Computing the Spectra and Pseudospectra of Band-Dominated Operators

Simon Chandler-Wilde

January 2024, DAMTP, Cambridge

This talk is based on joint work, see https://arxiv.org/abs/2401.03984, with

- Marko Lindner, TU Hamburg, Germany
- Ratchanikorn Chonchaiya, King Mongkut's University of Technology, Thailand
and supported by Marie Curie Grants of the European Union.

Question. Given a bounded linear operator A on a Hilbert space E, can we construct a sequence of compact sets $U_{n} \subset \mathbb{C}$ with

- (i) $\operatorname{Spec} A \subset U_{n}$ for each n;
- (ii) $U_{n} \rightarrow \operatorname{Spec} A$ as $n \rightarrow \infty$ (Hausdorff convergence);
- (iii) each U_{n} can be computed in finitely many operations?

Question. Given a bounded linear operator A on a Hilbert space E, can we construct a sequence of compact sets $U_{n} \subset \mathbb{C}$ with

- (i) $\operatorname{Spec} A \subset U_{n}$ for each n;
- (ii) $U_{n} \rightarrow \operatorname{Spec} A$ as $n \rightarrow \infty$ (Hausdorff convergence);
- (iii) each U_{n} can be computed in finitely many operations?

Answer. A qualified yes, if the matrix representation of A, with respect to some orthonormal sequence, is banded or band-dominated.

Question. Given a bounded linear operator A on a Hilbert space E, can we construct a sequence of compact sets $U_{n} \subset \mathbb{C}$ with

- (i) $\operatorname{Spec} A \subset U_{n}$ for each n;
- (ii) $U_{n} \rightarrow \operatorname{Spec} A$ as $n \rightarrow \infty$ (Hausdorff convergence);
- (iii) each U_{n} can be computed in finitely many operations?

Answer. A qualified yes, if the matrix representation of A, with respect to some orthonormal sequence, is banded or band-dominated.

Novelty? We know how to construct U_{n} satisfying (iii) with $U_{n} \rightarrow \operatorname{Spec}_{\varepsilon} A$, the ε-pseudospectrum, for band-dominated A (see Hansen 2011, Ben-Artzi, Colbrook, Hansen, Nevanlinna, Seidel 2015, 2020). But not known how to achieve (ii) and (iii).

Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x, y) and norm $\|x\|=\sqrt{(x, x)}$, e.g.

$$
E=\ell^{2}:=\ell^{2}(\mathbb{Z}), \quad(x, y)=\sum_{j \in \mathbb{Z}} x_{j} \bar{y}_{j}, \quad\|x\|^{2}=\sum_{j \in \mathbb{Z}}\left|x_{j}\right|^{2} .
$$

Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x, y) and norm $\|x\|=\sqrt{(x, x)}$, e.g.

$$
E=\ell^{2}:=\ell^{2}(\mathbb{Z}), \quad(x, y)=\sum_{j \in \mathbb{Z}} x_{j} \bar{y}_{j}, \quad\|x\|^{2}=\sum_{j \in \mathbb{Z}}\left|x_{j}\right|^{2} .
$$

If E, Y are Hilbert spaces, A is a bounded linear operator from E to Y, in symbols $A \in L(E, Y)$, if

$$
A(\lambda x)=\lambda A x, \quad A(x+y)=A x+A y, \quad \forall \lambda \in \mathbb{C}, x, y \in E
$$

and, for some $C \geq 0$,

$$
\|A x\| \leq C\|x\|, \quad \forall x \in E
$$

Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x, y) and norm $\|x\|=\sqrt{(x, x)}$, e.g.

$$
E=\ell^{2}:=\ell^{2}(\mathbb{Z}), \quad(x, y)=\sum_{j \in \mathbb{Z}} x_{j} \bar{y}_{j}, \quad\|x\|^{2}=\sum_{j \in \mathbb{Z}}\left|x_{j}\right|^{2} .
$$

If E, Y are Hilbert spaces, A is a bounded linear operator from E to Y, in symbols $A \in L(E, Y)$, if

$$
A(\lambda x)=\lambda A x, \quad A(x+y)=A x+A y, \quad \forall \lambda \in \mathbb{C}, x, y \in E
$$

and, for some $C \geq 0$,

$$
\|A x\| \leq C\|x\|, \quad \forall x \in E
$$

For $A \in L(E, Y)$ the norm and lower norm of A are

$$
\|A\|:=\sup _{x \in E \backslash\{0\}} \frac{\|A x\|}{\|x\|} \quad \text { and } \quad \nu(A):=\inf _{x \in E \backslash\{0\}} \frac{\|A x\|}{\|x\|} .
$$

E is a complex Hilbert space with inner product (x, y) and norm $\|x\|=\sqrt{(x, x)}$, e.g.

$$
H=\ell^{2}:=\ell^{2}(\mathbb{Z}), \quad(x, y)=\sum_{j \in \mathbb{Z}} x_{j} \bar{y}_{j}, \quad\|x\|^{2}=\sum_{j \in \mathbb{Z}}\left|x_{j}\right|^{2} .
$$

E is a complex Hilbert space with inner product (x, y) and norm $\|x\|=\sqrt{(x, x)}$, e.g.

$$
H=\ell^{2}:=\ell^{2}(\mathbb{Z}), \quad(x, y)=\sum_{j \in \mathbb{Z}} x_{j} \bar{y}_{j}, \quad\|x\|^{2}=\sum_{j \in \mathbb{Z}}\left|x_{j}\right|^{2} .
$$

If $A \in L(E, Y)$, the adjoint of A, denoted A^{*}, is the unique $A^{*} \in L(Y, E)$ satisfying

$$
(A x, y)=\left(x, A^{*} y\right), \quad x \in E, y \in Y
$$

Bounded linear operators between Hilbert spaces

E is a complex Hilbert space with inner product (x, y) and norm $\|x\|=\sqrt{(x, x)}$, e.g.

$$
H=\ell^{2}:=\ell^{2}(\mathbb{Z}), \quad(x, y)=\sum_{j \in \mathbb{Z}} x_{j} \bar{y}_{j}, \quad\|x\|^{2}=\sum_{j \in \mathbb{Z}}\left|x_{j}\right|^{2} .
$$

If $A \in L(E, Y)$, the adjoint of A, denoted A^{*}, is the unique $A^{*} \in L(Y, E)$ satisfying

$$
(A x, y)=\left(x, A^{*} y\right), \quad x \in E, y \in Y
$$

We call $A \in L(E):=L(E, E)$

- self-adjoint if $A^{*}=A$
- normal if $A A^{*}=A^{*} A$

Bounded linear operators between Hilbert spaces

$A \in L(E):=L(E, E)$ is said to be invertible if is bijective, in which case there exists $A^{-1} \in L(E)$ such that $A A^{-1}=A^{-1} A=I$.

