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Abstract

Curtain coating on a length scale typical of microfluidics is investigated theoretically in the framework of an earlier developed theory where
dynamic wetting is treated as essentially a process of formation of a new liquid–solid interface. The results demonstrate that the actual dynamic
contact angle between the free surface and the solid boundary depends not only on the wetting speed and material constants of the contacting
media, as in the so-called ‘slip models’, but also on the flow field/geometry in the vicinity of the moving contact line. In other words, for the
same wetting speed the dynamic contact angle can be varied by manipulating the flow conditions. This outcome is consistent with the conclusions
drawn earlier from macroscopic experiments.
© 2006 Elsevier B.V. All rights reserved.
1. Introduction

One of the central issues in the physics of capillarity is the
question of whether or not dynamic wetting, i.e. the process of
spreading of a liquid over a solid surface, is a local phenom-
enon whose characteristics depend only on the speed at which
the three-phase contact line moves across the solid substrate and
the material parameters of the contacting media or is it nonlo-
cal, i.e. dependent also on the flow field/geometry in the vicinity
of the contact line. A flow configuration that offers sufficient
flexibility to clarify this issue is the so-called ‘curtain coat-
ing’. Curtain coating is a technique for depositing fluid films on
solid surfaces in which a sheet of fluid impinges onto a mov-
ing solid substrate (Fig. 1). In addition to being one of the main
coating methods in photographic and now paper industry [1],
curtain coating is proven to be very useful for studying various
features of dynamic wetting [2,3]. The main advantage of this
flow configuration as an investigative tool is that, in addition
to the wetting speed variations, it allows one to independently
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vary the flow rate, the curtain height and the angle between the
falling sheet and the solid surface, thus making possible a multi-
parametric investigation into the role played by the overall flow
field/geometry in the wetting process.

Recent experiments reported by Blake et al. [4] show that,
for a given wetting speed, the measured contact angle between
the free surface and the moving solid boundary depends on the
flow field/geometry as it varies with the variation of the above
parameters. A subsequent theoretical study [5] carried out in
the framework of the so-called ‘slip models’, where, for a given
solid/liquid/gas system, the actual contact angle θd (Fig. 1) is
assumed to be a function of the wetting speed, has demonstrated
that the observed effect cannot be explained in terms of the so-
called ‘apparent’ contact angle (Fig. 1), i.e. by attributing it to
free-surface bending in the immediate vicinity of the contact
line. As was shown, the free-surface bending within the spatial
resolution of the measurements (≈ 20 µm in [4]) is too small
for the ‘apparent’ contact angle to account for the observed
contact-angle variations. These findings lead to a fundamen-
tal conclusion that it is the actual contact angle, i.e. the angle
at which the liquid–gas interface, described as a mathematical
surface, meets the solid boundary, that varies with variations in
the flow field.
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Fig. 1. Definition sketch for curtain coating. θd is the ‘actual’ contact angle, i.e.
the angle at which the free surface meets a solid boundary in the macroscopic
fluid mechanics modeling of the flow. θapp is the so-called ‘apparent’ contact
angle formed by the tangent to the free surface at some distance from the contact
line and the solid substrate; this angle is often used as an auxiliary concept to
interpret experimental data.

This effect is of particular importance in microfluidics where
the length scale characterizing the flow geometry becomes
comparable with the scale on which the specific physics of wet-
ting that determines the dynamic contact angle operates. In the
present work, we investigate the dependence of the dynamic
contact angle on the flow field at low Reynolds numbers in
the framework of an earlier developed theory [6], where dy-
namic wetting is treated as a particular case of a flow with
forming/disappearing interfaces. In this theory, the length scale
associated with the specific physics of wetting is the length
over which the newly formed liquid–solid interface equili-
brates. Then, generally speaking, one should expect nonlocality
in the contact-angle behavior, i.e. its dependence on the flow
geometry, when the length scale characterizing variations in the
flow field becomes comparable with the equilibration length of
the interfacial parameters. Importantly, in this theory the ac-
tual dynamic contact angle is not prescribed as a function of
the contact-line speed and material constants of the system; in-
stead, it is introduced via the (dynamic) Young equation (see
(11) below) and hence has to be determined as part of the solu-
tion. The model based on this approach derived using methods
of irreversible thermodynamics has been applied to analyze a
number of experiments on dynamic wetting [6–8] as well as
to some other flows where the formation/disappearance of in-
terfaces takes place [9,10]. In the present work, we examine it
from the viewpoint of the role played by the flow field and the
physical mechanisms responsible for the contact angle behav-
ior.

