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ABSTRACT. An investigation has been made of the behaviour of fast electrons in toroidal discharges. The 
kinetic equation, describing the evolution of the fast particle distribution has been derived and analysed. A semi- 
analytical solution of the kinetic equation has been obtained in the superthermal energy region. The external 
electric field, turbulence, the non-uniformity of the mean magnetic field and collisions are shown to be important 
factors affecting the distribution function. The role of the ambipolar electric field has been established and 
identified as an essential factor in the process of fast electron diffusion. The strong influence of the density profile 
on the diffusion of fast particles is clearly demonstrated. A comparison has been made with experimental data 
obtained on the ZT-4OM device. Agreement with the results of these experiments is observed. 

1. INTRODUCTION 

Plasma confinement in toroidal devices is an impor- 
tant problem of thermonuclear fusion research. It is 
well known that various instabilities leading to dis- 
charge turbulization are readily excited in the plasma. 
Experiments have shown that electron heat conductiv- 
ity is several orders of magnitude higher than the limit 
predicted by neoclassical theory [l]. Such a strong 
energy transfer to a discharge wall is the main energy 
loss channel in toroidal systems. This is the reason 
why this problem is of great interest (see the review in 
Ref. [2]). 

The theory suggests two possible mechanisms of 
anomalous transport. One of these is due to the tur- 
bulence generated by potential electric field oscilla- 
tions caused by drift instabilities [3-61. The other 
mechanism is due to the turbulence induced by mag- 
netic fluctuations. When the threshold value is 
exceeded (determined by overlapping of mean reso- 
nance modes), magnetic field fluctuations lead to a 
stochastic wandering of the magnetic field lines about 
the discharge and, as a consequence, to a transport 
of particles moving along these field lines. The quali- 
tative picture of this phenomenon was first presented 
in [7] as a stochastic description of the diffusion of 
magnetic field lines. The theory of this mechanism of 
anomalous transport was later comprehensively stud- 
ied by many authors [8-121. According to the theory, 
the effective diffusion coefficient in the former mecha- 
nism is inversely proportional to the velocity of particle 
motion 

whereas in the latter case the particle diffusion coeffi- 
cient increases with increasing particle velocity 

(2) 
( b 2 )  

D l b  - Lcve 

The role of each of these mechanisms in the formation 
of the energy flux has not yet been finally established. 
Measurements of the excitation level in tokamaks have 
shown that the first type of transport mechanism dom- 
inates in the vicinity of the discharge boundary [13- 
161, while inside a discharge (where the level of the 
magnetic fluctuations is difficult to measure) the trans- 
port may be due to both excitation mechanisms. In 
pinch type devices with a reversed field, where the 
magnetic fluctuation level is two orders of magnitude 
greater than in tokamaks [17], transport due to large 
scale magnetic fluctuations is dominant [18]. 

Along with a thermal particle flux, there also exists 
a superthermal fast particle flux. Moreover, if the par- 
ticle lifetime in a discharge increases, the number of 
superthermal particles may increase appreciably. This 
effect is obviously of particular importance in devices 
in which the plasma is heated ohmically. One such 
device is a reversed field pinch (RFP) where, accord- 
ing to experimental data, a considerable part of the 
energy is transported by fast particles [19-211. 

To estimate the energy confinement efficiency in 
RFP type devices, it is necessary to determine the 
distribution function of fast particles in the discharge. 
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Furthermore, fast particles carry information on the 
processes proceeding inside the discharge and so the 
investigation of their distribution may be used to diag- 
nose the state of the plasma [19, 221. 

In [22], the authors formulated a consistent kinetic 
theory of anomalous transport processes in a turbu- 
lized plasma and derived the kinetic equation describ- 
ing the averaged particle distribution function under 
these conditions. The relaxed state of a turbulent 
plasma and the anomalous transport processes under 
RFP conditions were analysed in Refs [23, 241. Here we 
are considering the superthermal electron distribution 
function in an RFP. As has been mentioned above, 
anomalous transport due to magnetic fluctuations is 
predominant in an RFP. Therefore, the influence of 
this particular transport mechanism on the distribu- 
tion function of superthermal electrons will be our 
prime concern in what follows. The anomalous trans- 
port produces a strong effect on fast particles because 
the diffusion coefficient (2) grows linearly with increas- 
ing particle velocity. Another factor strongly affecting 
the electron distribution function is an electric field 
applied to the plasma. 

It is known that even a weak electric field applied 
to a plasma induces the formation of a tail of runaway 
electrons in the energy range above the critical value, 
E > E , ,  where 

and E ,  is the critical field [25, 261. In an RFP, the 
applied field is high, i.e. the ratio E / E c  is significantly 
larger than that in tokamaks, and therefore the distri- 
bution function distortion due to the action of the field 
E is much stronger. In addition to the vortex electric 
field applied to the plasma, a potential electric field, 
the so-called ‘ambipolar’ field, is generated in the dis- 
charge owing to the difference in the ion and electron 
diffusion coefficients. Producing an immediate effect 
upon fast electron diffusion, this field is responsible for 
the dependence between the ejection of fast electrons 
and the transport of the ion plasma component, which 
have typically been considered independently. On the 
other hand, as the number of fast particles increases, 
they themselves may start affecting the macroscopic 
state of the plasma, which is for example the case 
with convective transfer in a rippled field [27]. We 
shall not consider here the effects due to corrugation, 
but this role will be played by anomalous transport 
in a turbulent plasma. Thus, an examination of the 
electron distribution function is necessary for a correct 
self-consistent analysis of a macroscopic relaxed state. 

Besides the factors listed above, the distribution 
function is noticeably affected by inhomogeneity of the 
mean magnetic field and temperature. For example, 
non-uniformity in the electron temperature results in 
thermal runaway and the appearance of a hot particle 
tail in the cold plasma region [28]. 