Bounded linear operators between Hilbert spaces

$A \in L(E):=L(E, E)$ is said to be invertible if is bijective, in which case there exists $A^{-1} \in L(E)$ such that $A A^{-1}=A^{-1} A=I$. N.B.
A is not invertible $\Leftrightarrow \mu(A):=\min \left(\nu(A), \nu\left(A^{*}\right)\right)=0$,

Bounded linear operators between Hilbert spaces

$A \in L(E):=L(E, E)$ is said to be invertible if is bijective, in which case there exists $A^{-1} \in L(E)$ such that $A A^{-1}=A^{-1} A=I$. N.B.
A is not invertible $\Leftrightarrow \mu(A):=\min \left(\nu(A), \nu\left(A^{*}\right)\right)=0$, and, if A is invertible, then

- A^{*} is invertible and $\left\|A^{-1}\right\|=\left\|\left(A^{*}\right)^{-1}\right\|$

Bounded linear operators between Hilbert spaces

$A \in L(E):=L(E, E)$ is said to be invertible if is bijective, in which case there exists $A^{-1} \in L(E)$ such that $A A^{-1}=A^{-1} A=I$. N.B.
A is not invertible $\Leftrightarrow \mu(A):=\min \left(\nu(A), \nu\left(A^{*}\right)\right)=0$, and, if A is invertible, then

- A^{*} is invertible and $\left\|A^{-1}\right\|=\left\|\left(A^{*}\right)^{-1}\right\|$
- $\nu(A)=1 /\left\|A^{-1}\right\|$

Bounded linear operators between Hilbert spaces

$A \in L(E):=L(E, E)$ is said to be invertible if is bijective, in which case there exists $A^{-1} \in L(E)$ such that $A A^{-1}=A^{-1} A=I$. N.B.
A is not invertible $\Leftrightarrow \mu(A):=\min \left(\nu(A), \nu\left(A^{*}\right)\right)=0$, and, if A is invertible, then

- A^{*} is invertible and $\left\|A^{-1}\right\|=\left\|\left(A^{*}\right)^{-1}\right\|$
- $\nu(A)=1 /\left\|A^{-1}\right\|$
- $\nu(A)=1 /\left\|A^{-1}\right\|=1 /\left\|\left(A^{*}\right)^{-1}\right\|=\nu\left(A^{*}\right)=\mu(A)$.

Bounded linear operators between Hilbert spaces

$A \in L(E):=L(E, E)$ is said to be invertible if is bijective, in which case there exists $A^{-1} \in L(E)$ such that $A A^{-1}=A^{-1} A=I$. N.B.
A is not invertible $\Leftrightarrow \mu(A):=\min \left(\nu(A), \nu\left(A^{*}\right)\right)=0$, and, if A is invertible, then

- A^{*} is invertible and $\left\|A^{-1}\right\|=\left\|\left(A^{*}\right)^{-1}\right\|$
- $\nu(A)=1 /\left\|A^{-1}\right\|$
- $\nu(A)=1 /\left\|A^{-1}\right\|=1 /\left\|\left(A^{*}\right)^{-1}\right\|=\nu\left(A^{*}\right)=\mu(A)$.

With the conventions that $\left\|A^{-1}\right\|:=\infty$ if A is not invertible and $1 / \infty:=0$,

$$
\mu(A)=1 /\left\|A^{-1}\right\|, \quad \text { for all } A \in L(Y)
$$

For $A \in L(E)$ the spectrum of A is
$\operatorname{Spec} A:=\{\lambda \in \mathbb{C}: A-\lambda I$ is not invertible $\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda /)=0\}$.
N.B. this is just the set of eigenvalues if E is finite dimensional.

For $A \in L(E)$ the spectrum of A is
Spec $A:=\{\lambda \in \mathbb{C}: A-\lambda I$ is not invertible $\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda /)=0\}$.
N.B. this is just the set of eigenvalues if E is finite dimensional.

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$

For $A \in L(E)$ the spectrum of A is
Spec $A:=\{\lambda \in \mathbb{C}: A-\lambda I$ is not invertible $\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda /)=0\}$.
N.B. this is just the set of eigenvalues if E is finite dimensional.

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$
$\supset \operatorname{Spec} A+\varepsilon \overline{\mathbb{D}}$, with equality if A is normal,
where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.

Spectrum and Pseudospectrum

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$
$\supset \operatorname{Spec} A+\varepsilon \overline{\mathbb{D}}$, with equality if A is normal,
where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
Example 1.

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1+\mathrm{i}
\end{array}\right]
$$

Spectrum and Pseudospectrum

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$
$\supset \operatorname{Spec} A+\varepsilon \overline{\mathbb{D}}$, with equality if A is normal,
where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
Example 1.

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1+\mathrm{i}
\end{array}\right]
$$

Spectrum and Pseudospectrum

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$
$\supset \operatorname{Spec} A+\varepsilon \overline{\mathbb{D}}$, with equality if A is normal,
where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
Example 1.

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1+\mathrm{i}
\end{array}\right]
$$

Spectrum and Pseudospectrum

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$
$\supset \operatorname{Spec} A+\varepsilon \overline{\mathbb{D}}$, with equality if A is normal,
where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
Example 1.

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1+\mathrm{i}
\end{array}\right]
$$

Spectrum and Pseudospectrum

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$
$\supset \operatorname{Spec} A+\varepsilon \overline{\mathbb{D}}$, with equality if A is normal,
where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
Example 2.
$A=\left[\begin{array}{ccc}-\frac{2}{3} & \frac{4}{3} & -\frac{2}{115} \\ -\frac{4}{3} & \frac{8}{3} & -\frac{1}{6}+\frac{\mathrm{i}}{10} \\ 0 & 0 & 1+\mathrm{i}\end{array}\right]$

Spectrum and Pseudospectrum

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$
$\supset \operatorname{Spec} A+\varepsilon \overline{\mathbb{D}}$, with equality if A is normal,
where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
Example 2.
$A=\left[\begin{array}{ccc}-\frac{2}{3} & \frac{4}{3} & -\frac{2}{15} \\ -\frac{4}{3} & \frac{8}{3} & -\frac{1}{6}+\frac{\mathrm{i}}{10} \\ 0 & 0 & 1+\mathrm{i}\end{array}\right]$

Spectrum and Pseudospectrum

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$
$\supset \operatorname{Spec} A+\varepsilon \overline{\mathbb{D}}$, with equality if A is normal,
where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
Example 2.
$A=\left[\begin{array}{ccc}-\frac{2}{3} & \frac{4}{3} & -\frac{2}{15} \\ -\frac{4}{3} & \frac{8}{3} & -\frac{1}{6}+\frac{\mathrm{i}}{10} \\ 0 & 0 & 1+\mathrm{i}\end{array}\right]$

Spectrum and Pseudospectrum

For $A \in L(E)$ and $\varepsilon>0$ the (closed) ε-pseudospectrum of A is
$\operatorname{Spec}_{\varepsilon} A:=\left\{\lambda \in \mathbb{C}: 1 /\left\|(A-\lambda I)^{-1}\right\| \leq \varepsilon\right\}=\{\lambda \in \mathbb{C}: \mu(A-\lambda I) \leq \varepsilon\}$
$\supset \operatorname{Spec} A+\varepsilon \overline{\mathbb{D}}$, with equality if A is normal,
where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
Example 2.
$A=\left[\begin{array}{ccc}-\frac{2}{3} & \frac{4}{3} & -\frac{2}{15} \\ -\frac{4}{3} & \frac{8}{3} & -\frac{1}{6}+\frac{\mathrm{i}}{10} \\ 0 & 0 & 1+\mathrm{i}\end{array}\right]$

Let

- $\mathbb{C}^{B}:=$ set of non-empty bounded subsets of \mathbb{C}
- $\mathbb{C}^{C}:=$ set of non-empty compact subsets of \mathbb{C}

Hausdorff convergence of sets

Let

- $\mathbb{C}^{B}:=$ set of non-empty bounded subsets of \mathbb{C}
- $\mathbb{C}^{C}:=$ set of non-empty compact subsets of \mathbb{C}

For $S, T \in \mathbb{C}^{B}$ let

$$
d(S, T):=\inf \{\varepsilon \geq 0: S \subset T+\varepsilon \mathbb{D} \text { and } T \subset S+\varepsilon \mathbb{D}\}
$$

N.B. $d(\cdot, \cdot)$ is the Hausdorff metric on \mathbb{C}^{C}.

