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A combined BIE-FE method for the Stokes equations

A. V. L UKYANOV †

Department of Mathematics, University of Reading, Reading RG6 6AX, UK

AND

Y. D. SHIKHMURZAEV AND A. C. KING

School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK

[Received on 1 December 2006; accepted on 14 March 2007]

A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is
presented. It is intended for problems describing the Stokes flow in the situations where one has corners
or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on
these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence
have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation
method for the main part of the flow domain and the finite-element method which is used to resolve the
corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as
a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the
course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’,
a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to
what happens in the corner region formed, physically, by the free surface and the solid boundary. The
‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation
model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed
function of the contact line speed, as in the so-called ‘slip models’.

Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes
equations.

1. Introduction

The necessity to describe low Reynolds number free surface flows arises in many modern applications
of fluid mechanics, especially in microfluidics and biological processes, where the volumes involved are
often on the nanoliter scale (Squires & Quake, 2005) and, even for low-viscosity fluids, like water, the
Reynolds numbers characterizing the flow can be of the order of 10−6. The complexity of the mathe-
matical problems one encounters in the applications calls for efficient and flexible numerical algorithms
capable of handling a wide range flow conditions and geometries.

A powerful numerical algorithm of solving free boundary problems intensively used in the past
two decades is the finite-element method (FEM) based on tessellating the flow domain into finite ele-
ments and using the Galerkin approximation of the bulk equations on each of them (Gresho & Sani,
2000). However, the straightforwardness of this approach becomes its disadvantage in the situations
where the geometry of the flow domain is complex so that tessellation turns into a non-trivial prob-
lem and remeshing the grid in the process of iterations causes additional difficulties of controlling the
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computational accuracy. This disadvantage is particularly obvious in the case of the Stokes flows where
an exact analytic free space solution to the bulk equations is available (Pozrikidis, 1992).

The exact solution to the Stokes equations is utilized in the boundary integral equation method
(BIEM) where the problem is reduced to that on the boundaries confining the flow domain. This allows
one to reduce the dimensionality of the problem and eliminate the difficulties caused by the complex
geometry of the domain. The method has been used to describe a wide variety of flows (Jaswonet al.,
1967; Jaswon & Symm, 1977; Rallison & Acrivos, 1978; Kelmanson, 1983a,b, 2004; Pozrikidis, 1992;
Zinchenkoet al., 1999; Zinchenko & Davis, 2002). The problem arises when the boundary of the flow
domain has sharp corners or cusps (Jaswonet al., 1967; Jaswon & Symm, 1977; Kelmanson, 1983b,
2004; Pozrikidis, 1992; Zinchenkoet al., 1999). Computations show that for non-trivial flows near a
corner, the numerical solution oscillates (Jaswonet al., 1967; Jaswon & Symm, 1977) thus making it
impossible to achieve the required accuracy. The situation becomes even less satisfactory in an often
encountered situation where the flow variables have large gradients near the corner. In this case, the
combined effect of all adverse factors leads to poor conditioned matrices and the loss of accuracy and
convergence (Kelmanson, 1983b, 2004; Zinchenkoet al., 1999).

In the case of corners formed by solid boundaries, a way of dealing with large gradients of the flow
variables has been proposed byKelmanson(1983b), who factored out the singular part of the solu-
tion to improve conditioning and convergence. Naturally, this method requires ana priori knowledge
of the shape of the corner and of the asymptotic form of the singularity. A largely similar approach
has been used byZinchenkoet al. (1999) to develop a curvatureless algorithm for flows near regions
of the free boundary, where the free surface curvature can become singular as the flow evolves. This
method of taking out the singularity (which in itself could be an artifact from the physical viewpoint)
allows one to substantially improve convergence of the algorithm though the problem as such remains
(Kelmanson, 2004).

The aforementioned problem turns into a difficulty of principle in the situation where the flow
parameters near the corner have a global effect on the flow domain and hence poor accuracy has catas-
trophic consequences. Most notably, this is the case in the modelling of dynamic wetting where, on
the one hand, the boundary of the flow domain is invariably non-smooth as it has the ‘contact angle’
formed by the free surface and the solid boundary at the ‘contact line’ and, on the other, as experiments
show (Blakeet al., 1999) and hence the mathematical model must follow, the value of the contact angle
depends on the flow field near the contact line. Then, even relatively small computational errors, and es-
pecially oscillations of the solution near the contact line, will result in errors in the contact angle which,
being the boundary condition for the equation determining the free surface shape, will generate global
errors and spurious large-amplitude waves on the free surface and in the bulk. The latter will come back
to the contact line region causing more (this time, induced) oscillations in the flow parameters.

In the present paper, we develop a combined BIE-FE method that uses advantages and, to a large
extent, compensates disadvantages of the two constituent techniques. The idea is as follows. One can
single out a region with a relatively simple geometry to include the singularity of curvature of the flow
domain’s boundary (a corner or an inward-pointing cusp (An outward-pointing cusp and a contact angle
equal to 0◦ are a special case and require some analytic work before they can be incorporated into a
numerical code.)) and use there the full power of the FEM to compute the flow parameters with very
high accuracy and spatial resolution. Outside this region, the standard BIEM can be used to efficiently
handle the overall Stokes flow. The two regions are separated by an artificial ‘internal interface’ where
the flow variables expressed in terms of the two methods must be matched with sufficient smoothness.
The range of positions and shapes of the internal interface must be chosen in such a way that, on the
one hand, this interface is sufficiently close to the corner to ensure simplicity of the domain subject
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FIG. 1. Definition sketch for curtain coating.θd is the ‘actual’ contact angle, i.e.the angle at which the free surface meets a solid
boundary in the macroscopic fluid mechanics modelling of the flow, i.e.the angle used as a boundary condition for the equation
determining the shape of the free surface;θapp is the so-called ‘apparent’ contact angle often used as an adjustable parameter in
interpreting the results of experiments.

to the FEM and avoid tessellation of large spaces and, on the other hand, it must be sufficiently far
away from the corner to avoid having a high curvature and hence compromising the accuracy of the
BIEM. Besides this, the shape of the internal interface has to make the boundary of the BIEM domain
sufficiently smooth and at the same time it should not degenerate the finite elements adjacent to the
points where the internal interface and the actual boundaries of the flow domain intersect. Naturally,
there should be no variation of the computed flow parameters caused by shifting the internal interface
that would be outside the overall accuracy of the method.

