INTRODUCTION TO GENSTAT 10
FOR WINDOWS

The University of Reading

Statistical Services Centre
1. GenStat basics ... 1

2. Data Input and Manipulation .. 1
 2.1 Starting GenStat 10th Edition .. 1
 2.2 Data input ... 3
 2.3 Some basic data manipulation ... 11
 2.4 Factor Columns ... 19
 2.5 Understanding how GenStat works ... 25

3. Simple statistical inference .. 29
 3.1 The use of boxplots ... 29
 3.2 Comparisons of means ... 31
 3.3 References ... 33

4. Simple regression .. 34
 4.1 Setting up the data ... 34
 4.2 Correlation and regression ... 36
 4.3 A GenStat tutorial .. 38
1. **GenStat basics**

The aim of this introductory tutorial is for the user to become familiar with the basic operations of GenStat for Windows.

In this guide, we sometimes assume a user already has experience of Excel. We show how data entered into Excel can be analysed with GenStat and also how data from GenStat can be saved as an Excel file.

Users who are not familiar with Excel should omit these sections. Experience with Excel is not necessary for using GenStat.

2. **Data Input and Manipulation**

2.1 **Starting GenStat 10th Edition**

You start GenStat within Windows on a PC by clicking on the GenStat icon on the desktop or toolbar, or by selecting “GenStat executable”, from the Programs Menu. If no GenStat icon is available on the desktop, you can create one yourself by using Windows Explorer to select the subfolder Gen10Ed\bin (By default, GenStat is installed in the folder C:\Program Files\Gen10ed). Right click with the mouse on GenStat.exe and create a shortcut. This shortcut can now be dragged onto the desktop. You might rename the icon on the desktop (right click and click ‘rename’) as GenStat 10th Edition, to avoid confusion with previous versions.

If you are using a University of Reading networked machine on campus (for example in one of the computer laboratories or in the main library) you should instead click the start button located in the bottom left corner of the screen and then click ‘all programs’, and select the menu sequence Statistics → GenStat 10th Edition → GenStat 10. With this menu sequence highlighted right-click with the mouse and select ‘create shortcut’ from the list of options.

![GenStat Icon](Image)

After starting GenStat, you see a standard Windows interface with a title bar, menu bar, tool bar, status bar and several windows, **Fig. 2.1a**. The Output window will contain the output from the operations we perform. The input log keeps a record of what has been done in an analysis. Many of the menus are standard for Windows applications. Only Run, Data, Spread, Graphics and Stats are GenStat-specific.
Fig. 2.1a GenStat Windows

Fig. 2.1b shows an example of the interface after a spreadsheet has been opened and summary statistics have been requested.

Fig. 2.1b Windows ⇒ Tile Vertical
2.2 Data input

2.2.1 Data input using the Spread Menu

⇒ We show two ways to enter data into GenStat. The first is within GenStat. Choose Spread ⇒ New ⇒ Create. (see Fig. 2.2a)

⇒ Choosing Create brings up a box allowing you to specify how many data columns you want, and how many rows of data there will be. Edit the box to make a GenStat spreadsheet with 11 rows and 2 columns as shown in Fig. 2.2b.

Fig. 2.2a Spread ⇒ New ⇒ Create

Different types of spreadsheet can be made, but the default (i.e. what GenStat will select in the absence of further information) - Vector - is usually the type you will need.

⇒ Click [OK], and an empty spreadsheet will appear. You can start to enter data by clicking in a cell in the spreadsheet. Type the number, and then press the [Enter] key. Enter the following numbers into the first column:

1330 2094 1851 1470 1557 1932 1184 2452 1347 1792 1488

⇒ Press the [Enter] key after the last number. The cursor will then move to the top of the next column. Enter these numbers into the second column:

120 161 150 142 152 155 126 183 132 167 149

Make sure that you press the [Enter] key after typing the final number. The resulting sheet is shown in Fig. 2.2c. If you have made any mistakes, these can be easily corrected, using the arrow keys to move to the cell to amend and entering the correct value.

For each row, the value in the first column is the annual rainfall total, and the value in the second column is the number rain days. It is helpful to give the columns more meaningful names than the default C1, C2, etc.

⇒ To give a name, position the cursor as shown Fig. 2.2c. It becomes a pencil, rather than a hand, and clicking on the mouse gives a popup screen where you can type the name for the column, as shown in Fig. 2.2d. Then press [OK].
Once you have given column C1 the name *total*, repeat with C2 with the name *raindays*. These names now appear on the columns of the spreadsheet.
2.2.2 Organising the Windows

It is useful to decide how you wish to use the different windows in GenStat.

