High-frequency scattering by polygons and wedges via the complex-scaled (C-S) half-space matching method (HSMM)

Simon Chandler-Wilde
Department of Mathematics and Statistics University of Reading, UK

With: Anne-Sophie Bonnet-Bendhia \& Sonia Fliss (ENSTA, France) INI Canonical Scattering Workshop, February 2023

Diffraction by a (right-angled) wedge - the HSMM way

u satisfies S.R.C. at ∞

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018
Step 1. Let's solve the simplest half-plane problem ...
u satisfies S.R.C. at ∞

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \quad \Omega \\
& u=g \quad \text { on } \quad \Sigma
\end{aligned}
$$

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018
Step 1. Let's solve the simplest half-plane problem ...
u satisfies S.R.C. at ∞

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \quad \Omega \\
& u=g \quad \text { on } \quad \Sigma
\end{aligned}
$$

Solution is
where

$$
\begin{gathered}
u(x)=2 \int_{\Sigma} \frac{\partial \Phi(x, y)}{\partial y_{2}} g(y) \mathrm{d} s(y), \quad x \in \Omega, \\
\Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|) .
\end{gathered}
$$

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018
Step 1. Let's solve the simplest half-plane problem ...

$$
\begin{array}{ll}
& u \text { satisfies S.R.C. at } \infty \\
\Delta u+k^{2} u=\delta_{z} & \text { in } \quad \Omega
\end{array}
$$

$$
\text { Point source } z \bullet \quad u=g \quad \text { on } \quad \Sigma
$$

Solution is
where

$$
\begin{gathered}
u(x)=2 \int_{\Sigma} \frac{\partial \Phi(x, y)}{\partial y_{2}} g(y) \mathrm{d} s(y), \quad x \in \Omega, \\
\Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|) .
\end{gathered}
$$

The Half-Space Matching Method Philosophy

(1) It is easy to solve explicitly Dirichlet problems in half-planes.
(2) So express your solution in each of a number of overlapping half-planes using this explicit solution.
(3) The HSMM equations are obtained by enforcing compatibility between these different half-plane representations.
Bonnet-BenDhia, Fliss, Tonnoir, J. Comp. Appl. Math. 2018
Step 1. Let's solve the simplest half-plane problem ...
u satisfies S.R.C. at ∞

$$
\Delta u+k^{2} u=\delta_{z} \quad \text { in } \quad \Omega
$$

Point source $z \bullet \quad u=g \quad$ on $\quad \Sigma$

Solution is
where

$$
u(x)=G(x, z)+2 \int_{\Sigma} \frac{\partial \Phi(x, y)}{\partial y_{2}} g(y) \mathrm{d} s(y), \quad x \in \Omega
$$

$$
G(x, z):=\Phi(x, z)-\Phi\left(x, z^{\prime}\right), \quad \Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|) .
$$

Diffraction by a (right-angled) wedge - the HSMM way

u satisfies S.R.C. at ∞

$$
\Delta u+k^{2} u=\delta_{z} \quad \Omega_{1}
$$

Point source $z \bullet$

Diffraction by a (right-angled) wedge - the HSMM way

Diffraction by a (right-angled) wedge - the HSMM way

Diffraction by a (right-angled) wedge - the HSMM way

Diffraction by a (right-angled) wedge - the HSMM way

Diffraction by a (right-angled) wedge - the HSMM way

The HSMM integral equations

Two integral equations for unknowns $\left.u\right|_{\Sigma_{0}}$ and $\left.u\right|_{\Sigma_{1}}$:

$$
\begin{aligned}
& u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{0}, \\
& u(x)=2 \int_{\Sigma_{0}} \frac{\partial \Phi(x, y)}{\partial y_{1}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{1} .
\end{aligned}
$$

The HSMM integral equations

Two integral equations for unknowns $\left.u\right|_{\Sigma_{0}}$ and $\left.u\right|_{\Sigma_{1}}$:

$$
\begin{aligned}
& u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{0}, \\
& u(x)=2 \int_{\Sigma_{0}} \frac{\partial \Phi(x, y)}{\partial y_{1}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{1} .
\end{aligned}
$$