It should be noted that the influence of anoma- 
lous transport in an RFP on the distribution func- 
tion of fast electrons was examined in Ref. [29], but 
the authors proceeded from the model kinetic equa- 
tion which neglects a number of essential factors affect- 
ing the distribution function. In particular, the effect 
of Coulomb collisions, a potential ambipolar field 
and inhomogeneity of the mean magnetic field were 
neglected. It is therefore necessary to investigate the 
superthermal electron distribution function more thor- 
oughly making allowance for the influence of all essen- 
tial factors. This is the goal of the present paper. In 
Section 2 we derive the master kinetic equation with 
account taken of the influence of the applied electric 
field, an anomalous diffusion, a potential ambipolar 
field, collisions and the magnetic field inhomogene- 
ity. The principal parameters determining the fast 
electron distribution function are discussed. Bearing 
in mind the complexity of the complete problem, at 
the beginning of Section 3 we analyse the distribution 
function of fast electrons in a homogeneous magnetic 
field. The strong influence of inhomogeneity in the 
electric field applied to plasma and the dependence 
of the electron diffusion rate on the thermal particle 
density profile are discussed. In Section 4 we investi- 
gate the influence of inhomogeneity in the mean mag- 
netic field upon the electron distribution function and 
demonstrate the substantial deformation of this func- 
tion. Finally, in Section 5 we estimate the influence of 
the indicated effects under specific RFP conditions and 
compare the theory developed with available experi- 
mental data. The results of experiments are seen to 
be in agreement with the theory. 

2. KINETIC EQUATION FOR SUPERTHERMAL 
ELECTRONS 

Let us consider a magnetized plasma with a mag- 
netic field B ( r )  which has regular Bo(r) and fluctu- 
ational b components. The amplitude of fluctuations 
will be assumed small compared to the mean field Bo, 
Ibj << IBol. The basic quantities characterizing the 
fluctuations (the correlation length and the correla- 
tion time) will be thought of as large compared to 
the Larmor radius of the particles and their inverse 
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gyrofrequencies as in [22]. Within such a statement of 
the problem and disregarding toroidality effects, the 
authors derived the general kinetic equation for the 
particle distribution function f ( r ,  U ,  b )  averaged over 
the ensemble of fluctuations. By virtue of the cylin- 
drical symmetry about the angle 0 and the direction 
z along the cylindrical axis, the function depends only 
on the radius r [23]: 

( 3 )  

where the collision integral of particles with fluctua- 
tions is given by 

2 dr  B 

Here, the ambipolar electric field 

eE,  = ($: + :$) (1 - 26,) 

due to the difference between the diffusion rates of 
electrons and ions, the constant 6, = JG << 1 
gives the correction related to the ion diffusion (assum- 
ing that the transport of ions is defined by magnetic 
fluctuations too), n ( r )  is the particle number density, 

00 

F = 1 dL(b,b:) 

is the correlation function of the fluctuations b,, the 
integration over L goes along the trajectory of particle 
motion, b: = br(r'(L), # ( L ) ,  z ' ( L ) ) ,  U is the particle 
velocity along the magnetic field line, f i  = u:/B is 
the adiabatic invariant of particle motion, E ,  is the 
external field, E ,  = Ee*h,  h = Bo/Bo, S t ( f )  is the 
particle Coulomb collision integral. 

In plasma heating devices, the number of fast par- 
ticles Nf is always small compared to the concentra- 
tion N of the main particles. That is why the kinetic 
equation (3) can be linearized in the small parameter 
Nf/N << 1. It is convenient to write Eq. ( 3 )  in a spher- 
ical co-ordinate system in velocity space E ,  p ,  where 
E = u2 + ~1 is the total energy and p = 
is the cosine of the pitch angle (below for brevity we 
use simply the pitch angle without the cosine). Lin- 

earizing, we obtain 

1 d  + ~ p S 2  --{TK) + { r B  dr 

d B  1 1 - p 2 d K  
dr B 2  2p d p  

- 

1 - p 2 d K  

( 4 )  

d B  1 l - p ' d f  
dr  B 2 p  d p  

- 

Here, E,(r) is the profile of the external longitudinal 
electric field normalized to the critical electron run- 
away field E ,  [25], 

4ze3An 
Te 

E ,  = ~ 

Z,ff is the effective ion charge, A is the Coulomb log- 
arithm, 61 = E,o/E, is the dimensionless parameter 
characterizing the magnitude of the longitudinal field 
EeO relative to the critical field E,, 6 2  = va/ug is 
a dimensionless parameter characterizing the particle 
fluctuation collision frequency 

U, = -d- Fmax Te 
a2Bg me 

as compared with the Coulomb collision frequency of 
electrons 

U0 = 

a is the characteristic system dimension and T ( T )  is the 
profile of the electron temperature normalized to the 
temperature at the centre T,. Furthermore, we have 
introduced the dimensionless quantities r = T / a ,  F = 

'T = vot; 61 and 6 2  are small parameters in the problem. 
In what follows we shall consider steady state solutions 
of Eq. (4)  to determine the established distribution 
function of superthermal particles. We shall assume 
the distribution function of the main particles in the 
plasma to be stationary and in equilibrium. In such a 
statement, it will be a source of superthermal plasma 
particles. As boundary conditions for the distribution 

47re4nA 
112 312 

m e  Te 

F /Fmax ,  B = B/Bo,  E ,  = Eaea/T,, E = Z/(Te/me) ,  
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function f it is natural to require that f be regular as 
r -+ 0 and that all the particles die on the boundary 
for r = 1, i.e. 

The investigation of the complete problem is diffi- 
cult because of the simultaneous action of such factors 
as the applied electric field E,, the anomalous diffu- 
sion and the inhomogeneity of the mean magnetic field. 
We shall therefore begin by examining the joint effect 
of the external electric field E,  and the fluctuations, 
assuming the magnetic field gradient to be small 

d B  a 
dr  B 

< 1  __ (5) 

and then proceed to the case of an inhomogeneous 
magnetic field B ( r ) .  