⇒ Use **Window ⇒ Tile Vertically** to give the layout with the three Windows namely the Output, the Input Log and the Spreadsheet. This is roughly as shown earlier in *Fig. 2.1b*.

These windows indicate one difference between most statistics packages, like GenStat, and spreadsheets, like Excel. With a spreadsheet you have effectively one type of window within which you can have your data and results.

In GenStat you have one window for your data and this is called the spreadsheet. It does not include any results.

You have a separate window, called output, for the results.

You also have here a third window called the Input Log, see *Fig. 2.1b*. This keeps a record of what you have done.

⇒ Now minimize the Input Log and then use **Window ⇒ Tile Vertically** again (or press <Shift><F4>) to give the layout roughly as in *Fig. 2.2e*.

Fig. 2.2e Windows ⇒ Tile vertically (with Input Log minimised)

⇒ Now try maximizing the output window, and then reducing it to its half size again.

⇒ Then use **Window ⇒ Tile Horizontally**.

Which layout of the windows do you prefer?
2.2.3 Saving the file

⇒ With the spreadsheet window active, use File ⇒ Save As and save the file as cmtut1.gsh, as shown in Fig. 2.2f.

Fig. 2.2f File ⇒ Save As

⇒ Use Run ⇒ Restart Session, so you are ready to try the second way of entering data. It will warn you, as shown in Fig. 2.2h, but persevere by clicking on ‘Yes’.

Fig. 2.2g Run ⇒ Restart

If you are not experienced in computing, or if you are not familiar with Excel, then go to Section 2.3.
2.2.4 Data input from Excel worksheets

This section assumes you are familiar with Excel. If not, or if you are using different spreadsheet software, then omit this section and go to Section 2.3.

Most of your data is probably entered already, in a database or in a spreadsheet like Excel. Importing data into GenStat is easy.
⇒ Minimize GenStat and go into Excel.
We assume you are now in Excel.
⇒ Create a new Excel workbook and enter the same data as earlier, see Fig. 2.2i. In the cells above the data, you can enter the names for the columns: ‘total’ and ‘raindays’.

![Fig. 2.2i Data entry in Excel](image)

⇒ Save your Excel workbook and give it the name cmtut1.xls. You have now finished with Excel, so minimize Excel and go back to GenStat.
⇒ In GenStat, choose File ⇒ Open and select the Input file. Indicate that the file to import is of the ’Other Spreadsheet Files’ type as shown in Fig. 2.2j.

![Fig. 2.2j Look for Excel file](image) ![Fig. 2.2k Use first sheet](image)
In the next window (Fig. 2.2k), you can select which worksheet of the workbook you want to import. In this case Sheet 1 is what you want, so just click Next, then Finish, to import the data into a GenStat spreadsheet.

In this example the data were easy to import, because the Excel sheet only included what was to be imported. To import any set of data equally easily, into GenStat, from Excel, you can define a named range in Excel.

Go back into Excel and add a line or two of description as shown in Fig. 2.2l. Then, in Excel, highlight the range containing the data and the header row and choose Insert ⇒ Name ⇒ Define, see Fig. 2.2m.

Give the range a name, for instance Data, as shown in Fig. 2.2n. Then save the Excel file and minimize Excel.

⇒

![Fig. 2.2l Excel file with description](image1)

![Fig. 2.2m Defining a name in Excel](image2)

![Fig. 2.2n Specifying the name of the range as “Data”](image3)
Go back to GenStat and restart the session by selecting Run ⇒ Restart Session and then clicking Yes, to clear all windows, dialogue boxes and the spreadsheet. When you now reopen the file cmutil1.xls, you are able to select the range Data as shown in Fig. 2.20. The R:Data in Fig. 2.20 signifies that you are using a named range. Click Next, then Finish, to import the data into a GenStat spreadsheet.

An alternative way of transferring the data is to copy a range of cells from Excel and paste it into GenStat. This is not considered good practice in data management, but is a fast and easy way of data transfer for a quick provisional analyses.

To show this way, choose Run ⇒ Restart Session to clear all data out of GenStat. Go back into Excel. Highlight the range containing the data and column headers and choose Edit ⇒ Copy, or right click with the mouse in this range and click Copy. Now the data are loaded into the Windows clipboard. Go back to GenStat and choose Spread ⇒ New ⇒ From Clipboard, see Fig. 2.2p and the data are entered into a GenStat spreadsheet.
2.2.5 Advanced data input

It is also possible to import data from other file formats or to create links with other files. More information can be found in the full version of this guide.