Hausdorff convergence of sets

Let

- $\mathbb{C}^{B}:=$ set of non-empty bounded subsets of \mathbb{C}
- $\mathbb{C}^{C}:=$ set of non-empty compact subsets of \mathbb{C}

For $S, T \in \mathbb{C}^{B}$ let

$$
d(S, T):=\inf \{\varepsilon \geq 0: S \subset T+\varepsilon \mathbb{D} \text { and } T \subset S+\varepsilon \mathbb{D}\}
$$

N.B. $d(\cdot, \cdot)$ is the Hausdorff metric on \mathbb{C}^{C}. For $\left(S_{n}\right) \subset \mathbb{C}^{B}$ and $S \in \mathbb{C}^{B}$ write $S_{n} \rightarrow S$ if $d\left(S_{n}, S\right) \rightarrow 0$ as $n \rightarrow \infty$.

Hausdorff convergence of sets

Let

- $\mathbb{C}^{B}:=$ set of non-empty bounded subsets of \mathbb{C}
- $\mathbb{C}^{C}:=$ set of non-empty compact subsets of \mathbb{C}

For $S, T \in \mathbb{C}^{B}$ let

$$
d(S, T):=\inf \{\varepsilon \geq 0: S \subset T+\varepsilon \mathbb{D} \text { and } T \subset S+\varepsilon \mathbb{D}\}
$$

N.B. $d(\cdot, \cdot)$ is the Hausdorff metric on \mathbb{C}^{C}. For $\left(S_{n}\right) \subset \mathbb{C}^{B}$ and $S \in \mathbb{C}^{B}$ write $S_{n} \rightarrow S$ if $d\left(S_{n}, S\right) \rightarrow 0$ as $n \rightarrow \infty$.
Lemma. If $\left(S_{n}\right) \subset \mathbb{C}^{C}$ and $S_{1} \supset S_{2} \supset \ldots$, then $S_{n} \rightarrow S_{\infty}:=\bigcap_{n \in \mathbb{N}} S_{n}$ as $n \rightarrow \infty$.

Hausdorff convergence of sets

Let

- $\mathbb{C}^{B}:=$ set of non-empty bounded subsets of \mathbb{C}
- $\mathbb{C}^{C}:=$ set of non-empty compact subsets of \mathbb{C}

For $S, T \in \mathbb{C}^{B}$ let

$$
d(S, T):=\inf \{\varepsilon \geq 0: S \subset T+\varepsilon \mathbb{D} \text { and } T \subset S+\varepsilon \mathbb{D}\}
$$

N.B. $d(\cdot, \cdot)$ is the Hausdorff metric on \mathbb{C}^{C}. For $\left(S_{n}\right) \subset \mathbb{C}^{B}$ and $S \in \mathbb{C}^{B}$ write $S_{n} \rightarrow S$ if $d\left(S_{n}, S\right) \rightarrow 0$ as $n \rightarrow \infty$.
Lemma. If $\left(S_{n}\right) \subset \mathbb{C}^{C}$ and $S_{1} \supset S_{2} \supset \ldots$, then $S_{n} \rightarrow S_{\infty}:=\bigcap_{n \in \mathbb{N}} S_{n}$ as $n \rightarrow \infty$.

Corollary. If $\varepsilon_{1}>\varepsilon_{2}>\ldots>0$, in which case $\varepsilon_{n} \rightarrow \varepsilon \geq 0$ as $n \rightarrow \infty$, then

$$
\operatorname{Spec}_{\varepsilon_{n}} A \rightarrow \operatorname{Spec}_{\varepsilon} A \quad \text { N.B. } \quad \operatorname{Spec}_{0} A:=\operatorname{Spec} A .
$$

Matrix representation of A

Suppose $\left(e_{j}\right)_{j \in \mathbb{Z}}$ is an orthonormal basis for a separable Hilbert space E and $A \in L(E)$. Then the matrix representation of A is $[A]=\left[a_{i j}\right]_{i, j \in \mathbb{Z}}$, where

$$
a_{i j}=\left(A e_{j}, e_{i}\right), \quad i, j \in \mathbb{Z}
$$

and $\operatorname{Spec} A=\operatorname{Spec}[A], \operatorname{Spec}_{\varepsilon} A=\operatorname{Spec}_{\varepsilon}[A], \varepsilon>0$, where $[A] \in L\left(\ell^{2}\right)$ is defined by

$$
([A] x)_{i}=\sum_{j \in \mathbb{Z}} a_{i j} x_{j}, \quad i \in \mathbb{Z}
$$

Matrix representation of A

Suppose $\left(e_{j}\right)_{j \in \mathbb{Z}}$ is an orthonormal basis for a separable Hilbert space E and $A \in L(E)$. Then the matrix representation of A is $[A]=\left[a_{i j}\right]_{i, j \in \mathbb{Z}}$, where

$$
a_{i j}=\left(A e_{j}, e_{i}\right), \quad i, j \in \mathbb{Z}
$$

and $\operatorname{Spec} A=\operatorname{Spec}[A], \operatorname{Spec}_{\varepsilon} A=\operatorname{Spec}_{\varepsilon}[A], \varepsilon>0$, where $[A] \in L\left(\ell^{2}\right)$ is defined by

$$
([A] x)_{i}=\sum_{j \in \mathbb{Z}} a_{i j} x_{j}, \quad i \in \mathbb{Z}
$$

The above makes clear we can assume $E=\ell^{2}=\ell^{2}(\mathbb{Z})$, in which case we will abbreviate $[A]$ as A.

Matrix representation of A

Suppose $\left(e_{j}\right)_{j \in \mathbb{Z}}$ is an orthonormal basis for a separable Hilbert space E and $A \in L(E)$. Then the matrix representation of A is $[A]=\left[a_{i j}\right]_{i, j \in \mathbb{Z}}$, where

$$
a_{i j}=\left(A e_{j}, e_{i}\right), \quad i, j \in \mathbb{Z}
$$

and $\operatorname{Spec} A=\operatorname{Spec}[A], \operatorname{Spec}_{\varepsilon} A=\operatorname{Spec}_{\varepsilon}[A], \varepsilon>0$, where $[A] \in L\left(\ell^{2}\right)$ is defined by

$$
([A] x)_{i}=\sum_{j \in \mathbb{Z}} a_{i j} x_{j}, \quad i \in \mathbb{Z}
$$

The above makes clear we can assume $E=\ell^{2}=\ell^{2}(\mathbb{Z})$, in which case we will abbreviate $[A]$ as A.

We will say that $[A]$ is a banded with bandwidth $w \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ if $a_{i j}=0$ for $|i-j|>w$.

Matrix representation of A

Suppose $\left(e_{j}\right)_{j \in \mathbb{Z}}$ is an orthonormal basis for a separable Hilbert space E and $A \in L(E)$. Then the matrix representation of A is $[A]=\left[a_{i j}\right]_{i, j \in \mathbb{Z}}$, where

$$
a_{i j}=\left(A e_{j}, e_{i}\right), \quad i, j \in \mathbb{Z}
$$

and $\operatorname{Spec} A=\operatorname{Spec}[A], \operatorname{Spec}_{\varepsilon} A=\operatorname{Spec}_{\varepsilon}[A], \varepsilon>0$, where $[A] \in L\left(\ell^{2}\right)$ is defined by

$$
([A] x)_{i}=\sum_{j \in \mathbb{Z}} a_{i j} x_{j}, \quad i \in \mathbb{Z}
$$

The above makes clear we can assume $E=\ell^{2}=\ell^{2}(\mathbb{Z})$, in which case we will abbreviate $[A]$ as A.

We will say that $[A]$ is a banded with bandwidth $w \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ if $a_{i j}=0$ for $|i-j|>w$.