The idea of splitting the computational domain into exterior and interior parts where different meth-
ods operate is not new and has been previously utilized in hybrid techniques to solve problems involving
a combination of components with essentially different physical properties (Marquezet al., 2004; Li &
Aluru, 2004; Ballandraset al., 2004). For example,Marquezet al.(2004) used a hybrid technique to sim-
ulate fluid–solid interactions in acoustic problems. The solid vibrations and the near-field effects have
been approximated by means of the FEM, whereas the far-field dynamics for an inviscid liquid has been
solved using the BIEM. In a slightly different way, a hybrid algorithm has been utilized to carry out elec-
trostatic analysis of nanoelectromechanical systems (Li & Aluru , 2004) and to simulate surface acoustic
wave devices built on stratified media (Ballandraset al., 2004). Obviously, a necessary condition to use
a hybrid technique of that kind is the availability of an analytic solution in the exterior domain to apply
the BIEM, e.g. a solution to the Laplace equation (Marquezet al., 2004). In our combined method, the
exterior problem is set up for the Stokes equations with the classical set of boundary conditions.

We will illustrate the new algorithm by considering the flow known as ‘curtain coating’. Curtain
coating, where a sheet of liquid impinges onto a moving solid substrate (Fig.1), is used in applications
as an efficient way of depositing thin liquid films on solid surfaces (Kistler & Schweizer, 1997). As
a basis for the numerical code, we will use the theory of dynamic wetting as an interface formation
process (Shikhmurzaev, 1993, 1994, 2006, 2007), which, to date, is the only model where the dynamic
contact angle is part of the solution rather than an input.

2. The problem formulation

We will be looking for a solution of the Stokes equations

∇ ∙ u = 0, ∇ p = μ∇2u + ρg (1)
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in the flow configuration shown in Fig.1 subject to the following boundary conditions. On an unknown
free surface with the outward normaln, the boundary conditions are given by (Shikhmurzaev, 1993,
2006, 2007)

vs ∙ n = 0, (2)

p − μn ∙ [∇u + (∇u)∗] ∙ n = σ∇ ∙ n, (3)

μn ∙ [∇u + (∇u)∗] ∙ (I − nn)− ∇σ = 0, (4)

ρu ∙ n = −(ρs − ρs
1e)τ

−1, (5)

∇ ∙ (ρsvs) = −(ρs − ρs
1e)τ

−1, (6)

(1 + 4αβ)∇σ = 4β(vs − u) ∙ (I − nn), (7)

whereas on the solid surface moving parallel to itself with velocityU, one has

vs ∙ n = 0, (8)

μn ∙ [∇u + (∇u)∗] ∙ (I − nn)− 1
2∇σ = β(U − u) ∙ (I − nn), (9)

ρu ∙ n = −(ρs − ρs
2e)τ

−1, (10)

∇ ∙ (ρsvs) = −(ρs − ρs
2e)τ

−1, (11)
[
vs − 1

2(u + U)
]

∙ (I − nn) = α∇σ. (12)

Here,σ is the surface tension in the interfacial layer which is modelled as a 2D ‘surface phase’;ρs is the
surface density in this phase (mass per unit area) andvs is the velocity with which it is transported along
the interface;α, β, γ, τ, ρs

ie(i = 1, 2) are phenomenological material constants;I is the metric tensor;
and the tensor(I − nn) singles out the tangential projection of a vector so that, e.g.u ∙ (I − nn) = u‖.

The model has been established and examined in a number of works (Shikhmurzaev, 1993, 1994,
2006), so that here we will only briefly comment on the meaning of equations. On the free surface, in
addition to the usual conditions on the normal and tangential stresses (3) and (4), the model takes into
account mass exchange between the bulk and the surface phase (5) and (6) that takes place when the
surface densityρs deviates from its equilibrium valueρs

1e. Similar to (5) and (6), conditions (10) and
(11) describe mass exchange between the bulk and the liquid–solid interface. Importantly, the tangential
components of the velocity in the surface phasevs, the bulk velocity evaluated on the liquid-facing side
of interfacesu and the velocity of the solid substrateU are, in a general case, different due to the torques
acting on the surface phase. On the free surface, the conditions relating tangential components ofvs

andu are given by (7), whereas (9) and (12) related tangential components ofvs, u andU on the solid
boundary. It is assumed that the solid surface is impermeable for, and chemically inert with respect to,
the fluid and there is no actual slip on the solid surface. Hence, condition (12) essentially has the form
of a ‘Darcy law’ in the interfacial layer.

The equation of state in the surface phase that closes the set of equations (2–12) for the surface
variables is taken in a simple ‘barotropic’ form linking the surface tensionσ with the surface density

σ = γ (ρs
0 − ρs), (13)
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whereγ andρs
0 are phenomenological constants. This equation is the simplest way of accounting for

the fact that the surface tension decreases from its equilibrium valueσ1e = σ(ρs
1e) in the free surface

to that in the liquid–solid interface,σ2e = σ(ρs
2e), when the interfacial layer becomes more compressed

(or, more generally, less rarified) due to the action of intermolecular forces from the bulk phases that
determine the equilibrium values ofρs. The dependence of phenomenological material constants on vis-
cosity and their estimates for particular fluids have been obtained by analysing experiments on dynamic
wetting available in the literature (Shikhmurzaev, 1993, 1997; Blake & Shikhmurzaev, 2002).

Distributions of the surface parameters along the interfaces are linked at the contact line via the mass
and momentum balance conditions

ρs
1vs

1 ∙ e1 + ρs
2vs

2 ∙ e2 = 0, (14)

σ1 cosθd = σ3 − σ2, (15)

where the subscripts 1 and 2 refer to the limiting values as one approaches the contact line along the free
surface and the solid–liquid interface, respectively;e1 ande2 are unit normals to the contact line directed
along the appropriate interfaces (Fig.1) andσ3 is the tangential component of the reaction force acting
on the contact line from the solid substrate. For the cosine of the dynamic contact angleθd, one has
cosθd = e1 ∙ e2. In equilibrium, the dynamic contact angle is related to the static one,θs, via the
classical Young equation

σ1e cosθs = σ3 − σ2e (16)

that links the material constantsσ1e, σ2e andσ3 (or, alternatively, after using (13), ρs
1e, ρ

s
2e, ρ

s
0, γ, σ3)

and hence allows one to replace one of them withθs, which is a material constant characterizing the
interaction of all three contacting media and a quantity relatively easy to measure in experiments.

The boundary conditions (2–15) make the surface phases and the contact line regular ‘elements’ of
a fluid mechanical model. Importantly, in this model we have thatθd is part of the solution, unlike the
case of the so-called ‘slip models’, whereθd is prescribed as a function ofU and hence becomes a given
input. (The slip models have to interpret the experimentally measured contact angle as an ‘apparent’ one
(see Fig.1) which then also becomes part of the solution, though dependent on an adjustable parameter,
namely, the distance of the point where this angle is calculated from the contact line. However, as shown
recently (Wilson et al., 2006), even with this adjustable concept added, the slip models fail to describe
experimental observations.)