2.2.6 Leaving GenStat

⇒ To end a GenStat session, choose File ⇒ Exit. You will be asked if you want to save any of the open windows or spreadsheets. Select [Yes] to save the spreadsheet, but [No] for the other windows, and exit GenStat.

As well as showing you how to enter data into GenStat, you have seen how easy it is to transfer data from another package, such as Excel. So, if you are already familiar with a spreadsheet or another statistical package, using GenStat does not have to stop you from using other software. You can use GenStat in addition. We will show examples from Excel spreadsheets at various points in this guide.
2.3 Some basic data manipulation

2.3.1 Summary statistics

⇒ Restart the session and reopen the file cmtut1.gsh. The data in the spreadsheet are passed into the GenStat server as soon as you click anywhere outside the spreadsheet or the spreadsheet menu.

⇒ Try doing this by clicking in the output window.

Some summary information about the two columns total and raindays will appear in the output window showing minimum, mean and maximum values, number of values and number of those that are missing. What are the values of these summaries for the two variates total and raindays?

⇒ For further statistical summaries use the Stats menu, as shown below. Choose Stats ⇒ Summary Statistics ⇒ Summarize Contents of Variates. Select the variates required in the resulting dialogue shown in Fig. 2.3b, and then click [Run].

Fig. 2.3a Choosing the dialogue

Fig 2.3b Selecting the columns

⇒ Select the Output Window. If you cannot see this window, try clicking the or buttons in the tool bar successively until it appears. Some of the results are shown in Fig. 2.3c. There are other statistics available within the same dialogue box.
Fig. 2.3c The results

Summary statistics for rain days

- Number of observations: 11
- Number of missing values: 0
- Mean: 146.8
- Median: 150.0
- Minimum: 120.0
- Maximum: 183.0
- Lower quartile: 134.5
- Upper quartile: 159.5

Summary statistics for total

- Number of observations: 11
- Number of missing values: 0
- Mean: 1882
- Median: 1657
- Minimum: 1184
- Maximum: 2482
- Lower quartile: 1378
- Upper quartile: 1912

Find the Summarize Contents of Variates dialogue again. Click on the button at the bottom right of the dialogue to clear all currently selected statistics. Reselect the variables and choose Arithmetic Mean and Standard Deviation. Click on [More Statistics...] and select Standard Error of Mean, and click [OK]. Click [Run]. You will notice the output now includes the standard error of the mean.

Use Graphics ⇒ 2D Scatter Plot and complete the dialogue box as shown in Fig. 2.3e. Click [Finish] to produce the graph shown in Fig. 2.3f.

Fig. 2.3d Choosing the scatter plot dialogue

Fig. 2.3e Specifying the y and x
The relationship between the total rainfall and the number of rain days is as follows:

\[\text{Fig. 2.3f The graph is in its own window} \]

\[\text{Fig. 2.3f The graph is in its own window} \]

⇒ Close the graph window with File ⇒ Exit (choosing [No] to the question about saving the graph).

Since Genstat version 8, there is a new button which toggles between [Run] and [Cancel]. If the button is in the sideways position [Run], clicking on [Run] will run your analysis and close the dialogue box. If the button is in the upward position [Cancel], the dialogue box will be kept open so it can be used again. In this position, if you want to close the dialogue box, you could click on [Cancel], or click on the cross at the top right hand corner of the dialogue box.

In the position [Cancel], it is quite easy to get a large number of windows and dialogue boxes open at the same time, so it can be quite hard to find the one for which you are looking.

Clicking the [Run] or [Cancel] buttons in the tool bar can help find the one you want. Alternatively, to find a particular dialogue or menu box, just repeat the menu commands that opened it (e.g. Graphics ⇒ 2D Scatter Plot) as this will bring back the box complete with anything that had been previously entered. It is a good idea to close a box by clicking [Cancel], as soon as it is no longer required.
2.3.2 Calculating and formatting columns

It is easy to calculate new variates from those already entered. In this example, it would be interesting to find the mean rain per rainday in each year. This is simplest to do within the spreadsheet.

⇒ First, the spreadsheet needs to be selected. Do this, either by clicking somewhere in it (if you can see it), or use the toolbar arrow buttons or the {Window} menu, as shown in Fig. 2.3g.

![Fig. 2.3g Selecting the spreadsheet](image)

⇒ To calculate a new column, choose {Spread} ⇒ {Calculate} ⇒ {Column} as shown in Fig. 2.3h.