3. DISTRIBUTION FUNCTION OF 
SUPERTHERMAL ELECTRONS IN 

A HOMOGENEOUS MAGNETIC FIELD 

Provided that condition (5) is satisfied, Eq. (4) has 
the form 

112 may estimate the critical value of energy Yk,  y = d1  
when the temperature profile will relax to the homo- 
geneous one, 

where a is the scale of the system and Lljc is the cor- 
relation length of fluctuations along a magnetic field 
line. As usual, 

a - << 1 
LIIC 

and we assume that 

Yk << 1 (8) 

And therefore, in accordance with (8), in Eq. (6) 
we have put T, = const and for the sake of simplicity 
Ti = const, because the ion temperature profile con- 
tributes only to a correction term in the ambipolar 
field. So, as can be seen, the inhomogeneity of the 
electron temperature contributes only to the ambipo- 
lar field. 

3.1. Behaviour of the solution 
in the polynomial region 

dT a < 6, __ 1 8  + € P 6 2  -- { , rB d r  

Equation (6) describes the established distribution 
function of electrons in the presence of the field E,  
and plasma turbulence. The method of solving Eq. (6) 
depends on the energy range within which we seek the 
solution. Therefore we shall first examine the energy 
range immediately adjoining the equilibrium region, 
which is henceforth referred to as a polynomial region 
of solution 

1 5  € 5 6;1'2, 61 << 1 (7) 

We shall not consider here the thermal runaway of 
particles [28, 301. According to the results of [30] one 

To begin with, we consider the case of a constant 
field E e ( r )  = const. We intend at first to clarify the 
effects of the ambipolar field, that 

and neglect the contribution from the temperature 
gradient in the ambipolar field. In Eq. (6) we transfer 
to a new variable y = ~6:'~ and seek the solution as 
a series of eigenfunctions of the Sturm-Liouville prob- 
lem 

Z 
As the boundary condition for y + 0 we require con- 
tinuity with the equilibrium distribution function 

f o  = c n(r)exp(-y/S:l2) 

n(r)lT=l = 0 
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Substituting (10) into (6) and collecting terms with 
the same power 6:12 in the zeroth approximation, we 
obtain 90 = y / 2 .  In the next order of perturbation 
theory, neglecting corrections of the order of 6, << 1 
in the expression for the ambipolar field (6), we obtain 
a system of equations for the functions R l ( y ,  p )  

with the boundary conditions as y + 0 

Ro(0, P) = 1, &(O, P )  = 0, 1 # 0 
where = 62/61. Since the zero eigenvalue of the prob- 
lem (9) 170 = 0, for the function Ro(y ,  p )  we obtain an 
equation containing no contribution from anomalous 
diffusion, and it will have a solution similar to the one 
obtained in Ref. [25], where the distribution function 
was distorted only by the electric field E ,  and had 
a directed character for p N 1 (Fig. 1, the dashed 
line). The solution of the system (11) for 1 # 0, which 
satisfies the boundary conditions (because for 1 # 0 
all the eigenvalues 171 > 0 are nonnegative), will be 

112 &(y,  p )  = 0. So, up to terms of the order of 6, 
(terms of the order of 6:126, << 1 and 61 << 1 are 

neglected) the initial equilibrium distribution function 
f o  will not be distorted by anomalous transport. This 
means, as is readily seen, that the contribution from 
the anomalous diffusion is completely compensated by 
the ambipolar field Ea in exactly the same way as in 
the case of diffusion of thermal plasma particles. As 
is well known, electrons and ions diffuse together as a 
single whole with a doubled ion diffusion coefficient, 
which in our case is 6, times smaller than the elec- 
tron one (provided that the predominant ion diffusion 
mechanism is also an anomalous transport caused by 
magnetic fluctuations). 

To determine the distortion of the distribution func- 
tion by anomalous transport, we have to examine the 
solution of Eq. (6) with allowance for terms of the 
order of 6:126, and 61, which under certain conditions 
(to be discussed below) become appreciable. Now we 
are in a position to consider the case where the para- 
meter 6, satisfies the condition 6, >> 6:12. This 
means that we shall take into account the contribu- 
tion from the anomalous diffusion, proportional to the 
anomalous ion diffusion coefficient. 

With allowance for corrections of the order of S,, it 
is convenient to seek the solution of Eq. (6) as before 
in the form of an eigenfunction series of the Sturm- 
Liouville problem 

Sllr=l = 0 

f = c exP(-@0/6:J2) &(r)Ol(Y, P )  

4.1 = C A l S l  

(13) 
1 

1 

with the boundary condition as y + 0 

@do,  P) = A1 (14) 

In order that we might transfer to a system of ordi- 
nary differential equations, it is also convenient to 
expand the functions Ol (y ,  p )  in a power series of Leg- 
endre polynomials P m ( p ) :  

p i t c h  angle P o~(Y,  P )  = C FY(Y)Pm(pL) (15) 
m 

FIG. 1 .  The  dependences of the fast  particle distribution func- 
t ion o n  the pitch angle p in the polynomial area of solution under 
various parameters p, y = 8 ,  r = 0.5.  The  dashed line is  the 
solution obtained in [85] with p = 0. 

Substituting (13) into (6) with account taken of 
(15), we ultimately arrive at a system of linking equa- 
tions for the functions Flm(y) ,  90 = y / 2 :  
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(m  + I)F?+' 
2 m + 3  + 

with boundary conditions 

FF(0) = Ai 

Flm(0) = 0, 
where 

m # 0 

1 

-1 
Y m n  = ( 2 m  + 1) / P m P n l p l d p ,  P = 61/62 

The system of equations (16) is solved numerically 
by cutting off the chain of equations on the term L in 
the expansion in g1 and on the term M in the expan- 
sion in Pm, so that a doubling of L and M changes the 
solution by less than 10%. Clearly, strong distribution 
function distortions by anomalous transport will take 
place only when the parameter A = 2PAm6, is of the 
order of unity A N 1, where A, is the maximum eigen- 
value corresponding to the eigenfunctions g1 ( T )  which 
contribute to the expansion (14). The smallest distor- 
tions may be expected in the case n ( r )  = g o ( r ) .  