2. Problem formulation

The essence of the model to be used [6] is that, by its very
definition, ‘dynamic wetting’ is the process of formation of a
new ‘wetted’ solid surface, i.e. a fresh liquid–solid interface.
Then the ‘moving contact-line problem’ can be seen as aris-
ing due to the fact that the process of interface formation is
not accounted for in the standard fluid-mechanical formula-
tion where all interfaces are treated as already formed. In [6],
the problem is addressed by incorporating the process of for-
mation/disappearance of the ‘surface phase’ into the boundary
conditions for the Navier–Stokes equations that describe the
bulk flow. To study dynamic wetting, generally as an unsteady
process, in the framework of this model, one has to consider
solutions of the Navier–Stokes equations,

(1)
∇ · u = 0, ρ(∂u/∂t + u · ∇u) = −∇p + μ∇2u + ρg,

subject to the following boundary conditions. At an a priori
unknown free surface f (r, t) = 0 with the inward normal n =
∇f/|∇f | the boundary conditions are given by:

(2)∂f/∂t + vs · ∇f = 0,

−p + μn · [∇u + (∇u)∗
] · n = σ∇ · n,

(3)μn · [∇u + (∇u)∗
] · (I − nn) + ∇σ = 0,

ρ
(
u − vs

) · n = (
ρs − ρs

1e

)
τ−1,

(4)∂ρs/∂t + ∇ · (ρsvs
) = −(

ρs − ρs
1e

)
τ−1,

(5)(1 + 4αβ)∇σ = 4β
(
vs − u

) · (I − nn),

whereas on the solid surface moving with velocity U one has:

(6)

μn · [∇u + (u)∗
] · (I − nn) + 1

2
∇σ = β(u − U) · (I − nn),

ρ
(
u − vs

) · n = (
ρs − ρs

2e

)
τ−1,

(7)∂ρs/∂t + ∇ · (ρsvs
) = −(

ρs − ρs
2e

)
τ−1,

(8)

(
vs − U

) · n = 0,

[
vs − 1

2
(u + U)

]
· (I − nn) = α∇σ.

Here u and p are the velocity and pressure (measured with re-
spect to a constant pressure in the surrounding gas) in the liquid,
whose density ρ and viscosity μ are assumed to be constant; g
is the acceleration of gravity. On the free surface, in addition
to the kinematic condition (2), which simply defines the normal
component of velocity of the surface phase, and the usual condi-
tions on the normal and tangential stresses (3), the model takes
into account mass exchange between the bulk and the surface
phase (4) as the surface density of the surface phase ρs relaxes
to its equilibrium value ρs

1e . In (3) and (4), I is the metric ten-
sor and τ is the relaxation time. Similar to (4), conditions (7)
describe mass exchange between the bulk and the liquid–solid
interface. Importantly, the tangential components of the veloc-
ity in the surface phase vs , the bulk velocity evaluated on the
liquid-facing side of interfaces u and the velocity of the solid
substrate U are, in a general case, different due to the torques
acting on the surface phase. The conditions relating these com-
ponents are given by (5) on the free surface and (6) and (8) on
the solid boundary. It is assumed that the solid surface is imper-
meable for and inert with respect to the fluid (the first condition
(8)) and there is no actual slip on the solid surface (hence the
second condition (8) has the form of a ‘Darcy law’). The equa-
tion of state in the surface phase that closes the set of equations
(2)–(8) for the surface variables along the interfaces is taken in
a simple ‘barotropic’ form linking the surface tension σ with
the surface density:

(9)σ = γ
(
ρs

(0) − ρs
)
.
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This equation is the simplest one accounting for the fact that
the surface tension decreases from its equilibrium value σ1e =
σ(ρs

1e) in the free surface to that in the liquid–solid interface,
σ2e = σ(ρs

2e), when the interfacial layer becomes more com-
pressed (or, more generally, less rarified) due to the action of
intermolecular forces from the bulk phases that determine the
equilibrium values of ρs . The dependence of phenomenolog-
ical material constants α, β , γ and τ on viscosity and their
estimates for particular fluids have been obtained by analyz-
ing experiments on dynamic wetting available in the literature
[7,8].