![Fig. 2.3h Choosing the calculate dialogue](image)

⇒ Complete the box as shown in Fig. 2.3i. The calculation can either be typed into the top box, or you can use the mouse to click on the operator buttons and double click on the variates as required.
Fig. 2.3i Giving the formula

Type the name of the new column into the bottom box labelled **Save Result In**, Fig. 2.3i. Then click [Run]. Click [Cancel] after this to remove the dialogue box.

There is now a new variate, called *meanperday*, added to the spreadsheet, as shown in **Fig. 2.3j**, which holds the 11 values of the mean rain per rain day. The name is part shaded (in yellow on a colour screen) to indicate that the column *meanperday* is a calculated column.

⇒ To illustrate the difference between an ordinary and a calculated column, try to change a value in the *meanperday* column. GenStat gives a warning, see **Fig. 2.3k**.

Thus GenStat's spreadsheet is a little like an ordinary spreadsheet in that it records the calculation, rather than just doing the transformation. If you change a value in the original column, the derived values do not, however, change automatically. You could then use **Spread** ⇒ **Calculate** ⇒ **Recalculate**, to update the derived values.
Fig. 2.3 I Commands to keep a record of your work

You may have noticed that commands have been appearing in the Input Log as you work. This is a record of what you have done, written in the GenStat command language. You can re-run any of these commands with the Run menu, or copy them into a new window to make a program.

To understand for instance what has happened within GenStat when you did the last calculations, we have shown the input log in the figure above. There you see, in the first line, that the spreadsheet generated a command that was executed by the GenStat Server. The next line shows that the results were then passed back to the spreadsheet. (Ignore the large number there, 23646792, which may well be different when you run the commands. It is an internal reference number so GenStat knows which spreadsheet contains the new column.)

Calculations will normally be done in a spreadsheet as above. Once you become experienced in using GenStat, you could alternatively do calculations only in the GenStat server, using the Data ⇒ Calculations menu, rather than the Spread ⇒ Calculate ⇒ Column route that you used above. The result is the same to the GenStat Server, but you would not automatically see the calculated column in a spreadsheet.

In the spreadsheet, each value of meanperday is displayed with the same number of significant digits. This may lead to a variable number of decimal places across the different values in the column.

⇒ You can change this with Spread ⇒ Column ⇒ Attributes/Format. Fig. 2.3m. Make sure that you select meanperday in the column box. A faster way is to right-click in the meanperday column and to choose the Column Attributes option. The same Column Attributes Dialogue Window will appear.

⇒ Type ‘1’ in the Decimals box Fig. 2.3n, and check that Fixed is now the Numeric Format. You will now observe that meanperday appears in the spreadsheet with just one decimal place. You may also wish to enter a concise explanation of the contents of the column in the Description box. Click [OK] to effect the change.
Now assume that these data values in your spreadsheet came from 11 years in order. It would be useful to have this information entered too.

⇒ Make your spreadsheet active and click in the first column (total) of the spreadsheet. Choose \textit{Spread} \Rightarrow \textit{Insert} \Rightarrow \textit{Column before Current Column}. This gives a dialogue box called \textit{Create a new column} as shown in \textit{Fig. 2.3o}.

⇒ Type year in the name box and click on \texttt{OK}. A new column will appear in the spreadsheet filled with missing values (denoted by *) as in \textit{Fig. 2.3p}. You could now type in the numbers 1 to 11, or the real years, if they are known, but there is a quicker way to fill in regular sequences.
Right click in the Spreadsheet and choose **Fill** from the popup menu as shown in Fig. 2.3p or choose **Spread ⇒ Calculate ⇒ Fill**. In the Fill dialogue, shown in Fig. 2.3q, make sure that year is in the top box. Clicking [OK] will fill year with the numbers 1 to 11. **Fill** can also be used to make patterned sequences.

Details of the use of this, or any other dialogue, can be found by clicking the [Help] button in the dialogue box. An example is given in Fig. 2.3r.

Try plotting the mean per day against the year as a line graph. Use **Graphics ⇒ 2D Line Plot ⇒ SingleXY** type with meanperday as the Y and year as the X. Click [Finish].

Now investigate the graph. What is the year with the lowest mean? Is there any obvious pattern?

Remember to close the graph with **File ⇒ Exit** or by clicking on the cross at the top right of the graph.
2.4 Factor Columns

2.4.1 Introducing factors

So far, all the information entered into GenStat has been numerical. It is possible to include textual information as well. One structure that accepts this kind of information is a factor. This is a special column used to indicate groups in the data.