We will say that $[A]$ is band-dominated if there exists a sequence $\left(A_{n}\right) \subset L(E)$ such that each $\left[A_{n}\right]$ is banded and $\left\|A-A_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Let's consider first bi-infinite matrices of the form

$$
A=\left(\begin{array}{ccccccc}
\ddots & \ddots & & & & & \\
\ddots & \beta_{-2} & \gamma_{-1} & & & & \\
& \alpha_{-2} & \beta_{-1} & \gamma_{0} & & & \\
& & \alpha_{-1} & \beta_{0} & \gamma_{1} & & \\
& & & \alpha_{0} & \beta_{1} & \gamma_{2} & \\
& & & & \alpha_{1} & \beta_{2} & \ddots \\
& & & & & \ddots & \ddots
\end{array}\right)
$$

where $\alpha=\left(\alpha_{i}\right), \beta=\left(\beta_{i}\right)$ and $\gamma=\left(\gamma_{i}\right)$ are bounded sequences of complex numbers.

Inclusion sets for $\operatorname{Spec}_{\varepsilon} A, \varepsilon \geq 0$.

$$
A=\left(\begin{array}{lllllll}
\ddots & \ddots & & & & & \\
\ddots & \beta_{-2} & \gamma_{-1} & & & & \\
& \alpha_{-2} & \beta_{-1} & \gamma_{0} & & & \\
& & \alpha_{-1} & \beta_{0} & \gamma_{1} & & \\
& & & \alpha_{0} & \beta_{1} & \gamma_{2} & \\
& & & & \alpha_{1} & \beta_{2} & \ddots \\
& & & & & \ddots & \ddots
\end{array}\right)
$$

Task

Compute inclusion sets for spectrum and pseudospectra of $A \in L\left(\ell^{2}\right)=L\left(\ell^{2}(\mathbb{Z})\right)$.

Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

For every row k, consider the Gershgorin disc with

$$
\text { center at } a_{k, k} \text { and radius }\left|a_{k, k-1}\right|+\left|a_{k, k+1}\right| \leq\|\alpha\|_{\infty}+\|\gamma\|_{\infty}
$$

Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

For every row k, consider the Gershgorin disc with

$$
\text { center at } a_{k, k} \text { and radius }\left|a_{k, k-1}\right|+\left|a_{k, k+1}\right| \leq\|\alpha\|_{\infty}+\|\gamma\|_{\infty}
$$

Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

For every row k, consider the Gershgorin disc with

$$
\text { center at } a_{k, k} \text { and radius }\left|a_{k, k-1}\right|+\left|a_{k, k+1}\right| \leq\|\alpha\|_{\infty}+\|\gamma\|_{\infty}
$$

Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

For every row k, consider the Gershgorin disc with

$$
\text { center at } a_{k, k} \text { and radius }\left|a_{k, k-1}\right|+\left|a_{k, k+1}\right| \leq\|\alpha\|_{\infty}+\|\gamma\|_{\infty}
$$

$$
\operatorname{Spec} A \subset \overline{\bigcup_{k \in \mathbb{Z}}\left(a_{k, k}+\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right) \mathbb{D}\right)}
$$

Inspiration: Gershgorin discs

Here is our tridiagonal bi-infinite matrix:

For every row k, consider the Gershgorin disc with

$$
\text { center at } a_{k, k} \text { and radius }\left|a_{k, k-1}\right|+\left|a_{k, k+1}\right| \leq\|\alpha\|_{\infty}+\|\gamma\|_{\infty}
$$

$$
\operatorname{Spec} A \subset \overline{\bigcup_{k \in \mathbb{Z}}\left(a_{k, k}+\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right) \mathbb{D}\right)}
$$

Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A :

Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A :

Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A :

Our new strategy

Look at (pseudo)spectra of the finite principal submatrices of A :

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Claim: $\exists k \in \mathbb{Z}$:

$$
\begin{aligned}
&\left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\| \\
& \leq\left(\varepsilon+\varepsilon_{n}\right)\left\|x_{n, k}\right\|
\end{aligned}
$$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Claim: $\exists k \in \mathbb{Z}$:
$\left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\|$ $\leq\left(\varepsilon+\varepsilon_{n}\right)\left\|x_{n, k}\right\|$
$\Leftarrow \sum_{k}\left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\|^{2}$ $\leq\left(\varepsilon+\varepsilon_{n}\right)^{2} \sum_{k}\left\|x_{n, k}\right\|^{2}$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Fact: $\exists k \in \mathbb{Z}$:

$$
\begin{aligned}
& \left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\| \\
& \leq\left(\varepsilon+\varepsilon_{n}\right)\left\|x_{n, k}\right\|
\end{aligned}
$$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Fact: $\exists k \in \mathbb{Z}$:

$$
\begin{aligned}
&\left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\| \\
& \leq\left(\varepsilon+\varepsilon_{n}\right)\left\|x_{n, k}\right\|
\end{aligned}
$$

$$
\varepsilon_{n}=\frac{1}{\sqrt{n}}\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right)
$$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Fact: $\exists k \in \mathbb{Z}$:

$$
\begin{aligned}
& \left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\| \\
& \quad \leq\left(\varepsilon+\varepsilon_{n}\right)\left\|x_{n, k}\right\|
\end{aligned}
$$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Fact: $\exists k \in \mathbb{Z}$:

$$
\begin{aligned}
& \left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\| \\
& \quad \leq\left(\varepsilon+\varepsilon_{n}\right)\left\|x_{n, k}\right\|
\end{aligned}
$$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Fact: $\exists k \in \mathbb{Z}$:

$$
\begin{aligned}
& \left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\| \\
& \quad \leq\left(\varepsilon+\varepsilon_{n}\right)\left\|x_{n, k}\right\|
\end{aligned}
$$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Fact: $\exists k \in \mathbb{Z}$:

$$
\begin{aligned}
& \left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\| \\
& \quad \leq\left(\varepsilon+\varepsilon_{n}\right)\left\|x_{n, k}\right\|
\end{aligned}
$$

Let $\lambda \in \operatorname{Spec}_{\varepsilon} A$ and let $x \in \ell^{2}$ be a corresponding pseudomode.

$$
\|(A-\lambda I) x\| \leq \varepsilon\|x\|
$$

Fact: $\exists k \in \mathbb{Z}$:

$$
\begin{aligned}
& \left\|\left(A_{n, k}-\lambda I_{n}\right) x_{n, k}\right\| \\
& \quad \leq\left(\varepsilon+\varepsilon_{n}\right)\left\|x_{n, k}\right\|
\end{aligned}
$$

$$
\frac{\varepsilon_{n} \leq}{2 \sin \frac{\pi}{2(n+2)}\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right)}
$$

$$
\Rightarrow \lambda \in \operatorname{Spec}_{\varepsilon+\varepsilon_{n}} A_{n, k}
$$

So we get
Inclusion Set

$$
\operatorname{Spec}_{\varepsilon} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}} A_{n, k}}, \quad \varepsilon \geq 0,
$$

where

$$
\varepsilon_{n} \leq 2 \sin \left(\frac{\pi}{2(n+2)}\right)\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right)
$$

so $\varepsilon_{n}=O\left(n^{-1}\right)$ as $n \rightarrow \infty$.

τ method: finite principal submatrices

So we get
Inclusion Set

$$
\operatorname{Spec}_{\varepsilon} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}} A_{n, k}}, \quad \varepsilon \geq 0
$$

where

$$
\varepsilon_{n} \leq 2 \sin \left(\frac{\pi}{2(n+2)}\right)\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right)
$$

so $\varepsilon_{n}=O\left(n^{-1}\right)$ as $n \rightarrow \infty$. Putting $n=1$ and $\varepsilon=0$ we recover Gershgorin:

$$
\operatorname{Spec} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon_{1}} A_{1, k}}=\overline{\bigcup_{k \in \mathbb{Z}}\left(a_{k, k}+\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right) \mathbb{D}\right)} .
$$

If the finite submatrices $A_{n, k}$ are "periodised" (cf. Colbrook 2020, which uses single large periodised finite section)

If the finite submatrices $A_{n, k}$ are "periodised" (cf. Colbrook 2020, which uses single large periodised finite section)

If the finite submatrices $A_{n, k}$ are "periodised" (cf. Colbrook 2020, which uses single large periodised finite section)

very similar computations show that

$$
\operatorname{Spec}_{\varepsilon} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime}} A_{n, k}^{\mathrm{per}}}, \quad \varepsilon \geq 0
$$

with $\quad \varepsilon_{n}^{\prime}=2 \sin \left(\frac{\pi}{2 n}\right)\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right)$.