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J. Appl. Math. 2022) if one requires, additionally, that

$$
u(x)=a_{m} \mathrm{e}^{\mathrm{i} k r} r^{-1 / 2}+O\left(r^{-3 / 2}\right), \quad \text { as } r:=|x| \rightarrow \infty \text { with } x \in \Sigma_{m}, \quad m=0,1 .
$$

The HSMM integral equations

Two integral equations for unknowns $\left.u\right|_{\Sigma_{0}}$ and $\left.u\right|_{\Sigma_{1}}$:

$$
\begin{aligned}
& u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{0}, \\
& u(x)=2 \int_{\Sigma_{0}} \frac{\partial \Phi(x, y)}{\partial y_{1}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{1} .
\end{aligned}
$$

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J. Appl. Math. 2022) if one requires, additionally, that

$$
u(x)=a_{m} \mathrm{e}^{\mathrm{i} k r} r^{-1 / 2}+O\left(r^{-3 / 2}\right), \quad \text { as } r:=|x| \rightarrow \infty \text { with } x \in \Sigma_{m}, \quad m=0,1 .
$$

$$
\text { Let } \varphi_{0}(s):=u((0, s)) \text { and } \varphi_{1}(s):=u((s, 0)) \text {, for } s \geq 0 \text {. }
$$

The HSMM integral equations

Two integral equations for unknowns $\left.u\right|_{\Sigma_{0}}$ and $\left.u\right|_{\Sigma_{1}}$:

$$
\begin{aligned}
& u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{0}, \\
& u(x)=2 \int_{\Sigma_{0}} \frac{\partial \Phi(x, y)}{\partial y_{1}} u(y) \mathrm{d} s(y), \quad x \in \Sigma_{1} .
\end{aligned}
$$

These equations have exactly one solution (Bonnet-BenDhia, C-W, Fliss, SIAM J. Appl. Math. 2022) if one requires, additionally, that

$$
u(x)=a_{m} \mathrm{e}^{\mathrm{i} k r} r^{-1 / 2}+O\left(r^{-3 / 2}\right), \quad \text { as } r:=|x| \rightarrow \infty \text { with } x \in \Sigma_{m}, \quad m=0,1 .
$$

Let $\varphi_{0}(s):=u((0, s))$ and $\varphi_{1}(s):=u((s, 0))$, for $s \geq 0$. Then, explicitly the above equations are

The HSMM integral equations

$$
\begin{aligned}
& \varphi_{0}(s)=\psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0, \\
& \varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0,
\end{aligned}
$$

The HSMM integral equations

$$
\begin{aligned}
& \varphi_{0}(s)=\psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0, \\
& \varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0,
\end{aligned}
$$

with

$$
\varphi_{m}(s)=a_{m} \mathrm{e}^{\mathrm{i} k s} s^{-1 / 2}+O\left(s^{-3 / 2}\right), \quad \text { as } s \rightarrow \infty, \quad m=0,1,
$$

The HSMM integral equations

$$
\begin{aligned}
\varphi_{0}(s) & =\psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0 \\
\varphi_{1}(s) & =\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0
\end{aligned}
$$

with

$$
\varphi_{m}(s)=a_{m} \mathrm{e}^{\mathrm{i} k s} s^{-1 / 2}+O\left(s^{-3 / 2}\right), \quad \text { as } s \rightarrow \infty, \quad m=0,1
$$