Four years in the data set used in the previous sections were El Nino years, the second, third, eighth and tenth. The remaining years were ordinary years. So we will make a factor with two groups or levels, and here, one is labelled E and the other O.

⇒ Click in the first column of the spreadsheet (year) and choose Spread ⇒ Insert ⇒ Column after Current Column. Give the name type into the Name box, and click to select Factor under Column Type in Fig. 2.4a. The dialogue will change to let you specify the number of factor levels.

![Fig. 2.4a Spread ⇒ Insert ⇒ Column](image)

⇒ Specify that the factor has 2 levels and then click on the [Labels] button. The dialogue shown in Fig. 2.4b appears. Type 'E' and press the [Enter] key. The next level (2) will become selected. Type 'O', press [Enter] and then click [OK] to make the changes take effect.

![Fig. 2.4b Add labels to the factor](image)

![Fig. 2.4c Entry of data](image)
⇒ Click [OK] in the Create a new column dialogue, as shown in Fig. 2.4a to make the new column, which contains empty cells.

⇒ Now type the following values into the new column, as shown in Fig. 2.4c.

O E E O O O E O E O

If you make a mistake by typing lower case 'e' instead of an upper case 'E', GenStat will turn it into an upper case 'E'; if you type the wrong letter, GenStat will give you a message and ask you to retype your entry. Double clicking gives a pop-up menu, as shown above (Fig 2.4c), which lists the allowable levels.

⇒ The factor column can be used to label a graph. Choose Graphics ⇒ 2D Scatter Plot... Fill in the boxes as in Fig. 2.4d, including the Select Grouping Factor: box.

⇒ Click [Next] and in the dialogue corresponding to Lines and Symbols, request a X Cross as the symbol for Plot1 - Group1 and a O Circle for Plot1 - Group2. Click [Finish] to produce the graph shown in Fig. 2.4e.

Fig. 2.4d Graphics ⇒ Point Plot
By using the **Edit ⇒ Edit Graph** once you have the graph, or by double clicking on the graph, you can choose to edit the Axes key or graph symbols. If you wish, you could try producing a different layout to that above. Edit facilities can be used to modify the layout of the graph until it is ready for reporting or publishing.

Graphs can be saved in different formats by choosing **File ⇒ Save as** see Fig. 2.4f. They can be read into WORD using the menu sequence **Insert ⇒ Picture ⇒ From File...** in WORD.

You leave the GenStat Graphics Window by choosing **File ⇒ Exit** from the menu bar.

Back in the spreadsheet, the column called **type** can be modified to display longer labels.

⇒ Select the **type** column in the spreadsheet. Right click and choose **Column Attributes**. Click the [Labels] button, and edit the labels (to be *El Nino* and *Other*), making sure that you press [Enter] after typing each new label. Click [OK] twice when you have finished, and the labels in the variety column should now be modified.

Alternatively, the full labels could have been entered when the factor was first created. You would still have been able to enter the values into the column by typing E or O only, the first letter of the labels.
Earlier, you used **Stats ⇒ Summary Statistics ⇒ Summarise Contents of Variates** to give some summaries of the data. Now, with the data in two groups, it is useful to give the summaries for each group individually. The dialogue used earlier can be used for this, but a more general alternative is:

⇒ **Stats ⇒ Summary Statistics ⇒ Summaries of Groups (Tabulation), Fig. 2.4g.**

Fig. 2.4g Stats ⇒ Summary ⇒ Tabulation

![Figure 2.4g Stats ⇒ Summary ⇒ Tabulation](image)

⇒ Complete the dialogue as shown and press **[Run]**. The results are shown in **Fig. 2.4h** in the Output Window.

2.4.2 Saving data

Before continuing, save the spreadsheet.

⇒ Choose **File ⇒ Save as**. By default, a Window appears suggesting you save the data as a **GenStat spreadsheet** (*.gsh). A wide range of other file formats is also available.

Fig. 2.4i File ⇒ Save As, then change to Excel

![Figure 2.4i File ⇒ Save As, then change to Excel](image)
In Section 2.2 we showed how data could be imported from an Excel worksheet or could be entered directly in GenStat using the Spread menu. In Section 2.2.4 we had imported the file cmtut1.xls from Excel and have modified it. If you change the format in the figure above, and specify an Excel file then, when you try to save, you get a warning message.

Fig. 2.4j GenStat warning that the original file will be replaced

"Save Spreadsheet [cmtut1.xls] As"

C:\Documents and Settings\sno07app\My Documents\Genstat\data2\cmtut1.xls already exists. Do you want to replace it?