Instead of

We do a "one-sided" truncation.

We do a "one-sided" truncation.

I.e., we work with rectangular finite submatrices.

This is motivated by work of Davies 1998, Davies \& Plum 2004, and Hansen 2008, 2011, in which A is approximated by a single large rectangular finite section.

For $n \in \mathbb{N}$ and $k \in \mathbb{Z}$, let $P_{n, k}: \ell^{2} \rightarrow \ell^{2}$ denote the projection

$$
\left(P_{n, k} x\right)(i):=\left\{\begin{aligned}
x(i), & i \in\{k+1, \ldots, k+n\} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Further, we put

$$
E_{n, k}:=\operatorname{im} P_{n, k} .
$$

τ method:

$\left.P_{n, k}(A-\lambda I)\right|_{E_{n, k}}$

τ_{1} method:

$(A-\lambda I) \mid E_{n, k}$
τ method:
$\lambda \in \operatorname{Spec}_{\varepsilon} A \Longrightarrow$
For some $k \in \mathbb{Z}$:

$$
\lambda \in \operatorname{Spec}_{\varepsilon+\varepsilon_{n}}\left(\left.P_{n, k} A\right|_{E_{n, k}}\right)
$$

τ method:
$\lambda \in \operatorname{Spec}_{\varepsilon} A \Longrightarrow$
For some $k \in \mathbb{Z}$:

$$
\begin{array}{r}
\lambda \in \operatorname{Spec}_{\varepsilon+\varepsilon_{n}}\left(\left.P_{n, k} A\right|_{E_{n, k}}\right) \\
\text { i.e. } \mu\left(\left.P_{n, k}(A-\lambda I)\right|_{E_{n, k}}\right) \leq \varepsilon+\varepsilon_{n}
\end{array}
$$

τ method:
$\lambda \in \operatorname{Spec}_{\varepsilon} A \Longrightarrow$
For some $k \in \mathbb{Z}$:

$$
\begin{array}{r}
\lambda \in \operatorname{Spec}_{\varepsilon+\varepsilon_{n}}\left(\left.P_{n, k} A\right|_{E_{n, k}}\right) \\
\text { i.e. } \quad \mu\left(\left.P_{n, k}(A-\lambda I)\right|_{E_{n, k}}\right) \leq \varepsilon+\varepsilon_{n} \\
\text { i.e. } \quad \nu\left(\left.P_{n, k}(A-\lambda I)\right|_{E_{n, k}}\right) \leq \varepsilon+\varepsilon_{n} \text { or } \\
\nu\left(\left.P_{n, k}(A-\lambda I)^{*}\right|_{E_{n, k}}\right) \leq \varepsilon+\varepsilon_{n}
\end{array}
$$

τ method:

$\lambda \in \operatorname{Spec}_{\varepsilon} A \quad \Longrightarrow \quad$ For some $k \in \mathbb{Z}:$

$$
\begin{array}{r}
\lambda \in \operatorname{Spec}_{\varepsilon+\varepsilon_{n}}\left(\left.P_{n, k} A\right|_{E_{n, k}}\right) \\
\text { i.e. } \quad \mu\left(\left.P_{n, k}(A-\lambda I)\right|_{E_{n, k}}\right) \leq \varepsilon+\varepsilon_{n} \\
\text { i.e. } \quad \nu\left(\left.P_{n, k}(A-\lambda I)\right|_{E_{n, k}}\right) \leq \varepsilon+\varepsilon_{n} \text { or } \\
\nu\left(\left.P_{n, k}(A-\lambda I)^{*}\right|_{E_{n, k}}\right) \leq \varepsilon+\varepsilon_{n}
\end{array}
$$

τ_{1} idea is just drop the $P_{n, k}$'s.

τ_{1} method

Let $\gamma_{\varepsilon}^{n, k}(A)$ be the set of $\lambda \in \mathbb{C}$ for which

$$
\min \left(\nu\left(\left.(A-\lambda I)\right|_{E_{n, k}}\right), \nu\left(\left.(A-\lambda I)^{*}\right|_{E_{n, k}}\right)\right) \leq \varepsilon .
$$

(Analogue of $\operatorname{Spec}_{\varepsilon} A_{n, k}$ in the τ method.)

τ_{1} method

Let $\gamma_{\varepsilon}^{n, k}(A)$ be the set of $\lambda \in \mathbb{C}$ for which

$$
\min \left(\nu\left(\left.(A-\lambda I)\right|_{E_{n, k}}\right), \nu\left(\left.(A-\lambda I)^{*}\right|_{E_{n, k}}\right)\right) \leq \varepsilon .
$$

(Analogue of $\operatorname{Spec}_{\varepsilon} A_{n, k}$ in the τ method.) Put

$$
\Gamma_{\varepsilon}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon}^{n, k}(A)}
$$

Let $\gamma_{\varepsilon}^{n, k}(A)$ be the set of $\lambda \in \mathbb{C}$ for which

$$
\min \left(\nu\left(\left.(A-\lambda I)\right|_{E_{n, k}}\right), \nu\left(\left.(A-\lambda I)^{*}\right|_{E_{n, k}}\right)\right) \leq \varepsilon .
$$

(Analogue of $\operatorname{Spec}_{\varepsilon} A_{n, k}$ in the τ method.) Put

$$
\Gamma_{\varepsilon}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon}^{n, k}(A)}
$$

Then (similarly to the τ and π-method inclusions)

$$
\begin{gathered}
\operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \\
\text { with } \quad \varepsilon_{n}^{\prime \prime}=2 \sin \left(\frac{\pi}{2 n+2}\right)\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right)
\end{gathered}
$$

Let $\gamma_{\varepsilon}^{n, k}(A)$ be the set of $\lambda \in \mathbb{C}$ for which

$$
\min \left(\nu\left(\left.(A-\lambda I)\right|_{E_{n, k}}\right), \nu\left(\left.(A-\lambda I)^{*}\right|_{E_{n, k}}\right)\right) \leq \varepsilon .
$$

(Analogue of $\operatorname{Spec}_{\varepsilon} A_{n, k}$ in the τ method.) Put

$$
\Gamma_{\varepsilon}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon}^{n, k}(A)}
$$

Then (similarly to the τ and π-method inclusions)

$$
\begin{gathered}
\operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \\
\text { with } \quad \varepsilon_{n}^{\prime \prime}=2 \sin \left(\frac{\pi}{2 n+2}\right)\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right)
\end{gathered}
$$

But now we also have that if $\lambda \in \gamma_{\varepsilon}^{n, k}(A)$, for some $k \in \mathbb{Z}$, then $\nu(A-\lambda) \leq \nu\left(\left.(A-\lambda I)\right|_{E_{n, k}}\right) \leq \varepsilon$ or $\nu\left((A-\lambda)^{*}\right) \leq \varepsilon$

Let $\gamma_{\varepsilon}^{n, k}(A)$ be the set of $\lambda \in \mathbb{C}$ for which

$$
\min \left(\nu\left(\left.(A-\lambda I)\right|_{E_{n, k}}\right), \nu\left(\left.(A-\lambda I)^{*}\right|_{E_{n, k}}\right)\right) \leq \varepsilon .
$$

(Analogue of $\operatorname{Spec}_{\varepsilon} A_{n, k}$ in the τ method.) Put

$$
\Gamma_{\varepsilon}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon}^{n, k}(A)}
$$