and

$$
\psi(s):=\frac{\mathrm{i}}{4} H_{0}^{(1)}\left(k \sqrt{\left(s-z_{2}\right)^{2}+z_{1}^{2}}\right)-\frac{\mathrm{i}}{4} H_{0}^{(1)}\left(k \sqrt{\left(s+z_{2}\right)^{2}+z_{1}^{2}}\right), \quad s \geq 0
$$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)=\psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{m}(s)=a_{m} \mathrm{e}^{\mathrm{i} k s} s^{-1 / 2}+O\left(s^{-3 / 2}\right), \quad \text { as } s \rightarrow \infty, \quad m=0,1 .
\end{gathered}
$$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)=\psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{m}(s)=a_{m} \mathrm{e}^{\mathrm{i} k s} s^{-1 / 2}+O\left(s^{-3 / 2}\right), \quad \text { as } s \rightarrow \infty, \quad m=0,1 .
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)=\quad \psi(s)+\frac{\mathrm{i} k s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0, \\
\varphi_{1}(s)=\frac{\Sigma_{1}}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0,
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane, so, for $0<\theta<\pi / 2, \ldots$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)=\quad \psi(s)+\frac{\Sigma_{0}}{2} \int_{0}^{\mathrm{i}^{\mathrm{i} \theta} \infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0, \\
\varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\mathrm{e}^{\mathrm{i} \theta} \infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0,
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane, so, for $0<\theta<\pi / 2, \ldots$
2. Rotating the paths of integration we get ...

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}(s)=\psi(s)+\frac{\Sigma_{0}}{2} \int_{0}^{\mathrm{e}^{\mathrm{i} \theta} \infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0, \\
\varphi_{1}(s)=\frac{\mathrm{i} k s}{2} \int_{0}^{\mathrm{e}^{\mathrm{i} \theta} \infty} \frac{H_{1}^{(1)}\left(k \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}(t) \mathrm{d} t, \quad s=r \mathrm{e}^{\mathrm{i} \theta}, r \geq 0,
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane, so, for $0<\theta<\pi / 2, \ldots$
2. Rotating the paths of integration we get ...
3. Introducing φ_{m}^{θ} and ψ^{θ} defined by $\varphi_{m}^{\theta}(r):=\varphi_{m}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)$ and $\psi^{\theta}(r):=\psi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)$, these equations are ...

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i}^{\mathrm{i} \mathrm{e}^{\mathrm{i} \theta}}}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

1. Each RHS provides an analytic continuation of the LHS into the right-hand complex plane, so, for $0<\theta<\pi / 2, \ldots$
2. Rotating the paths of integration we get ...
3. Introducing φ_{m}^{θ} and ψ^{θ} defined by $\varphi_{m}^{\theta}(r):=\varphi_{m}\left(r \mathrm{e}^{\mathrm{i} \theta}\right)$ and $\psi^{\theta}(r):=\psi\left(r \mathrm{e}^{\mathrm{i} \theta}\right)$, these equations are ...

The Complex-Scaled HSMM integral equations

$$
\Omega_{1}
$$

$$
\begin{gathered}
\text { Point source } z \cdot \\
\Sigma_{1} \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)= \\
\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

The Complex-Scaled HSMM integral equations

$$
\Omega_{1}
$$

$$
\begin{gathered}
\text { Point source } z \cdot \\
\Sigma_{1} \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)= \\
\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
u(x)=G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y)
$$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\Omega_{1} \\
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i}_{1} \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k x_{2}}{2} \int_{0}^{\infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(t-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(t-x_{1}\right)^{2}}} \varphi_{1}(t) \mathrm{d} t
\end{aligned}
$$

The Complex-Scaled HSMM integral equations

$$
\Omega_{1}
$$

$$
\begin{gathered}
\text { Point source } z \cdot \\
\sum_{1} \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k x_{2}}{2} \int_{0}^{\mathrm{e}^{\mathrm{i} \theta} \infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(t-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(t-x_{1}\right)^{2}}} \varphi_{1}(t) \mathrm{d} t
\end{aligned}
$$

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
\Omega_{1} \\
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i}_{1} \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} x_{2}}{2} \int_{0}^{\infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}} \varphi_{1}^{\theta}(r) \mathrm{d} r
\end{aligned}
$$

The Complex-Scaled HSMM integral equations

$$
x, \quad \Omega_{1}
$$

Point source z •

 $\Sigma_{1}$$$
\begin{aligned}
\varphi_{0}^{\theta}(s) & =\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 \\
\varphi_{1}^{\theta}(s) & =\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0
\end{aligned}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} x_{2}}{2} \int_{0}^{\infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}} \varphi_{1}^{\theta}(r) \mathrm{d} r,
\end{aligned}
$$ as long as $x_{2}>\tan (\theta) x_{1}$.