Yes No

2.4.3 Deleting data

In this section we will delete the column, called meanperday, that has been generated. We also show the difference between deleting a whole column and deleting its contents.

- First select the column meanperday. Then click in the name field (or press `<ALT>`<Ctrl>C, or use Spread ⇒ Select ⇒ Current Column). Clicking again will deselect the column. Practice selecting and deselecting columns. Finishing with the meanperday column selected.

- Once selected, you might think that the <Delete> key should delete the column. Press the <Delete> key. It deletes (as expected) just the data. The column remains! Use Edit ⇒ Undo Del Cells to get the column back.

- What you need to do is to delete the whole column. The column should still be selected. Use Spread ⇒ Delete ⇒ Current Column. You can also select one or more rows and delete them in the same way.
2.4.4 Available variables

You can check which variables are currently available to the GenStat server using Data ⇒ Display or pressing the F5 key, see Fig. 2.4k and Fig. 2.4l.

This lists the names of the structures and their types. All structures used so far are variates (meanperday, raindays, total and year) and factors (type), but later on you will use other types of columns too. This is also a useful dialogue box from which you can delete columns when they are no longer needed.

Click [Close] to close the Display dialogue box.
2.5 Understanding how GenStat works

2.5.1 A first introduction to the GenStat command language

Although in Chapter 2.1, we mentioned that GenStat is basically a standard Windows application, the truth is a bit more complex. Before the Windows version you could use GenStat as long as you knew the "language". You simply typed commands, which you submitted to GenStat.

GenStat 10th Edition is indeed a Windows application, but the menus are based on an underlying command language. You can still use GenStat by typing commands in a new Text Window as we show now. At the same time, we show how GenStat may be used as a calculator.

⇒ Restart GenStat. Use File ⇒ New and choose the Text Window. Fig. 2.5a. This gives you an Input Window. In this window, type Print 3+4 as shown in Fig. 2.5b.

⇒ Now select the Run menu as shown in Fig. 2.5c. You can choose either Submit Line (if the cursor is still on the line you typed) or Submit Window. Choose one of these.
You have now submitted your "program" of commands to the GenStat server. The results are put in the Output Window, see Fig. 2.5d.

You can go to the output window in various ways, e.g. by using the Windows menu. There you see that GenStat normally "echoes" the command and shows you that 3+4=7.

An alternative to typing the command is to use the Data menu Data ⇒ Calculations, see Fig. 2.5e. This gives the dialogue shown in Fig. 2.5f.

Then type \(3 + 4 \) as the function, click on Print in Output and then on [Run]. If you look in the Output window (Fig. 2.5g), you see that 3 + 4 still equals 7!
The Input Log Window is also useful. It keeps a record of all the commands you have submitted. Access it by **Window ⇒ Input Log**. You see that the use of the Calculation menu has resulted in GenStat preparing the commands *PRINT 3+4* for you and has submitted them to the GenStat server.

So, that is how GenStat works. You prepare commands, which are submitted to the GenStat server. The Windows version has simply given you a variety of ways to prepare the commands for GenStat. GenStat obeys the commands and puts the results in the **Output Window**. It keeps a record in the Input Log Window.

If the commands produce graphs, then GenStat puts the graphs in a **Graphics Window**. If you make a mistake in the command, it prints an error message in the **Event Log Window** (and in the Output Window).

The example above (3 + 4 = 7) indicates that GenStat may be used as a simple calculator. This is worth a little practice. It is useful to have a scientific calculator. Also it is sometimes useful to transform data.

For example, if you want to calculate the difference between 4.35 and 2.37 expressed as a percentage of 4.35, open the calculator with **Data ⇒ Calculations**, check that **Print in Output** is still ticked and type the following calculation in the top box:

\[
100 \times (4.35 - 2.37) / 4.35
\]

⇒ Click [Run]. This will give the following in the output window:

\[
(100 \times (4.35 - 2.37))/ 4.35
\]

i.e. the difference is 45.52% of 4.35.

It is important that the brackets () are included where appropriate to make sure that the calculation you are trying to do has only one meaning.

The symbols +, -, *, / are used for the operations of addition, subtraction, multiplication and division respectively and ** is used for powers. There are also various mathematical functions available. One is for calculating the square root of a number. The function is `SQRT()`, where the number whose square root is required is given in the parenthesis, for example `SQRT(12.37)`. **Fig. 2.5i** gives an overview of how to perform some calculations by using the Input Window. More information can be found in the GenStat Help file under ‘Calculations and manipulations’, accessed via **Help** on the tool bar, viewing **Contents and Index**, and then clicking on **GenStat Command Language**.
Try more calculations to see how all this works, using both an **Input window** and the **Data ⇒ Calculations** dialogue box. Some examples are given below.

