup of interacting drops
by a curvatureless boundary-integral algorittdmEluid Mech, 391, 249-292.



	Introduction
	The problem formulation
	Implementation of the combined algorithm
	Boundary integral equation formulation
	Finite-element representation
	Computation of the free surface profiles

	Flow in the corner region
	Simulations of curtain coating 
	Conclusions