We are examining the behaviour of the system (16) 
in the model case F = const, when the eigenfunc- 
tions of the problem (12) are the Bessel functions 
g l ( r )  = J o ( & T ) .  We begin with examining the case 
n ( r )  = g o ( T ) .  The solution of the system (16) depend- 
ing on the pitch angle p and the energy y is presented 
in Figs 1 and 2. Figure 1 shows solutions obtained for 
various values of the parameter /3. For small P, when 
A << 1 and the effect of the electric field E ,  domi- 
nates, the solution is close to that obtained in [25] (the 
dashed line in Fig. 1).  As increases, the influence of 
the anomalous transport (when A 2 1) becomes pre- 
dominant. In this case the solution becomes almost 
symmetric in p .  As expected, it is concentrated in the 
vicinity of p = 0, where the diffusion coefficient ( 2 )  
vanishes and falls symmetrically for p +- f l ,  where 
the diffusion coefficient is maximal. Depending on the 
energy (Fig. 2 ) ,  the distribution function falls expo- 
nentially ln(f/fo) N -Aoy2, where A0 = 26mPAo (A0 

is a non-zero eigenvalue of the problem (12)). The 
function f ,  which is shown in Fig. 2 ,  was averaged 
over p .  

"! $:: 7- 0.0 0.5 1 .o 1.5 2.0 Y 2.5 

e n e r g y (  a .  u .) 
FIG. 2. The dependences of the fast particle distribution func- 
tion En(f/ fo) averaged over p on energy y i n  the polynomial s o h -  
tion area: (1) n(r) = go(r), T(r) = const, Ee(r) = const; (2) i n  
case of non-uni fom electric field n(r) = go(r), T(r) = const; 
(3) n(r) = ii(r), plot ii(r) is shown in Fig. 3, T(r) = const, 
E,(r) = const; (4)  E,(r) = const, n(r) = go(r), T(r) = 1 - r'. 
p = 0.3, r = 0 . 5 .  

It should be emphasized that the initial distribu- 
tion over the discharge n ( r )  will not be significantly 
deformed. 

We shall now see what will happen if as the ini- 
tial profile n ( ~ )  we choose an arbitrary function h ( r )  
such that the expansion (14) will involve (and with 
a substantial contribution) harmonics with 1 # 0, as 
is shown in Fig. 3. The harmonics with eigenvalues 
A1 >> A0 should be expected to damp faster than the 
zero component does already for y < 1. As a result, 
the distribution over the discharge will rather rapidly 
relax to g o ( r ) ,  which will immediately lead to viola- 
tion of the balance between the ambipolar field and 
anomalous diffusion. In this case, an effective increase 
of the diffusion rate may be expected. Indeed, Fig. 3 
shows that the distribution over discharge radius for 
y = 1, obtained in the solution of the system (16) with 
the profile n ( ~ )  = h ( ~ ) ,  is almost coincident with g o ( r )  
(dashed line in the same figure). On the other hand, 
Fig. 2 presents the dependences obtained for one and 
the same value of ,B for n ( ~ )  = g ( r )  and the profile 
n ( r )  = h ( ~ )  depicted in Fig. 3. It is seen that in the 
latter case the decrement is considerably larger, which 
testifies to an effective increase of the diffusion rate. 
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rad ius  r 

FIG. 3. T h e  distribution over the discharge of the init ial  densi ty  
profile fi(r), the  distribution func t ion  f(r) at y = 1 ,  obtained in 
solving the sy s t em (16) and the eigenfunct ion of the  problem 
(12) (dashed l ine).  

The result that was obtained permits us to conclude 
that the rate and character of the diffusion (and as a 
consequence the loss of energy due to the diffusion of 
fast particles) essentially depend on the mean particle 
density profile. The minimum loss will be when n ( r )  = 

The density profile in a device TI(.) is defined by 
many factors: anomalous transport, neutral parti- 
cle flow from the chamber wall and external sources, 
accelerated ion injection and convective transport pro- 
cesses. So by means of injection, for example, one may 
drive the profile n ( r )  and thus the process of fast par- 
ticle transport. 

The result obtained suggests that the compensa- 
tion of anomalous transport by an ambipolar field is a 
consequence of equilibrium in the leading term of the 
electron distribution function, that is Qo(y) = y/2 ,  
and the absence of distortion of the initial electron 
distribution n(.). As shown above, the strict bal- 
ance is violated by the anomalous transport itself when 
n ( r )  # go(.). In the presence of an electric field such 
a balance will also be violated for y >> 1 since accord- 
ing to  I251 the electric field E ,  induces strong devi- 
ations of the electron distribution from equilibrium. 
We may point out another mechanism of balance vio- 
lation already for 0 < y < 1, namely, inhomogeneity 

go(.)* 

of the applied field Ee(r)  which in this case plays the 
role of a fast particle source which is non-uniform in 
space (note that it is exactly the case realized in an 
RFP).  We shall consider the solution of Eq. (6) in the 
polynomial region using the methods presented above. 
As before, we put F = const. Figure 2 presents the 
dependence of the distribution function ln(f/fo) on 
the energy y for one and the same value of the para- 
meter p and .(.) = go(.) in two cases: (a) for 
E = const and (b) for E,(.) = Jo(nor ) ,  no = 3.0 
(such a profile is close to the one observed in an RFP 
discharge). It can be readily seen that in case (b) the 
fall of the distribution function with energy is much 
higher than in case (a),  which shows an acceleration 
of the diffusion process. It is noteworthy that the 
electron temperature inhomogeneity (which we do not 
consider here) will obviously play a role similar to that 
played by the inhomogeneity of the external field E,(.) 
and will also lead to a violation of strict balance (see 
Fig. 2) .  

We have assumed above that 6, >> 6:12, and the 
correction of the order of 6,6:12 has led to strong 
distortion of the distribution function when A 2 1. 

112 Clearly, in the converse case, that is when 6, << 6, , 
there will be an analogous process which is not distinct 
qualitatively from the one investigated above apart 
from the fact that in this case the role of the parameter 
A will be played by the parameter A1 = 2gX,6:12. As 
a result, as before for A1 N 1 the distribution function 
will relax rapidly to the profile go(.). 