It is important to emphasize that it isτ 6= 0 that is at the core of the interface formation phenomenon
and hence at the core the model we are using. Otherwise, the model would degenerate into the standard
Navier slip model that has been used in many works and whose deficiencies, alongside those of other
slip models, have been analysed inShikhmurzaev(2006).

In order to model curtain coating, we need to formulate additional boundary conditions specifying
this particular flow. After introducing a Cartesian coordinate system as shown in Fig.1, for the bulk flow
one can set the inlet velocity and thickness of the falling liquid sheet

u = U∗ for − h/26 x 6 h/2, y = H, (17)

where the inlet velocityU∗ is assumed to be uniform and have only they-component, together with
boundary conditions far downstream, which we will set in a soft form

∂u(x, y)

∂x
→ 0 asx → +∞, 06 y 6 h̃U?/U, (18)
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whereh̃ is to be determined. For the surface variables, we will assume that at the top of the curtain the
interfaces are in equilibrium, i.e.

ρs = ρs
1e, vs = u for x = ±h/2, y = H, (19)

and that far downstream along the solid surface, the liquid–solid interface tends to its equilibrium state

ρs → ρs
2e (x → +∞, y = 0). (20)

Equations (1–15) and (17–20) fully specify the problem.
Using U , h, μUh−1, σ1e andρs

0 as scales for velocity, length, pressure, surface tension and the
surface density, respectively, to bring (1–15) and (17–20) to a non-dimensional form, we have that the
problem is characterized by the following set of similarity parameters:

Ca=
μU

σ1e
, Bo =

ρgh2

σ1e
, β̄ =

βUh

σ1e
, A = αβ, λ =

γρs
0

σ1e
, Q =

ρs
0

ρUτ
,

ε =
Uτ

h
, σ̄3 =

σ3

σ1e
, ρ̄s

1e =
ρs

1e

ρs
0
, θs, Ū∗ =

U∗

U
, H̄ =

H

h
.

After introducing the stream functionψ ,

ux =
∂ψ

∂y
, uy = −

∂ψ

∂x
,

one arrives at a biharmonic equation∇4ψ = 0, which is convenient to split into two second-order
equations

∇2ψ = ω, ∇2ω = 0, (21)

where

ω =
∂ux

∂y
−
∂uy

∂x

is the value of the vorticity vector directed perpendicular to the plane of flow. Using the notationξ = ∇∙n
for the free surface curvature, we can write down the boundary condition in the following way.

On the free surface:

λ(1 − ρs)
dξ

ds
= Bogτ − Ca

∂ω

∂n
− 2Ca

∂2

∂s2

∂ψ

∂n
− Caξω, (22)

Caω = 2Ca
∂2ψ

∂s2
+ 2Caξ

∂ψ

∂n
+ λ

dρs

ds
,

∂ψ

∂s
= −Q(ρs − ρ̄s

1e), ε
d(ρsvs)

ds
= −(ρs − ρ̄s

1e), (23)

4β̄

(
vs +

∂ψ

∂n

)
+ λ(1 + 4A)

dρs

ds
= 0, (24)
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and on the solid substrate:

Caω= 2Ca
∂2ψ

∂s2
+
λ

2

dρs

ds
− β̄

(
∂ψ

∂n
+ 1

)
, (25)

∂ψ

∂s
= −Q(ρs − ρ̄s

2e), ε
d(ρsvs)

ds
= −(ρs − ρ̄s

2e), (26)

vs +
1

2

(
∂ψ

∂n
− 1

)
+

Aλ

β̄

dρs

ds
= 0. (27)

At the contact line, one has (14) and (15), i.e.

(ρsvs)1 = (ρsvs)2, σ1 cosθd = σ̄3 − σ2, (28)

whereas at the top of the curtain and far downstream, the boundary conditions (17–20) take the form

∂ψ

∂n
= 0, ψ = Ū∗(x + 1/2) (−1/2< x < 1/2, y = H̄), (29)

∂ψ

∂n
,
∂2ψ

∂n2
→ 0

(

x → ∞, 0< y <
h̃

h
Ū∗

)

, (30)

ρs = ρ̄s
1e, vs = ±Ū∗ (x = ∓1/2, y = H̄), (31)

ρs → ρ̄s
2e (x → ∞, y = 0). (32)

In (22–27), ∂/∂n, ∂/∂s and d/ds stand for differentiation with respect to the outward normal and
the arc lengths, measured anticlockwise in the direction of the tangentt (Fig. 1), respectively,vs is the
only non-zero (i.e.tangential) component of the surface velocity andgτ is the tangential component of
the unit vector in the direction of gravity.

The characteristic feature of the problem (21–32) is that the dynamic contact angle, as introduced by
(28), is determined by the distributions of the surface parameters along the interfaces. These distributions
are coupled with the bulk variables through the boundary conditions thus making the dynamic contact
angle a functional of the entire flow field. On the other hand, as is always the case in dynamic wetting
problems, the dynamic contact angle itself determines the position of the contact line and, ultimately,
the shape of the interfaces thus affecting the global flow field. This interplay between the bulk and the
interfacial variables introduced via the modified boundary conditions changes all the familiar patterns of
the standard hydrodynamics. For example, near the contact line for the steady problem, the interfaces are
no longer coinciding with streamlines, and the boundary conditions (23) and (26) for the normal com-
ponent of the bulk velocity depend on the distributions of the surface parameters along the interfaces.
The interrelatedness of the flow parameters, the distributions of the surface variables and the shape of
the flow domain make a numerical solution of the problem (21–32) rather difficult to obtain since, in
addition to the known difficulties of computing free surface flows (e.g.Tsai & Yue, 1996), one has to
pay special attention to properly resolve the surface distributions, especially near the contact line.

3. Implementation of the combined algorithm

Preliminary computations of (21–32) have shown that, as suggested by an asymptotic analysis of the
interface formation model (Shikhmurzaev, 1993, 1994), the surface variables vary steeply only near
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the contact line where the liquid–gas ‘surface phase’ turns into the liquid–solid one and the surface
parameters have to relax to new equilibrium values over some relaxation length. This length is typically
small compared with the characteristic size of the flow domain so that away from the contact line, the
surface densities have their (constant) equilibrium values, the surface velocity is equal to the tangential
component of the bulk velocity and the bulk variables satisfy the standard boundary conditions on the
free surface,

ψ = const, ω = 2ξ
∂ψ

∂n
, (33)

dξ

ds
= Bogτ − Ca

∂ω

∂n
− 2Ca

∂2

∂s2

∂ψ

∂n
− Caξω, (34)

and the Navier condition,

ψ = const, Caω + β̄

(
∂ψ

∂n
+ 1

)
= 0, (35)

on the solid boundary. For small Ca/β̄, the Navier condition turns into no slip,∂ψ/∂n = −1, but, to
avoid switching between boundary conditions of different types, we will use (35) in the far field, though
for all physically realistic values of parameters, the result is that the no-slip condition is satisfied with a
very high accuracy.