Distributions of the surface parameters along the interfaces
are linked at the contact line via the mass and momentum bal-
ance conditions:

(10)ρs
1

(
vs

1 − Ucl
) · e1 + ρs

2

(
vs

2 − Ucl
) · e2 = 0,

(11)σ1 cos θd = σ3 − σ2,

where the subscripts 1 and 2 refer to the limiting values as one
approaches the contact line along the free surface and the solid–
liquid interface, respectively; e1 and e2 are unit normals to the
contact line directed along the appropriate interfaces (Fig. 1); σ3
is the tangential component of the reaction force acting on the
contact line from the solid substrate; Ucl is the velocity of the
contact line. For the cosine of the dynamic contact angle θd one
has cos θd = e1 · e2. In equilibrium, the dynamic contact angle
is related to the static one, θs , via the classical Young equation

σ1e cos θs = σ3 − σ2e

that links the material constants σ1e, σ2e, σ3 (or, alternatively,
after using (9), ρs

1e , ρs
2e , ρs

(0)
, γ , σ3) and hence allows one to

replace one of them with θs , which is a quantity relatively easy
to measure in experiments.

The boundary conditions (2)–(11) describe the surface
phases and the contact line as elements of a fluid-mechanical
model. For a steady curtain coating we drop ∂/∂t in (1), (2),
(4), (7) and have to formulate additional boundary condition
specifying this flow. After introducing a Cartesian coordinate
system as shown in Fig. 1, one can set the inlet velocity and
thickness of a falling liquid sheet:

u = U∗ for −h/2 � x � h/2, y = H,

where the inlet velocity U∗ is assumed to have only the y-
component. We will also assume that at the top of the curtain
the interfaces are in equilibrium, i.e.

ρs = ρs
1e, vs = u for x = ±h/2, y = H.

Finally, as the far downstream condition one can use soft
boundary conditions for the bulk flow

∂u(x, y)

∂x
→ 0 (x → ∞, ∀y)

and the requirement that the interface tends to its equilibrium
state

ρs → ρs
2e (x → ∞, y = 0).

In a coordinate system where the contact line is at rest (Fig. 1),
we obviously have Ucl = 0 in (10).
3. Numerical solution

Using U , h, μUh−1, σ1e and ρs
(0) as scales for velocity,

length, pressure, surface tension and the surface density, re-
spectively, we have the problem whose solution is specified by
the dimensionless similarity parameters that can be divided into
the following three groups. First, it is the Reynolds and Froude
numbers, Re = ρUh/μ, Fr = U2/(gh), i.e. the parameters that
characterize the bulk flow. In microfluidics, one almost invari-
ably has creeping flows with negligible inertia. For the problem
we are considering h ∼ 2–4 µm, U ∼ 1 cm s−1, μ/ρ ∼ 60 cSt
giving Re � 10−3, so that the convective term in (1) can be ne-
glected. Although the ratio Re /Fr is also small (� 4 × 10−4

for our flow conditions), in the computations we will keep the
body force term in (1) as the stabilizing factor for the film far
downstream the solid substrate.

The second group of dimensionless coefficients includes,
firstly, the similarity parameters formed by the material con-
stants characterizing the contacting media, θs , ρ̄s

1e = ρs
1e/ρ

s
(0),

A = αβ , σ̄3 = σ3/σ1e, and, secondly, the parameters depend-
ing on material constants and the contact-line speed only: Ca =
μU/σ1e, Q = ρs

(0)/(ρUτ), β̄ = βUh/σ1e and ε = Uτ/h. All
these parameters remain fixed for a given set of materials and a
given contact-line speed.

Finally, we have two parameters, Ū∗ = U∗/U , H̄ = H/h,
whose variation, for a given contact-line speed, leads to vari-
ation in the flow field/geometry in the vicinity of the contact
line. We will consider the role played by Ū∗. This analysis will
help to understand the mechanism of the effect that came to be
known as ‘hydrodynamic assist of dynamic wetting’ [2].