Thus we have completely investigated the behaviour 
of the solution of Eq. (6) in the polynomial region. 
We have found that in the special case where the 
profile TI(.) is chosen in the form n ( r )  = g o ( r )  and 
the external field Ee is homogeneous, the ambipolar 
field E ,  completely damps the anomalous transport of 
fast electrons with an accuracy of 6, << 1, so that 
the effective diffusion is determined by the parame- 
ter A or A I ,  which is substantially smaller than pX0, 

A << PAD. On the other hand, such a strict balance 
in the higher order terms of the expansion may be 
violated if n ( ~ )  # go(.) or the external field E ,  and 
temperature T ( T )  are inhomogeneous. We note that 
the latter always takes place in an RFP. An essential 
result here is the fact that for A > 1 (or A1 > 1) 
the distribution function of fast particles over the dis- 
charge relaxes with increasing energy to the universal 
profile g o ( r )  independently of the initial distribution. 
This fact will simplify appreciably our analysis in the 
remaining part of this section, where we consider the 
energy range y >> 1. 
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3.2. Behaviour of the solution 
in the exponential region 

We shall now consider the domain of the solution 
for high energy values E >> 6-lI2, where S = 61, 62. 

The distortions of the distribution function in this 
domain are known to be of an exponential character 
[26]. Therefore, a polynomial expansion is not effective 
here. As we have seen above, in practice for E >> 6-'12, 
the distribution function of fast electrons over the dis- 
charge is coincident with the zero eigenfunction go(r) 
of the problem (12). Therefore, in this energy range, in 
the expansion of the distribution function it is natural 
to make allowance only for terms containing go(.): 

f = c E91 exp(-Qd (17) 
1 

Let us consider the case E, = 0. We shall transfer 
to a new variable z = 662 and represent 9 as 

9 = 90/S' + 9 1 / 6 y 2  + 9 2  + . . . (18) 

Substituting (17) and (18) into (6) and collecting 
terms with the same powers of 6i1', we obtain the 
system of equations 

- = o  8QO 

("a":), 4 ( z ) 2 - 2 x + T ( 1 - p  890 zeff ) - 

- zlpl  {Xo+B (2)') = O  

From (19) it follows that 90 = @lo(.), and (20) holds 
identically. From the condition of the absence of a 
jump in the derivative 8 Q / 8 p  for p = 0 there follows 
a natural condition (in view of the symmetry under a 
substitution of p for -,LL in (6) for E, = 0) 

!E~ = o  
8 P  p.=O 

Taking into consideration this condition, as well as 
the fact that 90 = 9 0 ( z ) ,  from Eq. (21) for p = 0 we 
obtain 

9 0 ( z )  = z /2  

Substituting the expression found for Q o ( z )  back into 
(21), we obtain the equation for determining 9 1 ( z ,  p )  

where AT, = X O  + B / 4  is an effective eigenvalue with 
account taken of the influence of the ambipolar field 
E,. From (22) we see, 
expansion obtained is 
0 because the second 
singularity. Indeed, 

8'9 
dl.L2-+Oo 

however, that the asymptotical 
violated in the vicinity of p = 
derivative a 2 9 / 8 p '  contains a 

as p -+ 0, which indicates the presence of a boundary 
layer near p = 0. To obtain a correct expansion, it is 
necessary to investigate the behaviour of the solution 
in the vicinity of p = 0. To this end, the small term 
with a second derivative ( 8 2 9 / a p 2 ) S ~ i '  in Eq. (21) 
should be retained. Omitting terms of the order of p 2  
as p -+ 0 in (21) and making the substitution 91 = 
-ln(0)6iI2, we arrive at  the Airy equation 

q ( z )  = { 4 ( 3 2  - 2 2 }  

A* = Xo + B (K) 890 

(23) 

I 1 0 00 , , I  I I I  I ,  , , ,m ,  , , < I  I ,  I , < ,  I > , I , ,  I I I I ?  I I I I ,  I p 
-4.00 -3.00 -2.00 -1.00 0.00 1.00 2 00 

(0 < 
FIG. 4. The solutzon of Eq. (23) as a functzon of 6 .  
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Equation (23) has two linearly independent funda- 
mental solutions, one of which grows exponentially as 
( -+ 03 and may be discarded for being limited. The 
other solution 0 = CoAi ( ( )  is shown in Fig. 4, where 
( 0  is the point where the function 0 and Q1 has an 
extremum, 

8Ql 

a P  

Then from the condition 

-- - 0  

3~ = o  
aCL p=O 

we obtain an additional relation that allows us to 
determine the function Q o ( z )  

In the general case, to find Q o ( z )  it is necessary to 
solve the non-linear equation (24), but for z << 6,' 
expanding Eq. (24) in the small parameter 62 we 
obtain 

A: = A0 + B / 4  

Taking into account (25), we may determine the angu- 
lar dependence of the distribution function 

Ql(PL,  z )  

= 6 \1 Z { A * ( ~ ) ~ I ~ I  - Itolzeff 1 1 3 ~ * ( ~ ) 2 / 3  1 3  '2 113 I d p  

+ W z )  (26) 

zeff(1- p2) 

where $1(z)  is an unknown function. As p -+ 0, it is 
necessary to match (26) with the solution of Eq. (23) to 
find the constant CO. It is readily seen that as 62 + 0, 
(25) transforms into Q o ( z )  = ,712 and (26) into (22). 
As z + 0, the solution found here must pass over to 
the solution obtained in the polynomial region. Fig- 
ure 5 shows the dependences of the distribution func- 
tion on the pitch angle in the polynomial region for 
y > 1 and the solution obtained in the exponential 
region when z -+ 0. Good agreement between the two 
solutions can be seen. The solution obtained by us 
shows that the leading term of the asymptotic expan- 
sion for 62 -+ 0 is close to equilibrium, and deviations 
from it occur only for z N 6,'. This result is in close 
agreement with the results of the direct numerical sim- 
ulations [31] carried out for tokamak conditions in the 
absence of an applied electric field E,  and the experi- 

ments [32, 331. It should be noted that the role of an 
ambipolar field in this range of energy values comes 
down to renormalization of the eigenvalue A0 which 
determines the anomalous transport, namely the effec- 
tive eigenvalue with allowance for the influence of the 
ambipolar field E ,  will be A; = A0 + B / 4 ,  A; < A0 

since B < 0. That is, as expected, the ambipolar field 
E ,  damps the anomalous transport of fast electrons. 
It is clear that this effect is important when the effec- 
tive temperature of the fast electrons is of the order 
of the equilibrium temperature at the centre of the 
discharge. 