On the upper free surface, for all physically realistic values of parameters, the surface variables
satisfy (33) and (34) with a very high accuracy so that one can use these conditions instead of (22–24),
though numerical implementation of the latter causes no difficulties.

To implement the combined BIE-FE technique, it is convenient to split the computational domain
into two regions,Ωb (outer region) andΩc (inner region), see Fig.2a. InΩc, where the surface variables
vary steeply, the FEM is applied to (21–28), whereas inΩb we can use the BIEM applied to (21), (29),
(30), and (33–35) together withρs ≡ ρ̄s

1e, ρ
s ≡ ρ̄s

2e, andvs ≡ u ∙ t on the appropriate parts of the
boundary. Conditions (31) and (32) transform into the corresponding matching conditions at points

FIG. 2. (a) Sketch of the computational domain for curtain coating. (b) Computational domain in the corner region tessellated for
the FEM. The blow-up of the mesh near the contact line is given in Fig.3.
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a andb. The bulk variables in the two regions are linked by the matching conditions

ψin =ψout,

(
∂ψ

∂n

)

in
= −

(
∂ψ

∂n

)

out
, (36)

ωin = ωout,

(
∂ω

∂n

)

in
= −

(
∂ω

∂n

)

out
(37)

we pose on the curveΓab (numerical ‘internal interface’) separatingΩb andΩc. In (36) and (37), the
normal is pointing outwards with respect to the corresponding domain. The size of regionΩc must be
chosen in such a way that along the interfaces, its dimensions are large compared with the relaxation
length for the surface variables. The main elements in implementing the combined algorithm are asso-
ciated with the way of expressing (36–37) in terms of inner and outer variables, the shape and evolution
of Γab and the organization of the iteration procedure.

3.1 Boundary integral equation formulation

Using the Green’s theorem, the coupled form (21) of the biharmonic equation can be written down as a
set of two integral equations forψ,ω and their normal derivativesψn, ωn:

η(x0)ψ(x0) =
1

2π

∫

∂Ωb

{
ψ(x)n ∙ ∇ ln r − ψn(x) ln r

+
1

4
ω(x)n ∙ ∇(r 2 ln r − r 2)−

1

4
ωn(x)(r 2 ln r − r 2)

}
dl , (38)

η(x0)ω(x0) =
1

2π

∫

∂Ωb

{ω(x)n ∙ ∇ ln r − ωn(x) ln r }dl ,

wherer = |x − x0|. The integrals are taken over the contour∂Ωb that confines regionΩb. Where
necessary, they must be interpreted in the principal value. The normal vectorn is pointed outwards the
regionΩb. The functionη(x) is given by

η(x) =






0, x /∈ Ωb + ∂Ωb,

1, x ∈ Ωb,
α

2π , x ∈ ∂Ωb,

whereα is the internal angle between the two tangents to∂Ωb on each side ofx.
To solve problem (38) numerically, we will use the classical BIEM formulation which has being

applied successfully for decades to solve a variety of problems (e.g.Jaswon & Symm, 1977; Kelmanson,
1983a). We will use as an illustration the simplest variant of the method. The domain boundary is
subdivided intoN smooth boundary elements∂Ωb =

∑N
j =1ΔΩ j . On each element, the functions

ψ,ψn, ω andωn are approximated by a step function, i.e. on thej th element

ψ(x) = ψ j , ψn(x) = ψnj , x ∈ ΔΩ j ,

ω(x) = ω j , ωn(x) = ωnj , x ∈ ΔΩ j .
(39)

This approximation is adequate for a large variety of Stokes flow problems, though for some problems
a higher-order approximation is needed (Pozrikidis, 1992).
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Using the discretized representation (39), system (38) takes the form

η(x0)ψ(x0) =
1

2π

∑

j

ψ j

∫

ΔΩ j

n ∙ ∇ ln r dl −
1

2π

∑

j

ψnj

∫

ΔΩ j

ln r dl

+
1

8π

∑

j

ω j

∫

ΔΩ j

n ∙ ∇(r 2 ln r − r 2)dl −
1

8π

∑

j

ωnj

∫

ΔΩ j

(r 2 ln r − r 2)dl , (40)

η(x0)ω(x0) =
1

2π

∑

j

ω j

∫

ΔΩ j

n ∙ ∇ ln r dl −
1

2π

∑

j

ωnj

∫

ΔΩ j

ln r dl . (41)

Equations (40) and (41) are then collocated at the midpoints of each intervalx0 ∈ ΔΩ j , j = 1, . . . , N,
resulting in a system of 2N algebraic equations for 4N unknowns. All geometrical characteristics of
the surface profile in (40) and (41) and in the boundary conditions, i.e.n andξ , are calculated at the
midpoints of each interval on the basis of a cubic spline.

In a standard situation, to get a unique solution one would just set any two independent combinations
of the variablesψ , ψn, ω, ωn on the boundary. In terms of the number of unknowns, one needs to leave
2N unknown values after prescribing 2N known values on the boundary. In our case, 2N equations
specifying the latter have different form on different parts of the boundary. On the free surface (contour
o1 − a andd1 − o2), one has

ω = 2ξ
∂ψ

∂n
(42)

together withψ = 0(o1 − a) orψ = Ū∗(d1 − o2). On the solid substrate (contourb − d2), the Navier
condition applies

ψ = ψ(xb), Caω + β̄

(
∂ψ

∂n
+ 1

)
= 0. (43)

Note that, since in the regionΩc the boundary is not a streamline due to adsorption–desorption processes
on the interfaces, the value of the stream function onc − d2 is, generally, not equal to zero. The inlet
boundary conditions (29) can be implemented in different equivalent forms. It has been found that a
convenient way of setting up a uniform flow is to useψn = 0,ωn = 0 ono2 − o1 since this condition
allows for self-corrections in the course of iterations. The uniform flow far downstream can be set up in
a similar way. Control computations have been performed with conditions (29) and (30) implemented
explicitly. The lengthL of the film in the downward direction (Fig.2a) was chosen sufficiently large to
guarantee the full recovery of the uniform flow downstream along the solid substrate and to ensure that
there is no influence of the position of the contourd2 − d1 on the computational results.