The problem was solved numerically using a combined BIE-
FE algorithm that has the capacity to resolve the distributions of
the surface parameters in the immediate vicinity of the contact
line and handle the contact angle itself with sufficient accuracy
(the finite element part of the method) and at the same time al-
lows one to describe the creeping free-surface flow away from
the contact line in an efficient and flexible way (the bound-
ary integral equation part). The details of the algorithm can be
found elsewhere [11].

The main difficulty in computing the solution arises due to
the physical effect we are trying to capture. The formulation
(1)–(11) introduces the dynamic contact angle via the Young
equation (11) and hence makes it part of the solution dependent
on the dynamic values of the surface tensions at the contact
line, which in their turn are determined by the distributions of
the surface parameters along the interfaces. These distributions
are linked with the bulk stress and velocity evaluated at the in-
terfaces thus making θd a functional of the flow field. On the
other hand, however, the value of θd is a boundary condition
for the equation specifying the shape of the flow domain, thus
giving a feedback to the flow field. This interdependence of the
bulk, interfacial and contact-line characteristics makes even a
numerical solution of the problem (1)–(11) difficult to obtain
since, in addition to the known difficulties of computing free-
boundary flows [12], one has to pay particular attention to the
accuracy with which the distributions of the surface parame-
ters along the interfaces are resolved. It is their values at the
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Fig. 2. Dependence of the dynamic contact angle on the dimensionless inlet
velocity for H̄ = 10 and different contact-line speeds. 1: Ca = 0.02, Q = 0.041,
β̄ = 20, ε = 0.0245. Curves 2 and 3 are obtained by increasing the contact-line
speed by 12.5 and 25%, respectively; θs = 60◦ , ρ̄s

1e
= 0.8, A = 1, σ̄3 = 0 for

all curves.

Fig. 3. Typical profiles of the curtain. The two profiles are obtained for es-
sentially different contact-line speeds (1: Ca = 0.0225; 2: Ca = 0.025; other
dimensionless parameters scaled with U change accordingly) and have approxi-
mately the same contact angle (≈ 120◦) due to manipulating the flow conditions
(1: Ū∗ = 1.15; 2: Ū∗ = 1.58). In the horizontal direction, the plot is clipped at
approximately 0.15 of the actual size of the computational domain.

contact line that, via the contact angle, have a global effect
on the shape of the computational domain, hence on the bulk
flow, which in its turn affects the surface distributions. As a re-
sult, every element of the model turns out to be sensitive to
the accuracy with which all other elements are computed, and
the control of computational accuracy becomes a formidable
task.

The effect of the inlet velocity Ū∗ on the dynamic contact
angle is summarized in Fig. 2. As one can see, for a given value
of U the dynamic contact angle can indeed be varied by varying
the flow field: θd decreases as U∗ goes up. An alternative way of
interpreting Fig. 2 is that it shows that the dependence of θd on
the capillary number (i.e. dimensionless contact-line speed) is
different for different flow fields/geometries, which in our case
are specified by Ū∗ and H̄ . This nonuniqueness of the velocity-
dependence of the dynamic contact angle was indeed observed
in experiments [4] (for macroscopic curtains at finite Reynolds
numbers so that a direct comparison with our computations is
not possible).

The possibility of having the same dynamic contact angle at
different contact-line speeds by manipulating the flow condi-
tions is illustrated in Fig. 3. It is important to emphasize that,
as our calculations demonstrate, the theory predicts no drastic
variations of the free-surface slope in the immediate vicinity of
the contact line and hence, for the spatial resolution of standard
optical techniques, the measured (or ‘apparent’) contact angle
can be taken as a reasonably accurate representation of the ac-
tual one.
Fig. 4. Distributions of the surface parameters along the free surface and the
liquid–solid interface (marked with a prime) at different points along curve 1
of Fig. 2. 1: Ū∗ = 0.91, 2: Ū∗ = 1.38, 3: Ū∗ = 1.82. The distance s from the
contact line is scaled with Uτ ; the data point corresponding to s = 0 is taken
out.