The field E ,  also affects the behaviour of the distri- 
bution function in the far region of energy values as 
z -+ 03. So, when B # 0 one can readily obtain an 
asymptotical expression for @lo(.) as z -+ 03: 

Q o ( z )  = ZdAOIB 

At the same time when B = 0 and z -+ 03, from (24) 
we have 

i.e. in the absence of the ambipolar field E ,  the dis- 
tribution function falls more strongly with energy. 

, , , , , , , ,  
0 

1 .o 1.5 9 0'1.5 - i . O  -0.5 0.0 0.5 
p i t c h  angle  P 

FIG. 5. T h e  fas t  electron distribution f u n c t i o n  f l f o  as  a func t ion  
of p in the absence of a n  applied electric field E,. T h e  solid line 
is  the polynomial solution at y > 1 and the dashed l ine i s  the 
exponential  solution a t  z = y6;" << I .  
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We shall now consider the case with a non-zero 
external field E,. As in the previous case in the expan- 
sion (17), we shall take into account only the contri- 
bution from the terms go(r). In Eq. (6) we transfer to 
a new variable z = €61 and represent the index of the 
exponential in (17) in the form 

9 = 9 0 / 6 1  + 91/6y2 + 92 + . . . (27) 

Substituting (27) into (6) and collecting terms with 
the same powers 6:/2, we obtain a chain of connected 
equations for the functions 90, 91, 9 2 ,  . . .: 

- = 0  890  
a P  

Integrating (33), we arrive at  

9 0 ( z )  = - - E z  
BP 

dl + a l z  + a222 
BP 

- (8a2 + alBP)ln(al  + 2a2z + 2Ja2dl-t a lz  + a2z2)  
2JazB2P2 

(34) 

(28) a1 = 4PXo - 2E; a2 = E' - P2XoB 

Taking into consideration (33), we obtain from (30) 

It should be noted that (35) holds for 
2 dQldQ2 

P I---- 
a P  8 P  @ { A 0  + B/4)  < E (36) 

a90 891 In this case, the solution will not have a singularity for 

P 62/61; X * ( Z )  = Xo + B - 

From the first equation (28) it follows that 90 = 
9 0 ( z ) .  Given this, Eq. (29) holds automatically. 
Then, in the absence of a singularity for p = 1, from 
(30) we obtain the equation with the help of which we 
may determine 90: 

890 
8 Z  - z P X * ( Z )  + 2 z E  - = 0 (32) 

This implies 

p = 1. After substitution of (35) into (31), provided 
that there is no singularity for p = 1, the unknown 
function *I(.) may be determined: 

91(z) = &(-1/Jz+ 1) 

The expressions (34), (35) and (37) determine in 
the exponential approximation the dependence of the 
distribution function in the exponential region on the 
energy and the pitch angle p .  As z --f 0, the solu- 
tion obtained must coincide with the solution in the 
polynomial region for y > 1. Figure 6 shows the two 
solutions; they are seen to be almost coincident. 

To establish the asymptotic behaviour of the distri- 
bution function as z ---f 00, we represent the index of 
the exponential in (17) in the form 

9 = 9 0 2  + 91+. . . 

90 = po/61 + (Pl/6:'2 + 'p2 f., . (38) 

z = €61 
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0 i + ' t i l c i '  ' ' i 4 1 ' 8 4 1  ( b / I i ( 4 a '  I " I I i ) 1 8  1 a ( I 1 4 i ' 4  * i ' ' a ' q '  'r11.5 -11.0 -6.5 0.b 0.; 1.b 1% 
p i t ch  angle P 

FIG. 6. The fast  electron distribution funct ion f l f o  as a funct ion 
of p with a n  applied electric field E, present. The  solid line is  
the polynomial solution at y > 1 and the dashed line is  the 
exponential solution at z = y6:" <( I .  

Substituting (38) into (6) with allowance for (17), 
keeping terms of the order of z and collecting terms 
with the same powers 6:12, we obtain the system of 
equations for PO, cp1, . . .: 

- = o  8PO 
all 

(39) 

+ 2 p E a  + (1 - 

where /3 = 62/61, and B and E are similar to (30), 
whence PO = const. Then in the absence of singularity 
for p = 1 we have from (41): 

E2 - P2XoB - E 
-PB 

(43) 

Knowing PO from (41), we obtain 

acp1 - = o ,  p > o  
ap  

pi = const, p > 0 

where $1 is an unknown constant. Then in the absence 
of a singularity we find from (42) for p = 1 that $1 = 0. 

The expressions (43) and (45) determine the asymp- 
totic behaviour of the distribution function for Ee(r) # 
0 as z --+ ca. It can be readily seen that in the limit 
z + 00, (34) goes over to (43) and (35) to (45). So, 
the solution (34), (35) in the exponential approxima- 
tion describes the particle distribution in the entire 
range of energy values for z > 6:12. It should be 
noted that the asymptotic expression for the distribu- 
tion function for z + 00 (43), (45) holds also under the 
condition inverse to (36), but this asymptote is appar- 
ently not described by the simple expansion (17). The 
solution obtained in this section describes completely 
the distribution function of fast particles in the pres- 
ence of an external field E, and anomalous diffusion in 
a homogeneous magnetic field. We have investigated 
here a rather general case in the model assumption 
F = const. In Section 5 we shall analyse the distri- 
butions of fast electrons under specific experimental 
conditions, and we now proceed to the question of the 
influence of an inhomogeneity in the mean magnetic 
field. 