The Complex-Scaled HSMM integral equations

$$
\begin{gathered}
x \cdot \Omega_{1} \\
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

We can recover u : for example for $x \in \Omega_{1}$,

$$
\begin{aligned}
u(x) & =G(x, z)+2 \int_{\Sigma_{1}} \frac{\partial \Phi(x, y)}{\partial y_{2}} u(y) \mathrm{d} s(y) \\
& =G(x, z)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} x_{2}}{2} \int_{0}^{\infty} \frac{H^{(1)}\left(k \sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}\right)}{\sqrt{x_{2}^{2}+\left(\mathrm{e}^{\mathrm{i} \theta} r-x_{1}\right)^{2}}} \varphi_{1}^{\theta}(r) \mathrm{d} r,
\end{aligned}
$$

as long as $x_{2}>\tan (\theta) x_{1}$. So take $\theta<\pi / 4$.

But why use the CS HSMM integral equations?

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\Sigma_{0}}{2} \mathrm{e}^{\mathrm{i} \theta} s \int_{0}^{\infty} \frac{\sum_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\left.\mathrm{i} \theta \sqrt{s^{2}+t^{2}}\right)}\right.}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

But why use the CS HSMM integral equations?

$$
\begin{gathered}
\text { Point source } z \cdot \\
\varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i}^{\mathrm{i} \mathrm{e}^{\mathrm{i} \theta}}}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
\varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{gathered}
$$

Key feature. For some constant $C_{\theta}>0$,

$$
\left|\varphi_{m}^{\theta}(s)\right| \leq C_{\theta} \exp (-k \sin (\theta)), \quad s \geq 0, \quad m=0,1
$$

But why use the CS HSMM integral equations?

$$
\begin{aligned}
& \varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0, \\
& \varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 .
\end{aligned}
$$

But why use the CS HSMM integral equations?

$$
\begin{aligned}
\varphi_{0}^{\theta}(s) & =\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 \\
\varphi_{1}^{\theta}(s) & =\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0
\end{aligned}
$$

Written in operator form these are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

But why use the CS HSMM integral equations?

$$
\begin{aligned}
& \varphi_{0}^{\theta}(s)=\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 \\
& \varphi_{1}^{\theta}(s)=\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0
\end{aligned}
$$

Written in operator form these are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}, \quad \text { i.e., } \quad\binom{\varphi_{0}^{\theta}}{\varphi_{1}^{\theta}}=\binom{\psi^{\theta}}{0}+\mathbf{D}^{\theta}\binom{\varphi_{0}^{\theta}}{\varphi_{1}^{\theta}}
$$

But why use the CS HSMM integral equations?

$$
\begin{aligned}
\varphi_{0}^{\theta}(s) & =\psi^{\theta}(s)+\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{1}^{\theta}(t) \mathrm{d} t, \quad s \geq 0 \\
\varphi_{1}^{\theta}(s) & =\frac{\mathrm{i} k \mathrm{e}^{\mathrm{i} \theta} s}{2} \int_{0}^{\infty} \frac{H_{1}^{(1)}\left(k \mathrm{e}^{\mathrm{i} \theta} \sqrt{s^{2}+t^{2}}\right)}{\sqrt{s^{2}+t^{2}}} \varphi_{0}^{\theta}(t) \mathrm{d} t, \quad s \geq 0
\end{aligned}
$$

Written in operator form these are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}, \quad \text { i.e., } \quad\binom{\varphi_{0}^{\theta}}{\varphi_{1}^{\theta}}=\binom{\psi^{\theta}}{0}+\mathbf{D}^{\theta}\binom{\varphi_{0}^{\theta}}{\varphi_{1}^{\theta}}
$$