As we mention earlier, all elements in the model are interde-
pendent and therefore, strictly speaking, it would be incorrect
to single out direct causal links between any two of them in
terms of ‘causes’ and ‘consequences’. However, for relatively
low capillary numbers in the flow we are considering here one
can arrive at a qualitative understanding of the mechanism by
which the flow field influences the dynamic contact angle after
examining the distributions of the surface variables ρs and vs

corresponding to different points along one of the curves given
in Fig. 2. These distributions are shown in Fig. 4.

As the distributions of the surface density show (Fig. 4), the
deviation of ρs on the free surface from its equilibrium value,
being proportional to Ca, is small and hence the mass flux into
the contact line that features in (10) is determined primarily by
the value of vs there. This value increases as the inlet veloc-
ity Ū∗ goes up, thus increasing the mass flux into the forming
liquid–solid interface. In the process of dynamic wetting, the
liquid–solid interface near the contact line is generally ‘starv-
ing’ since it begins to form out of the liquid–gas interface that
moves into the contact line with the velocity lower than the ve-
locity of the solid substrate that drags the (solid-facing side of
the) liquid–solid interface out of the contact line and has a lower
equilibrium surface density than that of the liquid–solid inter-
face. Therefore, an increase in vs on the free surface due to an
increase in Ū∗ reduces ‘starvation’ of the liquid–solid interface,
i.e. the difference between its surface density at the contact line
and far away from it (Fig. 4). Then, according to the Young
equation (11), this leads to a decrease in the value of the dy-



430 A.V. Lukyanov, Y.D. Shikhmurzaev / Physics Letters A 358 (2006) 426–430
namic contact angle which acts as a mechanism balancing the
tangential forces acting on the contact line. In other words, an
increase in the mass flux into the contact line from the free sur-
face brings the surface density of the liquid–solid interface at
the contact line closer to its equilibrium value and hence drives
θd closer to θs .

Thus, for small capillary numbers the mechanism of the in-
fluence of the flow field on the dynamic contact angle is rela-
tively transparent: the contact angle responds to the influence of
the flow conditions on the tangential velocity of the free surface
near the contact line that controls the supply of mass for the for-
mation of the liquid–solid interface. An increase in vs reduces
‘starvation’ of the liquid–solid interface and hence the contact
angle, thus, using the terminology of [2], ‘assisting’ dynamic
wetting.

A key requirement for the above ‘hydrodynamic assist’ to
take place is that the length scale characterizing variations in
the flow field must be comparable with the surface-tension-
relaxation length. In our model, this condition is reflected in the
parameter ε which is exactly the ratio of the two lengths. Com-
putations show that, if the system as a whole is magnified (i.e.
h and H proportionally increase), the effect of ‘hydrodynamic
assist’ eventually disappears. (Formally, for a given system, the
magnitude of the effect can be attributed to one parameter, ε, by
eliminating h from β̄ , i.e. replacing it with εβ̄ . This parameter
would then be proportional to V 2 introduced in [6].)

A material-related factor that determines the magnitude of
the effect of ‘hydrodynamic assist’ is 1 − ρ̄s

1e = σ1e/(γρs
(0)),

which is essentially a measure of rarefaction of the interfacial
layer. The closer ρ̄s

1e is to 1, the smaller is the possible ampli-
tude of variation of the surface density, ρ̄s

2e − ρ̄s
1e, and hence

the stronger becomes the influence of changes in vs that re-
sult in variations of θd . This sensitivity of θd to 1 − ρ̄s

1e (i.e.
to σ1e/(γρs

(0))) could be used in experiments to investigate the
equation of state in the surface phase.
4. Conclusion

It has been shown that the theory of dynamic wetting as an
interface formation process predicts that, for a given contact-
line speed and materials of the system, the actual dynamic
contact angle θd depends on the flow field/geometry in the
vicinity of the moving contact line. This effect becomes more
pronounced as the ratio of the surface-tension-relaxation length
Uτ to the length scale characterizing variations in the (Stokes)
flow near the contact line due to changes in the flow conditions
increases. In the case of small (though finite) capillary num-
bers, the mechanism of the dependence of the dynamic contact
angle on the flow field can be explained in terms of the latter’s
influence on the tangential velocity of the free surface that de-
termines the mass flux into the contact line that goes into the
formation of a fresh liquid–solid interface. The magnitude of
response of the contact angle to the changes in the flow field
depends on the material constants specifying the equation of
state in the surface phase.
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