Then (similarly to the τ and π-method inclusions)

$$
\begin{gathered}
\operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \\
\text { with } \quad \varepsilon_{n}^{\prime \prime}=2 \sin \left(\frac{\pi}{2 n+2}\right)\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right)
\end{gathered}
$$

But now we also have that if $\lambda \in \gamma_{\varepsilon}^{n, k}(A)$, for some $k \in \mathbb{Z}$, then $\nu(A-\lambda) \leq \nu\left(\left.(A-\lambda I)\right|_{E_{n, k}}\right) \leq \varepsilon$ or $\nu\left((A-\lambda)^{*}\right) \leq \varepsilon$, so $\mu(A-\lambda I) \leq \varepsilon$ and $\lambda \in \operatorname{Spec}_{\varepsilon} A$, so

$$
\Gamma_{\varepsilon}^{n}(A) \subset \operatorname{Spec}_{\varepsilon} A .
$$

τ_{1}-method: spectral bounds

From the lower and upper bound

$$
\Gamma_{\varepsilon}^{n}(A) \subset \operatorname{Spec}_{\varepsilon} A \quad \text { and } \quad \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A)
$$

we get

Sandwich 1

$$
\Gamma_{\varepsilon}^{n}(A) \subset \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A), \quad \varepsilon \geq 0
$$

τ_{1}-method: spectral bounds

From the lower and upper bound

$$
\Gamma_{\varepsilon}^{n}(A) \subset \operatorname{Spec}_{\varepsilon} A \quad \text { and } \quad \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A)
$$

we get

Sandwich 1

$$
\Gamma_{\varepsilon}^{n}(A) \subset \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A), \quad \varepsilon \geq 0
$$

Sandwich 2

$$
\operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \subset \operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime \prime}} A, \quad \varepsilon \geq 0
$$

τ_{1}-method: spectral bounds

From the lower and upper bound

$$
\Gamma_{\varepsilon}^{n}(A) \subset \operatorname{Spec}_{\varepsilon} A \quad \text { and } \quad \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A)
$$

we get

Sandwich 1

$$
\Gamma_{\varepsilon}^{n}(A) \subset \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A), \quad \varepsilon \geq 0
$$

Sandwich 2

$$
\operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \subset \operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime \prime}} A, \quad \varepsilon \geq 0
$$

In particular, it follows, since $\operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime \prime}} A \rightarrow \operatorname{Spec}_{\varepsilon} A$ as $n \rightarrow \infty$, that

$$
\Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \quad \rightarrow \quad \operatorname{Spec}_{\varepsilon} A
$$

τ_{1}-method: spectral bounds

From the lower and upper bound

$$
\Gamma_{\varepsilon}^{n}(A) \subset \operatorname{Spec}_{\varepsilon} A \quad \text { and } \quad \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A)
$$

we get

Sandwich 1

$$
\Gamma_{\varepsilon}^{n}(A) \subset \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A), \quad \varepsilon \geq 0
$$

Sandwich 2

$$
\operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \subset \operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime \prime}} A, \quad \varepsilon \geq 0
$$

In particular, it follows, since $\operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime \prime}} A \rightarrow \operatorname{Spec}_{\varepsilon} A$ as $n \rightarrow \infty$, that
$\Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \rightarrow \quad \operatorname{Spec}_{\varepsilon} A, \quad$ in particular $\Gamma_{\varepsilon_{n}^{\prime \prime}}^{n}(A) \quad \rightarrow \quad \operatorname{Spec} A$.

Let's compute the τ, π, and τ_{1} inclusion sets for $\operatorname{Spec} A$, i.e.

$$
\begin{aligned}
\tau \text { method: } & \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon_{n}} A_{n, k}} \\
\pi \text { method: } & \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon_{n}^{\prime}} A_{n, k}^{\operatorname{per}}} \\
\tau_{1} \text { method: } & \overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A),}
\end{aligned}
$$

where
$\gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)=\left\{\lambda \in \mathbb{C}: \min \left(\nu\left(\left.(A-\lambda I)\right|_{E_{n, k}}\right), \nu\left(\left.(A-\lambda I)^{*}\right|_{E_{n, k}}\right)\right) \leq \varepsilon_{n}^{\prime \prime}\right\}$,
in the case that A is the shift operator, so that
$\alpha=(\ldots, 0,0, \ldots), \beta=(\ldots, 0,0, \ldots), \gamma=(\ldots, 1,1, \ldots)$,

$$
\operatorname{Spec} A=\mathbb{T}=\{z:|z|=1\}
$$

Let's compute the τ, π, and τ_{1} inclusion sets for $\operatorname{Spec} A$, i.e.

$$
\begin{aligned}
\tau \text { method: } & \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon_{n}} A_{n, k}} \\
\pi \text { method: } & \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon_{n}^{\prime}} A_{n, k}^{\operatorname{per}}} \\
\tau_{1} \text { method: } & \bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A),
\end{aligned}
$$

where
$\gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)=\left\{\lambda \in \mathbb{C}: \min \left(\nu\left(\left.(A-\lambda I)\right|_{E_{n, k}}\right), \nu\left(\left.(A-\lambda I)^{*}\right|_{E_{n, k}}\right)\right) \leq \varepsilon_{n}^{\prime \prime}\right\}$,
in the case that A is the shift operator, so that
$\alpha=(\ldots, 0,0, \ldots), \beta=(\ldots, 0,0, \ldots), \gamma=(\ldots, 1,1, \ldots)$, $\operatorname{Spec} A=\mathbb{T}=\{z:|z|=1\}$,

$$
\varepsilon_{n}, \varepsilon_{n}^{\prime}, \varepsilon_{n}^{\prime \prime} \leq 2 \sin \left(\frac{\pi}{2 n}\right)\left(\|\alpha\|_{\infty}+\|\gamma\|_{\infty}\right)=2 \sin \left(\frac{\pi}{2 n}\right)
$$

and the matrices $A_{n, k}, k \in \mathbb{Z}$, are all the same!

We now look at a tridiagonal matrix A with 3-periodic diagonals:
1st sub-diagonal $\alpha=(\cdots, 0,0,0, \cdots)$
main diagonal $\beta=\left(\cdots,-\frac{3}{2}, 1,1, \cdots\right)$
super-diagonal $\gamma=(\cdots, 1,2,1, \cdots)$

Let's take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space E, can we construct a sequence of compact sets $U_{n} \subset \mathbb{C}$ with

- (i) $\operatorname{Spec} A \subset U_{n}$ for each n;
- (ii) $U_{n} \rightarrow \operatorname{Spec} A$ as $n \rightarrow \infty$ (Hausdorff convergence);
- (iii) each U_{n} can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation of A, with respect to some orthonormal sequence, is banded or band-dominated.

Let's take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space E, can we construct a sequence of compact sets $U_{n} \subset \mathbb{C}$ with

- (i) $\operatorname{Spec} A \subset U_{n}$ for each n;
- (ii) $U_{n} \rightarrow \operatorname{Spec} A$ as $n \rightarrow \infty$ (Hausdorff convergence);
- (iii) each U_{n} can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation of A, with respect to some orthonormal sequence, is banded or band-dominated.

If we put

$$
U_{n}=\Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}
$$

then (i) and (ii) are true, but only for tridiagonal A, and surely (iii) is not true?

Let's take stock: what were we trying to do?

Question. Given a bounded linear operator A on a Hilbert space E, can we construct a sequence of compact sets $U_{n} \subset \mathbb{C}$ with

- (i) $\operatorname{Spec} A \subset U_{n}$ for each n;
- (ii) $U_{n} \rightarrow \operatorname{Spec} A$ as $n \rightarrow \infty$ (Hausdorff convergence);
- (iii) each U_{n} can be computed in finitely many operations?

My claimed answer. A qualified yes, if the matrix representation of A, with respect to some orthonormal sequence, is banded or band-dominated.

