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Diffraction by a (right-angled) wedge – the HSMM way

Point source z

∆u+ k2u = δz, k > 0

u = 0

u satisfies S.R.C. at∞

x1

x2



The Half-Space Matching Method Philosophy

1 It is easy to solve explicitly Dirichlet problems in half-planes.
2 So express your solution in each of a number of overlapping half-planes using

this explicit solution.
3 The HSMM equations are obtained by enforcing compatibility between

these different half-plane representations.

Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018

Step 1. Let’s solve the simplest half-plane problem ...

∆u+ k2u = 0 in Ω

u = g on Σ

u satisfies S.R.C. at∞

Solution is

u(x) = 2

∫
Σ

∂Φ(x, y)

∂y2
g(y) ds(y), x ∈ Ω,

where

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|).
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Step 1. Let’s solve the simplest half-plane problem ...

Point source z

∆u+ k2u = δz in Ω

u = g on Σ

u satisfies S.R.C. at∞

z′
Solution is

u(x) = G(x, z) + 2

∫
Σ

∂Φ(x, y)

∂y2
g(y) ds(y), x ∈ Ω,

where
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The HSMM integral equations

Point source z

u = 0

Σ1

Σ0

Two integral equations for unknowns u|Σ0
and u|Σ1

:

u(x) = G(x, z) + 2

∫
Σ1

∂Φ(x, y)

∂y2
u(y) ds(y), x ∈ Σ0,

u(x) = 2

∫
Σ0

∂Φ(x, y)

∂y1
u(y) ds(y), x ∈ Σ1.

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J.
Appl. Math. 2022) if one requires, additionally, that

u(x) = ameikrr−1/2 +O(r−3/2), as r := |x| → ∞ with x ∈ Σm, m = 0, 1.

Let ϕ0(s) := u((0, s)) and ϕ1(s) := u((s, 0)), for s ≥ 0. Then, explicitly the
above equations are . . .
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The Complex-Scaled HSMM integral equations
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ϕm(s) = ameikss−1/2 +O(s−3/2), as s→∞, m = 0, 1.

1. Each RHS provides an analytic continuation of the LHS into the right-hand
complex plane, so, for 0 < θ < π/2, . . .
2. Rotating the paths of integration we get . . .
3. Introducing ϕθm and ψθ defined by ϕθm(r) := ϕm(reiθ) and ψθ(r) := ψ(reiθ),
these equations are . . .
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as long as x2 > tan(θ)x1. So take θ < π/4.
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But why use the CS HSMM integral equations?
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Theorem. As an operator on L2(R+), Dθ = D0 +Dθ

1 where Dθ
1 is compact and

‖D0‖ =
1√
2
, ‖Dθ

1‖ ≤
√

1− e−π sin(θ)

4
√
π sin(θ)

,

so that ‖Dθ‖ = ‖Dθ‖ ≤ ‖D0‖+ ‖Dθ
1‖ < 1 if

θ > sin−1(p/π) ≈ 0.13438π,

where p is the unique positive solution of

π − πe−p = 8(3− 2
√

2)p2.
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converges

, and Galerkin methods are convergent and quasi-optimal:

Error in Galerkin solution ≤ ‖Dθ‖
1− ‖Dθ‖ Best approximation from Galerkin subspace
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The CS HSMM integral equations: numerical results

The equations in operator form are

ϕθ0 = ψθ +Dθϕθ1, ϕθ1 = Dθϕθ0

Approximate the integral operator Dθ by an N ×N matrix Dθ
N by approximating∫ ∞

0

≈
∫ L

0

≈ Midpoint rule with N subintervals

and by collocating at the midpoints of the subintervals.

The discrete unknowns are N × 1 vectors ϕθm, m = 0, 1, approximations to the
true values at the collocation points, that satisfy

ϕθ0 = ψθ +Dθ
Nϕ

θ
1, ϕθ1 = Dθ

Nϕ
θ
0
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What can the CS HSMM do apart from wedges?

Polygons with Dirichlet (or other b.c.’s) in homogeneous medium

See Bonnet-Bendhia, C-W, Fliss et al, SIAM J. Math. Anal. 2022.
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What can the CS HSMM do apart from wedges?

Arbitrary inhomogeneity in homogeneous medium

See Bonnet-Bendhia, C-W, Fliss et al, SIAM J. Math. Anal. 2022.



Conclusions and Open Problems

The CS HSMM an attractive formulation for computation of scattering by wedges
(with a variety of boundary conditions)

The method equally attractive for scattering by polygons, indeed (through coupling
to a local FEM solve) to any local perturbation of a homogeneous medium

The HSMM (without CS) already well-established for a range of scattering
problems in complex media, e.g.,

Open problems for the CS HSMM include:

complete numerical analysis, and bounds for other wedge angles and b.c.’s;

application of HSMM (and its CS version) to transmission wedge problems;

exact solution of the CS HSMM integral equations by the K-L transform?

CS HSMM formulations for problems with more complex backgrounds.
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