4. DISTRIBUTION FUNCTION O F  FAST 
PARTICLES IN THE PRESENCE OF A 

FINITE MAGNETIC FIELD GRADIENT 

We are now ready to consider the influence pro- 
duced by an inhomogeneous magnetic field on the 
fast electron distribution function. From the point 
of view of physics, the occurrence of terms propor- 
tional to the magnetic field gradient in the kinetic 
equation (3) is associated with maintaining the adia- 
batic invariant u t / B ( r )  = const upon a diffusion par- 
ticle motion along a discharge. In this case, particle 

NUCLEAR FUSION, Vol. 35, NO. 7 (1995) 837 



GUREVICH et al. 

Lo t 

( 3 )  

FIG. 7. The dependences of the fast electron distribution func- 
tion, averaged over p ,  ln( f l f0)  on energy y with a finite mean 
magnetic field gradient present: (1)  dBldr  > 0 ,  (2) dB/dr  = 0 ,  
(3) dBldr < 0 .  r = 0.95. 

0. 

0 

0. 

0 

0.2 0.4 0.6 0.8 
9 
0.0 

energy  ( 0 . u )  

FIG. 8. The dependences of the fast electron distribution func- 
tion l n ( f l f 0 )  on longitudinal (solid line) and transverse (dashed 
line) energy, in the presence of a finite mean magnetic field gra- 
dient: (1) dBldr  > 0 ,  (2) dB/dr  = 0 ,  (3) dBldr  < 0 .  r = 0.95. 

...... .. .. 

1 

FIG. 9. The dependences of the fast electron distribution f l fo on p at various posi- 
tions over the radius; dBldr  < 0 .  

diffusion is responsible for a particle energy redistri- 
bution from the transverse degree of freedom to the 
longitudinal one and vice versa, depending on the sign 
of the derivative dB/dr .  Since on average particles 
move from the centre to the periphery of a discharge, 
in the case d B l d r  < 0 part of the transverse par- 
ticle energy is transferred into the longitudinal par- 
ticle energy and conversely in the case d B l d r  > 0. 

Such dynamics must in turn affect the diffusion pro- 
cess itself. Indeed, if the number of particles with high 
longitudinal energy increases (when d B l d r  < 0) or 
on the contrary decreases (when dBldr  > 0), then 
because the anomalous diffusion coefficient (2) is pro- 
portional to the longitudinal velocity, the diffusion rate 
will respectively either increase or decrease. 
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Let us consider the stationary solution of Eq. (3) 
in the range 1 I E I S-lI2, where S = 61, 62. So as 
not to complicate the picture, we put the external field 
E,(r) = 0. In order to obtain the solution, we shall 
use the technique we applied in the solution of Eq. (6) 
in this range, i.e. the polynomial expansion (13). The 
function F ( r )  will put F = const, and n( r )  = go(r) 
of the problem (12). Figure 7 shows the dependences 
of the distribution of fast electrons obtained in the 
solution of Eq. (6) depending on the electron energy y 
in two cases: dB/dr  > 0 and dB/dr  < 0. The figure 
also presents for comparison the result for dB/dr  = 
0. As expected, the greatest decrement of ln(f/fo) 
appears in the case dB/dr  < 0, and the smallest in 
the case dB/dr  > 0. It would also be of interest to 
trace the behaviour of the solution obtained depending 
on the longitudinal ui and the transverse ut energies. 
In Fig. 8 we can see the dependences of ln(f/fo) on 
the transverse and the longitudinal particle energies 
in the cases dB/dr  < 0, dB/dr  > 0 and dB/dr  = 
0. We see that both for dB/dr  = 0 and dB/dr  > 0 
there exists anisotropy in the particle distribution over 
transverse and longitudinal energy, so that T_L > Til. 
However, for dB/dr  < 0 the anisotropy changes sign 
and then TI. < Til, which is naturally connected with 
a substantial energy redistribution from the transverse 
degree of freedom into the longitudinal one. This effect 
is most clearly pronounced in the dependence of the 
distribution function on the pitch angle p (Fig. 9), 
which differs substantially from that obtained in the 
case dB/dr  = 0 (Fig. 1). The fall in the centre (for 
p N 0) in Fig. 9 and the appearance of maxima near 
p N 1 is just due to particle efflux from the region 
p N 0 towards the region p N 1. 

5. BEHAVIOUR OF THE DISTRIBUTION 
FUNCTION OF FAST ELECTRONS IN RFP 

In the preceding sections of the paper we have anal- 
ysed the influence of various factors on the distribu- 
tion function of fast particles. It should be noted here 
that just in RFP discharges the contribution from each 
of them will be substantial because all of them are 
present in this type of device. An RFP discharge pos- 
sesses a force free magnetic configuration with compo- 
nents of the mean magnetic field (the toroidal B,(r) 
and poloidal Bs(r)) which are of the same order of 
magnitude and are determined by one and the same 
parameter 0 = 27raI/Ql where I is the total current, 
a is the small radius of the torus and Q is the total 
toroidal magnetic field flux. Magnetic field compo- 

?I 
ai 1 

radius, r (a.u.) 
FIG. 10. The radial distribution of magnetic field components 
along the minor radius. 

nents are well enough described by Bessel functions of 
the form 

B,(r) = BoJo(20r) 

Be(r) = BoJl (20r )  (46) 

see Fig. 10 [34]. So, the scale of the magnetic field 
gradient in an RFP will be of the order of the small 
radius a of the torus: 
d B  a 
dr B 

Since the plasma in an RFP is heated in an ohmic 
way, there is a rather strong longitudinal electric field 
E ,  in the discharge. Since the applied electric field 
E = Ee ,  is toroidal, its projection E e ( r )  onto a mag- 
netic field line is described by the relation 

- 1  __ 

(47) 

From (47) it becomes clear that the applied field is 
strongly inhomogeneous in the space. 