Theorem. As an operator on $L^{2}\left(\mathbb{R}_{+}\right), D^{\theta}=D_{0}+D_{1}^{\theta}$ where D_{1}^{θ} is compact and

$$
\left\|D_{0}\right\|=\frac{1}{\sqrt{2}}, \quad\left\|D_{1}^{\theta}\right\| \leq \frac{\sqrt{1-\mathrm{e}^{-\pi \sin (\theta)}}}{4 \sqrt{\pi} \sin (\theta)}
$$

so that $\left\|\mathbf{D}^{\theta}\right\|=\left\|D^{\theta}\right\| \leq\left\|D_{0}\right\|+\left\|D_{1}^{\theta}\right\|<1$ if

$$
\theta>\sin ^{-1}(p / \pi) \approx 0.13438 \pi
$$

where p is the unique positive solution of

$$
\pi-\pi \mathrm{e}^{-p}=8(3-2 \sqrt{2}) p^{2}
$$

But why use the CS HSMM integral equations?

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

Theorem. As an operator on $L^{2}\left(\mathbb{R}_{+}\right), D^{\theta}=D_{0}+D_{1}^{\theta}$ where D_{1}^{θ} is compact and

$$
\left\|D_{0}\right\| \leq \frac{1}{\sqrt{2}}, \quad\left\|D_{1}^{\theta}\right\| \leq \frac{\sqrt{1-\mathrm{e}^{-\pi \sin (\theta)}}}{4 \sqrt{\pi} \sin (\theta)}
$$

so that $\left\|\mathbf{D}^{\theta}\right\|=\left\|D^{\theta}\right\| \leq\left\|D_{0}\right\|+\left\|D_{1}^{\theta}\right\|<1$ if

$$
\theta>\sin ^{-1}(p / \pi) \approx 0.13438 \pi
$$

where p is the unique positive solution of

$$
\pi-\pi \mathrm{e}^{-p}=8(3-2 \sqrt{2}) p^{2}
$$

As a consequence, if

$$
0.13438 \pi<\theta<0.25 \pi
$$

u can be recovered from φ_{0}^{θ} and φ_{1}^{θ}, and $\left\|\mathbf{D}^{\theta}\right\|<1$ so Neumann iteration converges

But why use the CS HSMM integral equations?

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

Theorem. As an operator on $L^{2}\left(\mathbb{R}_{+}\right), D^{\theta}=D_{0}+D_{1}^{\theta}$ where D_{1}^{θ} is compact and

$$
\left\|D_{0}\right\| \leq \frac{1}{\sqrt{2}}, \quad\left\|D_{1}^{\theta}\right\| \leq \frac{\sqrt{1-\mathrm{e}^{-\pi \sin (\theta)}}}{4 \sqrt{\pi} \sin (\theta)}
$$

so that $\left\|\mathbf{D}^{\theta}\right\|=\left\|D^{\theta}\right\| \leq\left\|D_{0}\right\|+\left\|D_{1}^{\theta}\right\|<1$ if

$$
\theta>\sin ^{-1}(p / \pi) \approx 0.13438 \pi
$$

where p is the unique positive solution of

$$
\pi-\pi \mathrm{e}^{-p}=8(3-2 \sqrt{2}) p^{2}
$$

As a consequence, if

$$
0.13438 \pi<\theta<0.25 \pi
$$

u can be recovered from φ_{0}^{θ} and φ_{1}^{θ}, and $\left\|\mathbf{D}^{\theta}\right\|<1$ so Neumann iteration converges, and Galerkin methods are convergent and quasi-optimal:

Error in Galerkin solution $\leq \frac{\left\|\mathbf{D}^{\theta}\right\|}{1-\left\|\mathbf{D}^{\theta}\right\|}$ Best approximation from Galerkin subspace

The CS HSMM integral equations: numerical results

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

The CS HSMM integral equations: numerical results

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.