If we put

$$
U_{n}=\Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}
$$

then (i) and (ii) are true, but only for tridiagonal A, and surely
(iii) is not true? What are the missing ingredients?

$$
\text { If } \quad U_{n}=\Gamma_{\varepsilon_{n}^{\prime \prime}}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}
$$

then $\operatorname{Spec} A \subset U_{n}$ and $U_{n} \rightarrow \operatorname{Spec} A$, but only for tridiagonal A, and U_{n} can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi, Colbrook, Hansen, et al. 2020)

$$
\text { If } \quad U_{n}=\Gamma_{\varepsilon_{n}^{\prime \prime}}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}
$$

then $\operatorname{Spec} A \subset U_{n}$ and $U_{n} \rightarrow \operatorname{Spec} A$, but only for tridiagonal A, and U_{n} can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi, Colbrook, Hansen, et al. 2020)

- Realize that the entries of the tridiagonal matrix can themselves be square matrices - extends to A banded.

$$
\text { If } \quad U_{n}=\Gamma_{\varepsilon_{n}^{\prime \prime}}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}
$$

then $\operatorname{Spec} A \subset U_{n}$ and $U_{n} \rightarrow \operatorname{Spec} A$, but only for tridiagonal A, and U_{n} can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi, Colbrook, Hansen, et al. 2020)

- Realize that the entries of the tridiagonal matrix can themselves be square matrices - extends to A banded.
- Perturbation argument extends to A band-dominated, approximated by A_{n} (banded), with $\delta_{n}:=\left\|A-A_{n}\right\| \rightarrow 0$.

$$
\text { If } \quad U_{n}=\Gamma_{\varepsilon_{n}^{\prime \prime}}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}
$$

then $\operatorname{Spec} A \subset U_{n}$ and $U_{n} \rightarrow \operatorname{Spec} A$, but only for tridiagonal A, and U_{n} can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi, Colbrook, Hansen, et al. 2020)

- Realize that the entries of the tridiagonal matrix can themselves be square matrices - extends to A banded.
- Perturbation argument extends to A band-dominated, approximated by A_{n} (banded), with $\delta_{n}:=\left\|A-A_{n}\right\| \rightarrow 0$.
- For τ method approximate $\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon_{n}} A_{n, k}$ by finite union $\bigcup_{k \in K_{n}^{\text {fin }}} B_{n, k}$ where $\left\{B_{n, k}: k \in K_{n}^{\mathrm{fin}}\right\}$ is an ε-net (with $\varepsilon=1 / n$) for the compact set $\overline{\left\{A_{n, k}: k \in \mathbb{Z}\right\}}$. Similarly for τ_{1} method.

$$
\text { If } \quad U_{n}=\Gamma_{\varepsilon_{n}^{\prime \prime}}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}
$$

then $\operatorname{Spec} A \subset U_{n}$ and $U_{n} \rightarrow \operatorname{Spec} A$, but only for tridiagonal A, and U_{n} can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi, Colbrook, Hansen, et al. 2020)

- Realize that the entries of the tridiagonal matrix can themselves be square matrices - extends to A banded.
- Perturbation argument extends to A band-dominated, approximated by A_{n} (banded), with $\delta_{n}:=\left\|A-A_{n}\right\| \rightarrow 0$.
- For τ method approximate $\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon_{n}} A_{n, k}$ by finite union $\bigcup_{k \in K_{n}^{\mathrm{fin}}} B_{n, k}$ where $\left\{B_{n, k}: k \in K_{n}^{\mathrm{fin}}\right\}$ is an ε-net (with $\varepsilon=1 / n)$ for the compact set $\overline{\left\{A_{n, k}: k \in \mathbb{Z}\right\}}$. Similarly for τ_{1} method.
- Define $U_{n}:=\left(\Gamma_{\varepsilon_{n}^{\prime \prime}+\delta_{n}+3 / n}^{n, \text { fin }}\left(A_{n}\right) \cap \frac{1}{n}(\mathbb{Z}+\mathrm{i} \mathbb{Z})\right)+\frac{2}{n} \overline{\mathbb{D}}$.

$$
\text { If } \quad U_{n}=\Gamma_{\varepsilon_{n}^{\prime \prime}}^{n}(A):=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}
$$

then $\operatorname{Spec} A \subset U_{n}$ and $U_{n} \rightarrow \operatorname{Spec} A$, but only for tridiagonal A, and U_{n} can't be computed in finitely many operations.

Missing Ingredients (cf. Ben-Artzi, Colbrook, Hansen, et al. 2020)

- Realize that the entries of the tridiagonal matrix can themselves be square matrices - extends to A banded.
- Perturbation argument extends to A band-dominated, approximated by A_{n} (banded), with $\delta_{n}:=\left\|A-A_{n}\right\| \rightarrow 0$.
- For τ method approximate $\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon_{n}} A_{n, k}$ by finite union $\bigcup_{k \in K_{n}^{\text {fin }}} B_{n, k}$ where $\left\{B_{n, k}: k \in K_{n}^{\mathrm{fin}}\right\}$ is an ε-net (with $\varepsilon=1 / n$) for the compact set $\overline{\left\{A_{n, k}: k \in \mathbb{Z}\right\}}$. Similarly for τ_{1} method.
- Define $U_{n}:=\left(\Gamma_{\varepsilon_{n}^{\prime \prime}+\delta_{n}+3 / n}^{n, \text { fin }}\left(A_{n}\right) \cap \frac{1}{n}(\mathbb{Z}+\mathrm{i} \mathbb{Z})\right)+\frac{2}{n} \overline{\mathbb{D}}$. Then $\operatorname{Spec} A \subset U_{n}, U_{n} \rightarrow \operatorname{Spec} A$, and U_{n} can be computed with finitely many operations.

A final example [Feinberg/Zee 1999]

$$
A=\left(\begin{array}{cccccc}
\ddots & \ddots & & & & \\
\ddots & 0 & 1 & & & \\
& b_{-1} & 0 & 1 & & \\
& & b_{0} & 0 & 1 & \\
& & & b_{1} & 0 & \ddots \\
& & & & \ddots & \ddots
\end{array}\right)
$$

where $b=\left(\cdots, b_{-1}, b_{0}, b_{1}, \cdots\right) \in\{ \pm 1\}^{\mathbb{Z}}$ is a pseudoergodic sequence (Davies 2001)

$$
A=\left(\begin{array}{cccccc}
\ddots & \ddots & & & & \\
\ddots & 0 & 1 & & & \\
& b_{-1} & 0 & 1 & & \\
& & b_{0} & 0 & 1 & \\
& & & b_{1} & 0 & \ddots \\
& & & & \ddots & \ddots
\end{array}\right)
$$

where $b=\left(\cdots, b_{-1}, b_{0}, b_{1}, \cdots\right) \in\{ \pm 1\}^{\mathbb{Z}}$ is a pseudoergodic sequence (Davies 2001); i.e., every finite pattern of ± 1 's can be found somewhere in the infinite sequence b.

A final example [Feinberg/Zee 1999]

$$
A=\left(\begin{array}{cccccc}
\ddots & \ddots & & & & \\
\ddots & 0 & 1 & & & \\
& b_{-1} & 0 & 1 & & \\
& & b_{0} & 0 & 1 & \\
& & & b_{1} & 0 & \ddots \\
& & & & \ddots & \ddots
\end{array}\right)
$$

where $b=\left(\cdots, b_{-1}, b_{0}, b_{1}, \cdots\right) \in\{ \pm 1\}^{\mathbb{Z}}$ is a pseudoergodic sequence (Davies 2001); i.e., every finite pattern of ± 1 's can be found somewhere in the infinite sequence b.

This is an example where the τ method is convergent:

$$
\operatorname{Spec} A \subset U_{n}:=\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon_{n}} A_{n, k} \rightarrow \operatorname{Spec} A, \quad \text { as } \quad n \rightarrow \infty,
$$

and where the union is finite: 2^{n-1} different matrices $A_{n, k}$.