Fig. 2.5i Some basic calculations using the Input Window

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Operation</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>addition</td>
<td>PRINT 3+4</td>
<td>7.000</td>
</tr>
<tr>
<td>-</td>
<td>subtraction</td>
<td>PRINT 3-4</td>
<td>-1.000</td>
</tr>
<tr>
<td>*</td>
<td>product</td>
<td>PRINT 3*4</td>
<td>12.00</td>
</tr>
<tr>
<td>/</td>
<td>division</td>
<td>PRINT 3/4</td>
<td>0.7500</td>
</tr>
<tr>
<td>**</td>
<td>exponentiation</td>
<td>PRINT 3**4</td>
<td>81.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Operation</th>
<th>Example</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQRT(x)</td>
<td>Square root</td>
<td>PRINT SQRT(4)</td>
<td>2.00</td>
</tr>
<tr>
<td>EXP(x)</td>
<td>Exponential function</td>
<td>PRINT EXP(1)</td>
<td>2.718</td>
</tr>
<tr>
<td>LOG(x)</td>
<td>natural logarithm of x, for x > 0</td>
<td>PRINT LOG(2.718)</td>
<td>0.9999</td>
</tr>
<tr>
<td>LOG10(x)</td>
<td>logarithm to base 10 of x, for x > 0</td>
<td>PRINT LOG10(10)</td>
<td>1.000</td>
</tr>
<tr>
<td>ROUND(x)</td>
<td>rounds the values of x to the nearest integer.</td>
<td>PRINT ROUND(1.2345678)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Other examples

- PRINT (1/2) 0.5000
- PRINT (100*(4.35 -2.37))/4.35 45.52

2.5.2 Server sessions

After the above calculations, the Input and Output Windows look a mess. All the data can be cleared out of the GenStat server with **Data ⇒ Clear All Data** or **Run ⇒ Restart Session**. Less drastically, you can ‘clean up’ the output window by clicking the ‘Clear Output’ button (🗑️) in the toolbar.
3. Simple statistical inference

In the analysis so far, we have just considered descriptive statistics. Thus we have summarised the data numerically and drawn graphs. In this example, we introduce ideas of simple statistical inference. We take an example from *Mead, Curnow and Hasted*, (2003) pages 33-34 and 38-39. This compares wheat yields for 6 farmers where there was a new system of giving agroclimatic advice, compared to 10 farmers, who used standard information. The yields, in tons per hectare, were as follows:

new: 2.5 2.1 2.4 2.0 2.6 2.2

standard: 2.2 1.9 1.8 2.1 1.7 2.3 2.0 1.7 2.2

3.1 The use of boxplots

⇒ Because these columns are of different lengths, they are entered into two separate spreadsheets. For the first set, use Spread ⇒ New ⇒ Create as shown earlier in Chapter 2.2.1. Set it to have 1 column of 6 rows, enter the data as shown in *Fig. 3.1a* and give the column the name new.

⇒ Save the spreadsheet, giving it the name cmtut2.gsh (see Chapter 2.3.4 if you need instructions on saving). Then use Spread ⇒ new ⇒ Create again. Change the number of rows to 10 and enter the second set of data into this other spreadsheet, naming the column as standard, see *Fig. 3.1b*. Save the spreadsheet, giving it the name cmtut3.gsh.

⇒ One way to present the data is to use a boxplot. Use Graphics ⇒ Boxplot, complete the dialogue as shown in *Fig. 3.1c* and click [Finish]. This gives the display shown in *Fig. 3.1d*.
One use of boxplots is to show outliers.

⇒ Go back to the spreadsheet, insert a value of 2.9 instead of 2.0 for the 8th value in the Standard group and re-do your boxplot. The general shape of the graph is the same, but the odd value is indicated as deserving close scrutiny.

⇒ There are two ways of displaying the boxplot. Use Graphics ⇒ Boxplot and click [Next]. You can now choose between two types: Box and Whisker, Fig. 3.1f and Schematic, Fig. 3.1g. Try both, as shown below. The advantage of a schematic boxplot is that you can easily discover outliers.

Fig. 3.1f Box and Whisker plot
In a Box and Whisker boxplot, the ends of the whiskers mark the minimum and maximum values of the data set, in a schematic boxplot they mark the ‘upper and lower inner fences’. The upper inner fence is defined as the upper quartile plus 1.5 times the interquartile range, or the maximum value if that is smaller. The lower fence is defined similarly.