Direct measurements of the distribu- 
tion of superthermal electrons in the steady state of an 
RFP were carried out on ZT-40M devices [19, 35-37]. 
For comparison with the theory, we shall consider the 
experimental data obtained in [35]. Performed in the 
experiment were direct measurements of the energy 
distribution of fast electrons in the near-boundary 
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region of a discharge with a temperature Tw N 20 eV 
near the boundary and TO N 220 eV in the centre of the 
discharge. The characteristic value of the parameter 
is 0 = 1.4. Observations were carried out for parti- 
cles of energy up to 1.5 keV. Against the background 
of a cold plasma with a temperature Tw N 20 eV, 
there was a tail of energetic electrons which were mov- 
ing in the direction of the magnetic field and had a 
Maxwellian distribution with characteristic tempera- 
ture T1 N 530 eV and a particle flux that moved 
backward and had a temperature T2 N 330 eV. An 
anisotropy in the distribution of particles in longitudi- 
nal and transverse energies was observed, the tempera- 
ture being TI  < Til. Under the conditions of the exper- 
iment described above, the parameters 61, 62  of our 
problem were 61 = 0.21, 62  = 0.036 for TO = 220 eV, 
n = 2.4 x 1013 cmP3, E, = 10 V/m and the amplitude 
of fluctuations lb/BI N 1%, 

The solution we obtained in Section 3 (Eqs (34), 
(35) and (37)) gives qualitative agreement with exper- 
iment: an exponential distribution of particles in 
energy and anisotropy in the particle distribution over 
the forward and backward directions along magnetic 
field lines. 

An important comparison with experimental data 
is given by modelling the superthermal electron cur- 
rent I,,,, collected by the electrostatic energy analyser 
(EEA), as a function of the applied retarding potential 
V. The current is related to the electron distribution 
function f ( r ,  p ,  E )  by the expression 

Ieea(r, V)  0: 1; Lm f ( T ,  p ,  E)vldvlvlldvll (48) 
where 

U 0  = 4 2 e v / m e  

Figure 11 shows the dependences of the current Ieea 

calculated by Eqs (34), (35), (37) and (48) for the 
given values of the parameters 61 and 62 for parti- 
cles travelling along the direction of the magnetic field 
and in the reverse direction. The profile of the corre- 
lation function F ( r )  shown in Fig. 12 was taken from 
Ref. [35]. The graph of the zero eigenfunction of the 
problem (12) go(r)  for a given F ( r )  is shown in Fig. 13, 
where A0 = 1.2. The profile n ( r )  was chosen in the 
form n ( r )  = go(r)  and T ( T )  = 1 - r2.  The calculated 
current Ieea was normalized to the experimental value. 
The absolute value of Ieea seems to be rather uncer- 
tain because of a lack of information on the correlation 
function near the boundary. 

Figure 11 testifies to not only qualitative agree- 
ment between the theory and experiment (Maxwellian 
distribution and anisotropy observed in the distri- 
bution of particles travelling in the direction of the 
magnetic field and backward) but also to quantita- 
tive agreement. Thus, the characteristic temperature 

1 

, 
\ 

\ 
\ 
\ 
\ 
\ 

\ 
\ 
\ 
\ , 

\ 

7- - 
200 400 600 800 1000 i200 1400 '600 

r e t o r d i n s  potential 01) 
FIG. 11. Comparzson of theoretzcal versus experzmental current 
I,,,, collected by a n  electron energy analyser as  a functzon of the 
retardzng potentzal V f o r  the case of ZT-dOM. The solzd lane 2s 
for  partzcles movzng along the magnetzc field lane and the dashed 
lane f o r  partzcles movzng backward. The  experzmental data are 
shown by labels 

4T""'"' I ' ' ' , I I ' '  " ~ ' ' ' ' ' ~  r" , ,-I 
B.0 0.2 Q.k Q.k 0.b 1.0 1.2 

radius, r (a.u.) 
FIG. 12. Correlation funct ion of fluctuations in a n  RFP. 
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radius, r (a.u.) 
FIG. 13. Eigenfunction of the problem (18) for  the correlation 
function depicted in Fig. 12. 

L .Gj 
t:' q L 

.- 
U '  

2 0.0 1 400.0 800.0 1600.0 

ene rgy  (evj200-o 
FIG. 14. The dependences of the fast electron distribution func- 
t ion ln( f )  on  longitudinal (solid line) and transverse (dashed 
line) energies for  particles moving along the magnetic field line; 
p = 0.17, 61 = 0.81, 62 = 0.036. 

T P  for particles moving along the magnetic field is 
T Y  = 526 eV. But for particles moving in the back- 
ward direction Tieor = 183 eV, i.e. it is less than the 
experimental value. The backward flowing component 
of fast electrons is seen to be much smaller than the 

forward one (less than 10%). This value is also close 
to the experimental observations [35]. 

The behaviour of the distribution of fast electrons in 
longitudinal and transverse energies is shown in Fig. 14 
for the parameters mentioned above. In this case for 
particles moving along the magnetic field line 2'1 < 2'1; 
Til = 513 eV, TI  = 385 eV. 

6. SUMMARY 

In the entire energy range above thermal energies, 
we have constructed the solution of the kinetic equa- 
tion describing the distribution function of fast parti- 
cles in the presence of an external electric field, col- 
lisions and anomalous diffusion due to magnetic fluc- 
tuations. The ambipolar electric field resulting from 
the difference in the ion and electron diffusion rates is 
shown to play an essential role in the process of diffu- 
sion and to be responsible for the fact that the char- 
acter of the diffusion depends strongly on the density 
profile of the main plasma particles and on the profile 
of an external electric field applied to the plasma. The 
influence of inhomogeneity in the magnetic field of a 
discharge upon the fast particle distribution function 
is investigated. The analysis performed suggests that 
the magnetic field inhomogeneity is an important fac- 
tor affecting the fast particle distribution function. In 
the polynomial region of energy values, which is an 
immediate neighbour of the thermal region, the semi- 
analytical solution is constructed with allowance for all 
the factors mentioned above. On the basis of a com- 
parison with experimental data we have shown that 
the theory describes the basic details of the distribu- 
tion function of fast particles. We have referred our 
analysis mainly to the case of RFP discharges, but the 
results obtained in the absence of a strong electric field 
seem to be closely connected with anomalous process 
in tokamak discharges. 
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