In our BIEM formulation so far, no conditions have been imposed on the contourΓab. This means
that at the moment, we have 2NB equations for 2NB + 2Nab unknowns, whereNB is the total number
of intervals on∂Ωb and Nab is the number of intervals onΓab. After calculating all the kernel inte-
grals and applying the conditions formulated above, system (40) and (41) can be represented in a matrix
form as

ABIEfBIE = BBIE, (44)

where the solution vectorfBIE has the length 2NB + 2Nab andABIE is a 2NB × (2NB + 2Nab) matrix.
All non-singular kernel integrals in (40) and (41) are taken numerically by means of a standard 20-point
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Gaussian quadrature with double precision numerical accuracy. On the intervals wherex − x0 = 0
occurs, the kernel integrals are taken analytically in a similar way as inKelmanson(1983a).

3.2 Finite-element representation

The solution inΩc is obtained using a Galerkin-weighted finite-element technique. The domain is tes-
selated into contiguous three-node triangular elements (Figs2b and3). The size of the elements is
gradually increasing by 3–8% while moving radially from the contact line to account for the natural
length scales of the problem (Fig.2b). Each element in the physical space is mapped onto the standard
‘master’ element with the local coordinate basis(χ, η) (Fig. 4) by means of the linear transformation

x(χ, η) =
3∑

i =1

xiΦi (χ, η), (45)

where

Φ1(χ, η) = 1 − χ − η, Φ2(χ, η) = χ, Φ3(χ, η) = η (46)

andxi = (xi , yi ) are the coordinates of the element’s nodes in the physical space. Then, on the ‘master’
element, functionsψ andω are approximated by the same linear shape functionsΦi through the nodal
valuesψi , ωi :

ψ(χ, η) =
3∑

i =1

ψiΦi (χ, η), ω(χ, η) =
3∑

i =1

ωiΦi (χ, η). (47)

The approach is similar to that reported inPeeterset al. (1987) andGaskellet al. (1999), where
second-order elements were used. Here, we use linear elements as an illustration and a benchmark for
the higher-order schemes; as for the BIEM, an increase of the order of approximation is technically
straightforward.

FIG. 3. Blow-up of the corner region down to the last finite element. The spatial resolution in the transversal direction is not
important for the final solution since, as shown asymptotically inShikhmurzaev(2006) and confirmed by our computations, near
the contact line it is a uniform flow; however, it is crucial for the convergence of the code.
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FIG. 4. Left: The ‘master’ element, with local coordinate basis(χ, η), which is used to derive the FEM equations. Right: A general
element in the physical space; the element is mapped onto the ‘master’ element by means of the linear transformation (45). For
both elements, the numbered black circles are the nodes at which the stream function and vorticity are calculated.

The system (21) can be written in a weak form usingΦi as weighting functions as follows:
∫

Ωc

∇Φi ∇ψ dΩ +
∫

Ωc

Φiω dΩ −
∫

∂Ωc

Φiψn ds = 0, (48)

∫

Ωc

∇Φi ∇ω dΩ −
∫

∂Ωc

Φiωn ds = 0, (49)

where the integrals over the domain boundary∂Ωc must be dropped since equations for the boundary
nodes are replaced by the weak formulation of the appropriate boundary conditions.

On the boundary, for each element, the surface variablesρs andvs are approximated using 1D shape
functionsΛi (ϑ):

ρs(ϑ) =
2∑

i =1

ρs
i Λi (ϑ), vs(ϑ) =

2∑

i =1

vs
i Λi (ϑ), (50)

where

Λ1 = 1 − ϑ, Λ2 = ϑ, 06 ϑ 6 1. (51)

One may note that the set of functions (51) is actually a projection of the set (46) onto an element
boundary. For example, the set (46) on the boundary(0< χ < 1, η = 0), between nodesχ = 0, η = 0
andχ = 1, η = 0, becomes

Φ1(χ, η) = 1 − χ, Φ2(χ, η) = χ, Φ3(χ, η) = 0. (52)

That is, identifyingχ with ϑ , one has

Φ1 = Λ1, Φ2 = Λ2.

All the boundary conditions used in the FE part of the code are transformed into a weak formulation
using the set (51) as weighting functions. On the free surface from (22) to (24), one has

∫

∂Ω
Λi

{
ω + 2Q

dρs

ds
− 2ξψn −

λ

Ca

dρs

ds

}
ds = 0, (53)

∫

∂Ω
Λi

{
∂ψ

∂s
+ Q(ρs − ρ̄1e)

}
ds = 0, (54)



A COMBINED BIE-FE METHOD FOR THE STOKES EQUATIONS 13 of 26

∫

∂Ω
Λi

{

ε
d(ρs

(0)v
s)

ds
+ Q(ρs − ρ̄1e)

}

ds = 0, (55)

∫

∂Ω
Λi

{
4β̄(vs + ψn)+ (1 + 4A)λ

dρs

ds

}
ds = 0. (56)

Similarly, on the solid boundary we have

∫

∂Ω
Λi

{
ω + 2Q

dρs

ds
−

λ

2Ca

dρs

ds
+
β̄

Ca
(ψn + 1)

}
ds = 0, (57)

∫

∂Ω
Λi

{
∂ψ

∂s
+ Q(ρs − ρ̄2e)

}
ds = 0, (58)

∫

∂Ω
Λi

{

ε
d(ρs

(0)v
s)

ds
+ Q(ρs − ρ̄2e)

}

ds = 0, (59)

∫

∂Ω
Λi

{
β̄

(
vs +

1

2
(ψn − 1)

)
+ Aλ

dρs

ds

}
ds = 0. (60)

The non-linear terms in (23) and (26), and consequently in (55) and (59), have been linearized to use
an iterative procedure. As an initial guess, it was sufficient to setρs

(0) to its equilibrium value on each
surfaceρs

(0) = ρ̄s
1,2e.

The surface shape and its curvature have been approximated by means of a cubic spline. In the weak
formulation, on the boundary of each element, the curvature is approximated using the set of functions
Λi through the nodal boundary valuesξi obtained from the spline procedure, i.e.ξ(ϑ) =

∑2
i =1 ξiΛi (ϑ).