The CS HSMM integral equations: numerical results

The equations in operator form are

$$
\varphi_{0}^{\theta}=\psi^{\theta}+D^{\theta} \varphi_{1}^{\theta}, \quad \varphi_{1}^{\theta}=D^{\theta} \varphi_{0}^{\theta}
$$

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
The discrete unknowns are $N \times 1$ vectors $\varphi_{m}^{\theta}, m=0,1$, approximations to the true values at the collocation points, that satisfy

$$
\boldsymbol{\varphi}_{0}^{\theta}=\boldsymbol{\psi}^{\theta}+D_{N}^{\theta} \boldsymbol{\varphi}_{1}^{\theta}, \quad \boldsymbol{\varphi}_{1}^{\theta}=D_{N}^{\theta} \boldsymbol{\varphi}_{0}^{\theta}
$$

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
Results for $L=3$ wavelengths $=\frac{4 \pi}{k}, \quad N=20, \quad \theta=0.24 \pi$.

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
Results for $L=3$ wavelengths $=\frac{4 \pi}{k}, \quad N=20, \quad \theta=0.27 \pi$.

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
Results for $L=3$ wavelengths $=\frac{4 \pi}{k}, \quad N=20, \quad \theta=0.29 \pi$.

The CS HSMM integral equations: numerical results

Approximate the integral operator D^{θ} by an $N \times N$ matrix D_{N}^{θ} by approximating

$$
\int_{0}^{\infty} \approx \int_{0}^{L} \approx \text { Midpoint rule with } N \text { subintervals }
$$

and by collocating at the midpoints of the subintervals.
Results for $L=3$ wavelengths $=\frac{4 \pi}{k}, \quad N=20, \quad \theta=0.24 \pi$.

What can the CS HSMM do apart from wedges?

What can the CS HSMM do apart from wedges?

Polygons with Dirichlet (or other b.c.'s) in homogeneous medium

See Bonnet-Bendhia, C-W, Fliss et al, SIAM J. Math. Anal. 2022.

What can the CS HSMM do apart from wedges?

Arbitrary inhomogeneity in homogeneous medium

See Bonnet-Bendhia, C-W, Fliss et al, SIAM J. Math. Anal. 2022.

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., scalar problem with complex background, Ott, Karlsruhe IT, PhD, 2017

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., crack in anisotropic elastic medium, Bécache, Bonnet-BenDhia, Fliss, Tonnoir, preprint, 2022

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., crack in anisotropic elastic medium, Bécache, Bonnet-BenDhia, Fliss, Tonnoir, preprint, 2022

Open problems for the CS HSMM include:

- complete numerical analysis, and bounds for other wedge angles and b.c.'s;

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., crack in anisotropic elastic medium, Bécache, Bonnet-BenDhia, Fliss, Tonnoir, preprint, 2022

Open problems for the CS HSMM include:

- complete numerical analysis, and bounds for other wedge angles and b.c.'s;
- application of HSMM (and its CS version) to transmission wedge problems;

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., crack in anisotropic elastic medium, Bécache, Bonnet-BenDhia, Fliss, Tonnoir, preprint, 2022

Open problems for the CS HSMM include:

- complete numerical analysis, and bounds for other wedge angles and b.c.'s;
- application of HSMM (and its CS version) to transmission wedge problems;
- exact solution of the CS HSMM integral equations by the K-L transform?

Conclusions and Open Problems

- The CS HSMM an attractive formulation for computation of scattering by wedges (with a variety of boundary conditions)
- The method equally attractive for scattering by polygons, indeed (through coupling to a local FEM solve) to any local perturbation of a homogeneous medium
- The HSMM (without CS) already well-established for a range of scattering problems in complex media, e.g., crack in anisotropic elastic medium, Bécache, Bonnet-BenDhia, Fliss, Tonnoir, preprint, 2022

Open problems for the CS HSMM include:

- complete numerical analysis, and bounds for other wedge angles and b.c.'s;
- application of HSMM (and its CS version) to transmission wedge problems;
- exact solution of the CS HSMM integral equations by the K-L transform?
- CS HSMM formulations for problems with more complex backgrounds.