Extreme values between 1.5 and 3 times the interquartile range (plus the upper or minus the lower quartile) are by default marked as green crosses. More extreme values (more than 3 times the above mentioned range) are marked as red crosses.

⇒ If you made this change, then set the edited value back to 2.0, in the spreadsheet before continuing.

3.2 Comparisons of means

⇒ Simple comparisons of the means of two different samples can be made with Stats ⇒ Statistical Tests ⇒ One and two sample t-tests. Complete the dialogues as shown in Fig. 3.2a and 3.2b. The [Options] button in Fig. 3.2a gives the dialogue in Fig. 3.2b, but keep this unchanged for this example. Click [OK], then [Run].

The output window shows the results, see Fig. 3.2c.
3.2.1 Some more data manipulation: appending spreadsheets

In the 2-sample example that was used for the t-test, the data were put into separate spreadsheets. Data often need re-organising before analysis. This step is illustrated here by joining the data together for the two sets. Fig. 3.2f shows what we are aiming for.
What we wish to do is to append the data from the two columns and add a further column that specifies from which set each observation has come.

⇒ If the spreadsheets are no longer in GenStat then they will have to be opened. They were saved earlier with the names `cmtut2.gsh` and `cmtut3.gsh`, see Fig. 3.2d and 3.2e.

⇒ Click in the shorter spreadsheet `cmtut2.gsh`, so it is the active window. Use **Spread ⇒ Manipulate ⇒ Append** and complete the dialogue as shown in Fig. 3.2g. This appends `cmtut3.gsh` to the data in `cmtut2.gsh` and adds the information for a factor that distinguishes between the two groups. Press **[OK]**.

Fig. 3.2g Spread ⇒ Manipulate ⇒ Append (with cmtut2.gsh as the active window)

The layout of the data shown in Fig. 3.2f is more common and is used in most of the remainder of this guide.

⇒ Rename the column `new` in the long spreadsheet to `yield`.

⇒ Use **File ⇒ Save As** to save the spreadsheet, giving it the name `cmtut4.gsh`.

3.3 References

4. Simple regression

4.1 Setting up the data

We now introduce some key elements of data analysis, by means of simple regression. This example is taken from pages 178 - 181 of Mead, Curnow and Hasted (2003).

⇒ Use Run ⇒ Restart Session to start a new job. Accept the option [Yes] to proceed.

⇒ Use Spread ⇒ New ⇒ Create and make a spreadsheet with 2 columns and 17 rows as shown in Fig. 4.1d.
⇒ Enter the data and name the two columns as shown in Fig. 4.1e: (See page 3 for instructions on naming columns, if necessary). Save the data giving the file the name cmtut5.gsh. Click outside the spreadsheet to transfer the data to the GenStat server. This gives some summary statistics for each of the two columns.

⇒ Choose **Stats** ⇒ **Summary Statistics** ⇒ **Summarize Contents of Variates** and specify some summary statistics as described in Section 2.3.1.

Fig. 4.1e Regression data

Fig. 4.1f Produce some descriptive statistics

⇒ Choose **Graphics** ⇒ **2D Scatter Plot...** and complete the dialogue as shown in Fig. 4.1g to give the scatterplot.
4.2 Correlation and regression

Choose **Stats** ⇒ **Summary Statistics** ⇒ **Correlations** and complete the dialogue as shown in **Fig. 4.2a** to give the correlation between *uptake* and *conc*. You should find a value of 0.9836.

Choose **Stats** ⇒ **Regression Analysis** ⇒ **Linear models**, **Fig. 4.2b**, and complete the dialogue as shown in **Fig. 4.2c**.
Look at the results shown at the bottom of the Output Window (as in Fig. 4.2d below). The estimate of \(-2.043\) for the Constant is the intercept of the line. The estimate of \(0.02494\) for conc is the slope of the line fitted to the data when uptake is plotted against conc.

Thus these results show that the fitted equation is:

\[
\text{uptake} = -2.043 + (0.02494 \times \text{conc})
\]

A teaching session on Regression Analysis, which includes procedures for checking model assumptions, will help you to understand this output.

The key point is that this example should have shown it is easy to “do statistics” once you have become familiar with the use of dialogues in GenStat. This allows training courses to concentrate on statistical concepts. The computing has become easy.
4.3 A GenStat tutorial

GenStat includes its own tutorials as part of the software. Use Help ⇒ Tutorials and try the one called Linear Regression. If you find it helpful then try some of the other tutorials.