Now, to match solutions in regionsΩc andΩb one needs to use conditions (36) and (37) on Γab.
They can be written down in the weak form as follows:

∫

∂Ω
Λi {ψin − ψout}ds = 0,

∫

∂Ω
Λi

{(
∂ψ

∂n

)

in
+
(
∂ψ

∂n

)

out

}
ds = 0, (61)

∫

∂Ω
Λi {ωin − ωout}ds = 0,

∫

∂Ω
Λi

{(
∂ω

∂n

)

in
+
(
∂ω

∂n

)

out

}
ds = 0. (62)

In (61) and (62), the variables in the inner region,ψin andωin, are represented by means of the set
of functionsΛi (ϑ), i.e. on each interval, e.g. forψin, one has

ψin(ϑ) =
2∑

i =1

ψ in
i Λi (ϑ),

whereas the variablesψout, ωout, ∂ψ/∂nout and∂ω/∂nout in the outer region are approximated by the
representation (39) used in the BIEM, i.e. on each intervalΔΩ j one has, e.g. forψout and(ωn)out,

ψout = ψout
j ,

(
∂ω

∂n

)

out
= (ωout

n ) j .
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It is worth emphasizing here that the shape and position of the contourΓab should be chosen, on
the one hand, with some caution and, on the other, that this choice can substantially reduce computation
costs. To avoid degeneration of the finite elements comprising the pointsxa and xb, the angleθab at
which Γab meets the free surface and the solid substrate at pointsxa andxb should be about 30◦ and
kept constant during iterations (hereθab is measured throughΩc). Higher values ofθab increase the
local error of the BIEM, whereas much lower values do the same with the accuracy of the FEM. The
position of the contour can be chosen using the asymptotic estimates for the actual relaxation length for
the surface variableslr = k−1

ρ (see (71)) such thatRm ' 20–30lr . This allows one to avoid tessellation
of large parts of the domain and, on the other hand, ensures complete relaxation of the surface variables
to their equilibrium values.

Alternatively, the matching of the FEM and the BIEM can be performed by using two curves,Γ ′
ab

andΓ ′′
ab, that make regionsΩb andΩc overlap. This way of matching removes the above restrictions on

the shape ofΓab at the expense that now the curve lying insideΩc is no longer formed by the sides of
the finite elements, and one has to apply a suitable interpolation procedure to implement the matching
conditions.

Equations (48), (49) and (53–62) provide a weak formulation of the problem in the inner regionΩc.
To complete the formulation, we have to add algebraic boundary condition at the contact line (28), set
the surface density at pointsa andb to equilibrium values,

ρs
1(xa) = ρ̄s

1e, ρs
2(xb) = ρ̄s

2e, (63)

and set the stream function and the surface velocity to their initial values atxa,

ψ(xa) = 0 (64)

and, according to (31),

vs(xa)+ ψn(xa) = 0. (65)

Then, in the assembly procedure, the integration of the residual equations (48), (49) and (53–62) is
achieved on an element-by-element basis using the ‘master’ element with local coordinate basis(χ, η)
and transformation (45) by means of standard Gaussian quadrature to form a system of algebraic equa-
tions. For example, during the assembly procedure, (48) is integrated on each physical elementm as
follows:

Ψ j

∫
∇Φi ∇Φ j Jm(χ, η)dχ dη + ω j

∫
ΦiΦ j Jm(χ, η)dχ dη = 0, (66)

where j = 1, . . . , 3 andi = 1, . . . , 3 are the node numbers, andJm(χ, η) = ∂(x, y)/∂(χ, η) is the
Jacobian of transformation (45), i.e.the actual integration is performed over the ‘master’ element. The
procedure is carried out for each element inΩc and the results are assembled to form a system of linear
equations. The actual assembly procedure is standard (see, e.g.Gresho & Sani, 2000), and below we
only outline key elements relevant to our particular case.

First of all, (48) and (49) are integrated for all elements inΩc resulting in a system of 2Nc algebraic
equations,Nc is the number of nodes inΩc. Then, boundary conditions are integrated for each element
located on the relevant boundary ofΩc. Namely, (53) and (54) are integrated on the free surface, (57)
and (58) are integrated on the solid substrate and finally (61) are integrated onΓab. The algebraic
equations obtained from the integration of boundary conditions (53), (54), (57), (58) and (61) then
replace the corresponding algebraic equations obtained from (48) and (49) at the nodal points located
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on the particular boundary. The other algebraic equations resulting from the integration of conditions
(55), (56), (59), (60) and (62) are added to the system to form in total a system ofNt1 linear equations for
Nt2 unknowns, whereNt1 = 2Nc + 2N f s + 2Nss+ 2Nab, Nt2 = 2Nc + 2N f s + 2Nss andN f s, Nss are
the number of nodes on the free surface and the solid substrate, respectively. Finally, algebraic boundary
conditions (63–65) must be applied. They replace equations at nodesxa andxb for each variableρs, ψ
andvs, respectively.

After completing the assembly procedure, the result can be presented in a matrix form as

AFEMfFEM = BFEM, (67)

whereAFEM is a(Nt1 × Nt2) matrix andfFEM is a solution vector of lengthNt2.
Combining (44) and (67), one has in total a system of 2NB + 2Nc + 2N f s + 2Nss + 2Nab linear

equations for the same number of unknowns or

AHybfHyb = BHyb. (68)

Matrix AHyb has a hybrid structure: the part of the matrix resulting from the FEM is sparse, whereas the
one coming from the BIEM is full. The matrix is stored in a sparse coordinate format and then inverted
by the LU factorization with an iterative refinement.

3.3 Computation of the free surface profiles

Free surface profiles in the problem are determined iteratively from boundary condition (22) which is
considered as a second-order differential equation for the angleθ formed by the tangential unit vectort
to thex-axis (Fig.1):

λ(1 − ρs)
dξ

ds
= Bogτ − Caωn − 2Ca

∂2ψn

∂s2
− Caξω, ξ =

dθ

ds
. (69)

At each step of the iterations, (69) are solved with two boundary conditions and given distributions of
ψn, ω,ωn, ρ

s andgτ along the surface. The boundary conditions are

θd1 = π, θo2 = π/2, ond1 − o2,

θo1 = 3π/2, θc = π + θd, ono1 − c.

Once new functionθ(s) is obtained, new surface profile is calculated from a system

dx

ds
= cosθ,

dy

ds
= sinθ

with initial conditions

x
(
so2

)
= 1/2, y

(
so2

)
= H̄ , ond1 − o2,

x
(
so1

)
= −1/2, y

(
so1

)
= H̄ , ono1 − c.
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Since in an iterative procedure, in a general case, one hasy(sc) 6= 0 andx
(
sd1

)
6= L, we have to rescale

the new profiles

x′(s) = x
(
so2

)
+
(
x(s)− x

(
so2

))
(
L − x

(
so2

))

(
x
(
sd1

)
− x

(
so2

)) ,

y′(s) = y
(
so1

)
−
(
y(s)− y

(
so1

)) y
(
so1

)

(
y(sc)− y

(
so1

))

to ensure that for themy′(sc) = 0 andx′
(
sd1

)
= L. The iterations are terminated when the following

criterion is satisfied:

max
i =1,...,N

|x′(s′
i)− x(si)| 6 0.01,

where N is the number of points on the boundary ands′ is the arc length calculated on the new
profilex′.

4. Flow in the corner region

Before applying the combined algorithm in full, its most essential, and in terms of the boundary condi-
tions, new component, the FE code, has been tested for the flow in a corner regionΩc where, for some
limiting cases, analytical solutions are available.