Upper and lower bounds on Spec A: which is sharp?

(The square has corners at ± 2 and ± 2 i.)

Upper and lower bounds on $\operatorname{Spec} A$: which is sharp?

(The square has corners at ± 2 and $\pm 2 \mathrm{i}$.)
We have $\operatorname{Spec} A \subset U_{n}$ and $U_{n} \rightarrow \operatorname{Spec} A$ so, if $\lambda \notin \operatorname{Spec} A$, then $\lambda \notin U_{n}$ for all sufficiently large n.

Is $\lambda=1.5+0.5 \mathrm{i} \in \operatorname{Spec} A$?

$$
\lambda=1.5+0.5 \mathrm{i} \notin U_{34} \supset \operatorname{Spec} A, \quad \text { so } \lambda \notin \operatorname{Spec} A,
$$

so $\operatorname{Spec} A$ is a strict subset of the square.

Is $\lambda=1.5+0.5 \mathrm{i} \in \operatorname{Spec} A$?

$$
\lambda=1.5+0.5 \mathrm{i} \notin U_{34} \supset \operatorname{Spec} A, \quad \text { so } \quad \lambda \notin \operatorname{Spec} A,
$$

so $\operatorname{Spec} A$ is a strict subset of the square. This was a large calculation: we needed to check whether $2^{33} \approx 8.6 \times 10^{9}$ matrices of size 34×34 were positive definite!

1. For tridiagonal A we have derived the τ, π, and τ_{1} inclusion set families for $\operatorname{Spec}_{\varepsilon} A$, for $\varepsilon \geq 0$, i.e., for $n \in \mathbb{N}$,
τ method

$$
\begin{aligned}
& \operatorname{Spec}_{\varepsilon} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}} A_{n, k}} \\
& \operatorname{Spec}_{\varepsilon} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime}} A_{n, k}^{\text {per }}}
\end{aligned}
$$

π method:
τ_{1} method: $\quad \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A)=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}$,
with explicit and optimsed formulae for $\varepsilon_{n}, \varepsilon_{n}^{\prime}, \varepsilon_{n}^{\prime \prime}$. N.B. $\gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n, k}(A)$ can be interpreted as a pseudospectrum for a rectangular matrix.

1. For tridiagonal A we have derived the τ, π, and τ_{1} inclusion set families for $\operatorname{Spec}_{\varepsilon} A$, for $\varepsilon \geq 0$, i.e., for $n \in \mathbb{N}$,
τ method:

$$
\begin{aligned}
& \operatorname{Spec}_{\varepsilon} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}} A_{n, k}} \\
& \operatorname{Spec}_{\varepsilon} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime}} A_{n, k}^{\text {per }}}
\end{aligned}
$$

π method:
τ_{1} method: $\quad \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A)=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}$,
with explicit and optimsed formulae for $\varepsilon_{n}, \varepsilon_{n}^{\prime}, \varepsilon_{n}^{\prime \prime}$. N.B. $\gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n, k}(A)$ can be interpreted as a pseudospectrum for a rectangular matrix.
2. Shown $\Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \rightarrow \operatorname{Spec}_{\varepsilon} A$ as $n \rightarrow \infty$, for $\varepsilon \geq 0$. N.B. $\operatorname{Spec}_{0} A=\operatorname{Spec} A$.

1. For tridiagonal A we have derived the τ, π, and τ_{1} inclusion set families for $\operatorname{Spec}_{\varepsilon} A$, for $\varepsilon \geq 0$, i.e., for $n \in \mathbb{N}$,
τ method:

$$
\begin{aligned}
& \operatorname{Spec}_{\varepsilon} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}} A_{n, k}} \\
& \operatorname{Spec}_{\varepsilon} A \subset \overline{\bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime}} A_{n, k}^{\text {per }}}
\end{aligned}
$$

π method:
τ_{1} method: $\quad \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A)=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}$,
with explicit and optimsed formulae for $\varepsilon_{n}, \varepsilon_{n}^{\prime}, \varepsilon_{n}^{\prime \prime}$. N.B. $\gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n, k}(A)$ can be interpreted as a pseudospectrum for a rectangular matrix.
2. Shown $\Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \rightarrow \operatorname{Spec}_{\varepsilon} A$ as $n \rightarrow \infty$, for $\varepsilon \geq 0$. N.B. $\operatorname{Spec}_{0} A=\operatorname{Spec} A$.
3. Shown some examples where the unions $\bigcup_{k \in \mathbb{Z}}$ are finite, exhibiting the inclusions and the τ_{1}-method convergence.

1. For tridiagonal A we have derived the τ, π, and τ_{1} inclusion set families for $\operatorname{Spec}_{\varepsilon} A$, for $\varepsilon \geq 0$, i.e., for $n \in \mathbb{N}$,
τ method: $\quad \operatorname{Spec}_{\varepsilon} A \subset \bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}} A_{n, k}$
π method: $\quad \operatorname{Spec}_{\varepsilon} A \subset \bigcup_{k \in \mathbb{Z}} \operatorname{Spec}_{\varepsilon+\varepsilon_{n}^{\prime}} A_{n, k}^{\text {per }}$
τ_{1} method: $\quad \operatorname{Spec}_{\varepsilon} A \subset \Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A)=\overline{\bigcup_{k \in \mathbb{Z}} \gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n, k}(A)}$,
with explicit and optimsed formulae for $\varepsilon_{n}, \varepsilon_{n}^{\prime}, \varepsilon_{n}^{\prime \prime}$. N.B. $\gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n, k}(A)$ can be interpreted as a pseudospectrum for a rectangular matrix.
2. Shown $\Gamma_{\varepsilon+\varepsilon_{n}^{\prime \prime}}^{n}(A) \rightarrow \operatorname{Spec}_{\varepsilon} A$ as $n \rightarrow \infty$, for $\varepsilon \geq 0$. N.B. $\operatorname{Spec}_{0} A=\operatorname{Spec} A$.
3. Shown some examples where the unions $\bigcup_{k \in \mathbb{Z}}$ are finite, exhibiting the inclusions and the τ_{1}-method convergence.
4. Sketched extension to A band-dominated, and how τ_{1}-method can be adapted to need only finitely many operations while maintaining inclusion and convergence properties.

On Spectral Inclusion Sets and Computing the Spectra and Pseudospectra of Bounded Linear Operators

Simon N. Chandler-Wilde, Ratchanikorn Chonchaiya, and Marko Lindner

January 11, 2024

Abstract

In this paper we derive novel families of inclusion sets for the spectrum and pseudospectrum of large classes of bounded linear operators, and establish convergence of particular sequences of these inclusion sets to the spectrum or pseudospectrum, as appropriate. Our results apply, in particular, to bounded linear operators on a separable Hilbert space that, with respect to some orthonormal basis, have a representation as a bi-infinite matrix that is banded or band-dominated. More generally, our results apply in cases where the matrix entries themselves are bounded linear operators on some Banach space. In the scalar matrix entry case we show that our methods, given the input information we assume, lead to a sequence of approximations to the spectrum, each element of which can be computed in finitely many arithmetic operations, so that, with our assumed inputs, the problem of determining the spectrum of a band-dominated operator has solvability complexity index one, in the sense of Ben-Artzi et al. (C. R. Acad. Sci. Paris, Ser. I 353 (2015), 931-936). As a concrete and substantial application, we apply our methods to the determination of the spectra of non-self-adjoint bi-infinite tridiagonal matrices that are pseudoergodic in the sense of Davies (Commun. Math. Phys. 216 (2001) 687-704).

Mathematics subject classification (2010): Primary 47A10; Secondary 47B36, 46E40, 47B80. Keywords: band matrix, band-dominated matrix, solvability complexity index, pseudoergodic