Although the set of boundary conditions (22–27) looks rather complicated, in some asymptotic limits
one can arrive at analytical results for the velocity dependence of the contact angle that can be used as
a benchmark for the code. One of such results is the steady flow at Ca� 1 for a fluid whereλ � 1
(Shikhmurzaev, 1994). In this limit, the ‘moving contact line problem’ becomes a local one and the free
surface near the contact line is, to leading order, planar so that one can consider the contact angle as a
feature determined by the prescribed outer flow.

To consider the flow in a corner region (Fig.2b) computationally on the outer boundary of this
region, we use the stream function and vorticity distributions fromMoffatt (1964),

ψM =
r ((θ − θd) sinθ − θ cosθd sin(θ − θd))

sinθd cosθd − θd
, ωM =

cosθ − cosθd cos(θ − θd)

r (sinθd cosθd − θd)
, (70)

as in the asymptotic solution. Using the size of the corner region as a characteristic length scale of the
flow domainh, we can rewrite the asymptotic solution for the surface density in the form

ρs
1 = ρ̄s

1e, ρs
2 = ρ̄s

2e − Cρλ
−1 exp(−kρr ), (71)

where

kρ = 2Vε−1(ρ̄s
2e)

−1[
√

V2 + ρ̄s
2e − V ], Cρ =

2Vλ(ρ̄s
2e + ρ̄s

1eud)

(ρ̄s
2e + V2)1/2 + V

,

ud =
sinθd − θd cosθd
sinθd cosθd − θd

, V2 =
εβ̄

λ(1 + 4A)
, ρ̄s

2e = 1 −
σ̄3

λ
+

cosθs
λ

.
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The resulting dependence of the contact angle on the contact line speed is given by

cosθs − cosθd =
2Vλ(ρ̄s

2e + ρ̄s
1eud)

(ρ̄s
2e + V2)1/2 + V

. (72)

The results of comparing the numerical solution with (71) and (72) are summarized in Figs5–7.
Figures5 and6 show the dependence of the surface density on the distance from the contact line at
different values of the substrate velocity, i.e.for the capillary numbers Ca= 10−3 and Ca= 10−2. As
one can see, the numerical solution matches the asymptotic one with the accuracy ofΔρs/ρs ' 5×10−4

to 3× 10−3. Given that, unlike the leading-order asymptotics in Ca as Ca→ 0, the code fully accounts
for the influence of the bulk flow on the distributions of the surface parameters, one should expect the
difference between the numerical and the asymptotic results being proportional to Ca. This difference
goes down indeed as the capillary number decreases. For low capillary numbers, the difference between
the numerical and the analytical results is due essentially to the limited spatial resolution of the code
in these runs where forNc = 2420, N f s = Nss = 110, we had justNrl = 85 mesh points over the
length of 3lr (lr = k−1

ρ is the actual relaxation length). The tested accuracy of the code in calculating

FIG. 5. The distribution of the surface density along the free surface (top) and along the liquid–solid interface (bottom) in the
corner flow for Ca= 0.001, θs = 60◦, λ = 20, β̄ = 25, Q = 0.4, ε = 10−4 and A = 1. The asymptotic distribution, (71), is
shown by the dashed line. The distances from the contact line is scaled withUτ ; the data point corresponding tos = 0 and a few
neighbouring points are taken out.
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FIG. 6. The distribution of the surface density along the free surface (top) and along the liquid–solid interface (bottom) in the
corner flow for Ca= 0.01, θs = 60◦, λ = 20, β̄ = 250, Q = 0.04, ε = 10−3 and A = 1. The asymptotic distribution, (71), is
shown by the dashed line. The distances from the contact line is scaled withUτ ; the data point corresponding tos = 0 and a few
neighbouring points are taken out.

the contact angle is consistent with the estimated error given by

Δθd ' Δρsλ

and was about 0.5◦–1◦ atλ = 20. This value is in a good agreement with the observed deviation of the
dynamic contact angle calculated numerically from the asymptotic value (Fig.7).

The convergence of the solution illustrated in Fig.8 suggests that the number of mesh pointsNc =
2420 is sufficient for most applications. It should be noted, though, that for higher values of Ca∼ O(1),
the approximation error is expected to increase, and a better spatial resolution (or/and a higher order of
approximation) is required to keep the accuracy withinΔθd ' 0.5◦–1◦.

5. Simulations of curtain coating

In this section, we will give some results illustrating the performance of the combined algorithm in the
simulations of curtain coating in the parameter range relevant to the water–glycerol solutions used in
experiments as a convenient test fluid. Using characteristic physical parameters of the water–glycerol
solutions and estimates of the phenomenological material constants of the modelα, β, γ, τ, ρs

0 and
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FIG. 7. The dependence of the dynamic contact angle on the substrate velocityU (shown as the dependence on Ca) in the corner
flow for λ = 20 andθs = 60◦. Other parameters scaled withU (β̄, Q and ε) were changing accordingly. The asymptotic
dependence, (72), is shown by the dashed line.

FIG. 8. The dependence of the dynamic contact angle calculated numerically for the corner flow on the total number of mesh
points at Ca= 0.01; the number of mesh points over the length 3lr increases proportionally. Other parameters are the same as in
Fig. 6.

ρ je, j = 1, 2, obtained inBlake & Shikhmurzaev(2002), we calculate steady curtain profiles and the
corresponding distributions of the variables for different values of the substrate velocityU . Variations of
the substrate velocity simultaneously change several non-dimensional parameters (Ca, β̄, Q, Ū∗ andε),
whereas other parameters (Bo, A, λ, σ̄3, ρ̄1e, H̄ andθs) remain fixed. (For the analysis of the role played
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FIG. 9. Dependence of the dynamic contact angle in the curtain coating onU (shown as the dependence on Ca). Here,Ū∗ = 1;
other non-dimensional parameters scaled withU (β̄, Q andε) were changing accordingly. The asymptotic dependence for the
corner flow, (72), is shown by the dashed line.

FIG. 10. Typical profiles of the curtain for different contact line speeds. Here,Ū∗ = 1, θs = 60◦ and H̄ = 5; 1: Ca= 0.0025; 2:
Ca = 0.02; 3: Ca= 0.04; other non-dimensional parameters scaled withU (β̄, Q andε) change accordingly. In the horizontal
direction, the plot is clipped at approximately 0.1 of the actual size of the computational domain.

by the dimensionless parameters, seeLukyanov & Shikhmurzaev, 2006.) In our test simulations, we
use A = 1, λ = 2.5, σ̄3 = 0, ρ̄1e = 0.6, H̄ = 5, θs = 60◦ and keepU∗ = 1. Although for the
typical flow conditions the code is intended to describe the Bond number is small, Bo' 2.5 × 10−5,
in the computations we chose to keep the body force term in (22) as a stabilizing factor for the film
far downstream the solid substrate. The numerical resolution of the combined method was taken at
the level sufficient to ensure that the accuracy of the contact angle is about∼1.5◦–2◦ in all the runs,
i.e.NB = 680, Nc = 3010 with Nrl = 80 over the distance 3lr . Note that while the actual relaxation
lengthlr was changing with Ca, the spatial resolution in that region, i.e.the number of pointsNrl , was
kept the same.

The results of our simulations are summarized in Figs9–13. In Fig.9, the dynamic contact angleθd
is shown as a function of the capillary number Ca. Remarkably, as Ca→ 0, the contact angle is getting
close to the values predicted by the asymptotic solution (72) even though, in this case, the parameter
λ ∼ O(1), whereas the asymptotics was obtained forλ � 1. At higher values of the substrate velocity,
as one should anticipate, the dependence diverges from the asymptotic one. The reason for this effect
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FIG. 11. Apparent contact angleθappand the distribution of the surface densityρs in curtain coating for Ca= 0.04. The equilib-
rium values of the surface density are shown by the dashed line.

is that the terms proportional to Ca in the boundary conditions are, to leading order, neglected in the
asymptotics, whereas in the code they are fully taken into account and, as Ca increases, so does the
influence of the bulk flow on the surface parameters distribution that ultimately influences the contact
angle.

The corresponding curtain profiles and distributions of the surface density are shown in Figs10–13
for some values of Ca. The curtain profiles (Fig.10) clearly demonstrate the trend routinely observed in
experiments: as the substrate velocity increases, the contact angle also increases, and, as a consequence,
the contact line moves downstream.

Since in the model the contact angle is ‘negotiated’ by the surface densities at the contact line through
the modified Young equation (15), the origin of the velocity dependence of the contact angle can be also
illustrated by the calculated profiles of the surface density distributions along the interfaces. As one can
see in Figs11–13, variations in the substrate velocity lead to almost no variations in the surface density
on the free surface, which remains close to its equilibrium valueρ̄s

1e, whereas on the solid substrate the
surface density varies strongly from the equilibrium valueρ̄s

2e far downstream to a much smaller value
at the contact line. AsU increases, the latter gets closer to the surface density value on the free surface.
Thus, the contact angle appears to be controlled by the surface density in the liquid–solid interface and
increases asU becomes larger.
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FIG. 12. Apparent contact angleθappand the distribution of the surface densityρs in curtain coating for Ca= 0.02. The equilib-
rium values of the surface density are shown by the dashed line.

It is important to note that, as one can see in Figs11–13, the actual relaxation of the surface variables
to their equilibrium values takes place over a length scale which is much larger than the ‘nominal’
relaxation lengthUτ . If we formally define the actual ‘length of exponential relaxation’ along the liquid–
solid interfacesn

r by

ρs(sn
r ) = ρ̄s

2e − (ρ̄s
2e − ρs

2(0))/e

(e is the base of the natural logarithm), then, as one can see in Table 1,sn
r varies approximately from 2Uτ

to 30Uτ as Ca decreases from 0.04 to 0.0025. It is also interesting to note that the values ofsn
r obtained

in this formal way are very close to the asymptotic valueslr calculated by means of (71). Remarkably,
despite strong variations in the distributions of the surface parameters along the solid surface on the
scales < 3sn

r , there is little variation in the free surface profile on the same scale. This is illustrated by
the plots of the apparent angleθapp (see Fig.1 for the definition) on the distance from the contact line
shown in Figs11–13 for different capillary numbers.

Finally, consider the performance of the matching of the BIE and FE solutions that the combined
method uses at the ‘internal interface’Γab. This can be illustrated by the picture of the streamlines as
they cross this ‘interface’. In Fig.14, the arrows outside the frame show whereΓab intersects with it, but
an inspection of the plots of the streamlines does not allow one to note where the contourΓab actually
lies within the picture. In other words, the internal interface has no effect on the flow. This has, of course,
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FIG. 13. Apparent contact angleθapp and the distribution of the surface densityρs in curtain coating for Ca= 0.0025. The
equilibrium values of the surface density are shown by the dashed line.

TABLE 1 A comparison of the actual relaxation length calculated nu-
merically snr with the asymptotic value lr = k−1

ρ calculated by means of
(71). Both snr and lr are scaled with Uτ

Ca 0.04 0.03 0.02 0.01 0.005 0.0025
sn
r 2.3 2.9 4.3 8.8 16.7 33.1

lr 2.5 3.2 4.5 8.4 16.3 32.2

been checked quantitatively. In the whole range of parameters, it has also been routinely checked that
the simulation results are not sensitive, within the accuracy of the computations, to the position ofΓab,
which was varied between 30 and 150lr .

A feature of the flow field worth noting is that, as a magnified view of the stream lines in the close
vicinity of the contact line shows (Fig.15), the streamlines go into the liquid–solid interface. This
follows fromρs being significantly below its equilibrium valuēρs

2e along the relaxation zone and hence,
according to (26), one has adsorption of the fluid by the liquid–solid interface. The plots ofρs on the
free surface indicate that there is desorption from the liquid–gas interface (ρs > ρ̄s

1e there) so that in the
immediate vicinity of the contact line, one has a uniform flow from the free surface into the liquid–solid
interface. This type of flow is described qualitatively inShikhmurzaev(2006). What is important to note
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FIG. 14. Typical pattern of streamlines with the distances measured in nominal relaxation lengthsUτ . The points where the
numerical ‘internal interface’Γab intersects the frame are indicated by the arrows; Ca= 0.02.

FIG. 15. A magnified view of the flow near the contact line showing adsorption of the fluid by the liquid–solid interface; Ca= 0.02.

for numerical calculations of dynamic wetting is that the interface disappearance/formation process
leads to the interfaces no longer being streamlines, even for steady flows. This should be taken into
account in adapting standard packages to incorporate the interface formation model since in many such
packages, the ‘impermeability’ of interfaces is built in on a very deep level.
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6. Conclusions

The developed method allows one to solve a variety of free boundary problems for the Stokes equations,
including problems arising in the area of dynamic wetting, in an efficient way, with the finite-element
component providing the accuracy and high spatial resolution in the key regions and the boundary
integral equation component ensuring overall efficiency in describing the flow parameters in the main
part of the flow domain. The matching of the two elements is straightforward, and it can be used to
optimize the algorithm. The calculations of free boundary problems in the framework of the interface
formation model, where the dynamic contact angle is part of the solution and hence the bulk, surface
and contact line parameters become interrelated, require special attention to the accuracy and the spatial
resolution within the relaxation zone which can stretch far beyond the ‘nominal’ relaxation lengthUτ ,
especially when this length is small. The existing asymptotic solution provides an accurate estimate for
the size of the relaxation zone.
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