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Point source z

∆u+ k2u = δz, k > 0

u = 0

x̃

xd

f(x̃)

Γ
D

Many interesting computational and numerical analysis challenges!

Formulation, including radiation condition, and well-posedness, clear in the
above case (C-W, Heinmeyer, Potthast, 2006, C-W, Elschner, 2010), but ...
Non-uniqueness - solutions to homogeneous problem localised near Γ for
Neumann b.c. or if Γ not a graph (Gotlib, 2000)
Unclear whether plane wave incidence makes sense in general in 3D (see
Rathsfeld 2022.)
Usual boundary integral equations (BIE) methods for bounded obstacles very
popular, but:

i) need to discretize large section of Γ of diameter 2a for accuracy;
ii) condition numbers for standard methods grow at least like (ka)1/2

Numerical analysis challenges: stability and convergence of truncation of
unbounded surface? Analysis of boundary element methods (BEM) when
surface is unbounded, and of convergence of iterative solvers (GMRES)?
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Many interesting computational and numerical analysis challenges!

Usual boundary integral equations (BIE) methods for bounded obstacles very
popular, but:

i) need to discretize large section of Γ of diameter 2a for accuracy;
ii) condition numbers for standard methods grow at least like (ka)1/2

Numerical analysis challenges: stability and convergence of truncation of
unbounded surface; analysis of boundary element methods (BEM) when surface is
unbounded, and of convergence of iterative solvers (GMRES).

In this talk we will:

propose a new 2nd kind BIE for the above problem with operator
that is uniformly bounded in a and coercive with coercivity constant dependent only
on the maximum surface slope; prove convergence of combined Galerkin BEM/
surface truncation; prove that a fixed number of GMRES iterations is sufficient,
uniformly in the BEM step size (h) and the size of the truncated surface discretized
(a). On the way we will recall: existing analysis tools for Galerkin BEM/GMRES; recent
related results for 2nd kind BIEs for (single and multiple) bounded scatterers.
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Tools for convergence of Galerkin methods and GMRES

Suppose that H is a complex Hilbert space with norm ‖u‖ =
√

(u, u) , e.g.

H = L2(Γ), (u, v) =

∫
Γ

uv ds, ‖u‖2 =

∫
Γ

|u|2 ds.

Suppose that A is a bounded linear operator on H and that A is coercive, i.e.,
for some γ > 0,

|(Au, u)| ≥ γ‖u‖2, ∀u ∈ H.

Lax-Milgram Lemma. A is invertible and ‖A−1|| ≤ γ−1.

Céa’s Lemma. Let HN ⊂ H be a closed subspace. Then, ∀g ∈ H, ∃ a unique
Galerkin approximation uN ∈ HN to u := A−1g, defined by

(AuN , vN ) = (g, v), ∀vN ∈ HN ,

and

‖u− uN‖ ≤
‖A‖
γ

inf
vN∈HN

‖u− vN‖. Note
‖A‖
γ
≥ cond(A) := ‖A‖‖A‖−1.
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Céa’s Lemma. Let HN ⊂ H be a closed subspace. Then, ∀g ∈ H, ∃ a unique
Galerkin approximation uN ∈ HN to u := A−1g, defined by

(AuN , vN ) = (g, v), ∀vN ∈ HN ,

and

‖u− uN‖ ≤
‖A‖
γ

inf
vN∈HN

‖u− vN‖.

Note
‖A‖
γ
≥ cond(A) := ‖A‖‖A‖−1.



Tools for convergence of Galerkin methods and GMRES

Suppose that H is a complex Hilbert space with norm ‖u‖ =
√

(u, u) , e.g.

H = L2(Γ), (u, v) =

∫
Γ

uv ds, ‖u‖2 =

∫
Γ

|u|2 ds.

Suppose that A is a bounded linear operator on H and that A is coercive, i.e.,
for some γ > 0,

|(Au, u)| ≥ γ‖u‖2, ∀u ∈ H.

Lax-Milgram Lemma. A is invertible and ‖A−1|| ≤ γ−1.
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Suppose that A is a bounded linear operator on H and that A is coercive, i.e.,
for some γ > 0,

|(Au, u)| ≥ γ‖u‖2, ∀u ∈ H.

Céa’s Lemma. Let HN ⊂ H be a closed subspace. Then, ∀g ∈ H, ∃ a unique
Galerkin approximation uN ∈ HN to u := A−1g, defined by

(AuN , vN ) = (g, v), ∀vN ∈ HN , (∗)

and

‖u− uN‖ ≤
‖A‖
γ

inf
vN∈HN

‖u− vN‖.

If HN has basis {ϕ1, . . . , ϕN}, then uN =
∑N
n=1 anϕN and (∗) is

N∑
n=1

(Aϕn, ϕm)an = (g, ϕm), m = 1, . . . , N. (X)

Theorem (corollary of field of values estimate in Beckermann et al. 2006). Let
rm be the residual after m steps of GMRES applied to (X). Then

‖rm‖2
‖r0‖2

≤ ε provided m ≥ 3
√

3

4

‖A‖
γ

cond(M) log

(
8

ε

)
,

where M = [(ϕn, ϕm)] is the mass matrix.
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Integral equation methods: bounded obstacle case

Point source z

∆u+ k2u = δz, k > 0

u = 0

Γ

D

By Green’s theorem, where Φ(x, y) :=
eik|x−y|

4π|x− y|
and ui(x) := Φ(x, z),

u(x) = ui(x)−
∫

Γ

Φ(x, y)∂nu(y) ds(y), x ∈ D.

Taking a linear combination of Dirichlet (γ) and Neumann (∂n) traces, we obtain
the standard 2nd kind integral equation

A∂nu = g := ∂nu
i − ikγui, where A := 1

2I +K ′ − ikS,

K ′ϕ(x) :=

∫
Γ

∂n(x)Φ(x, y)ϕ(y) ds(y), Sϕ(x) :=

∫
Γ

Φ(x, y)ϕ(y) ds(y), x ∈ Γ.
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u(x) = ui(x)−
∫

Γ

Φ(x, y)∂nu(y) ds(y), x ∈ D.

with
A∂nu = g := ∂nu

i − ikγui, and A := 1
2
I +K′ − ikS.

‖A−1‖ = O(1) as k →∞ if Γ is star-shaped or smooth and non-trapping (C-W &

Monk 2008, Baskin, Spence, Wunsch 2016)

‖A‖ = O(k1/2) as k →∞ if Γ is star-shaped and 2D, or smooth and non-trapping
(C-W et al. 2009, Baskin, Spence, Wunsch 2016)

A is uniformly-in-k coercive, i.e., for all k0 > 0 there exists γ > 0 such that

|(Aϕ,ϕ)| ≥ γ‖ϕ‖2, ϕ ∈ L2(Γ), k ≥ k0,

if Γ is smooth and uniformly convex (Spence, Kamotski, Smyshlyaev 2016)

BUT A is not even compactly perturbed coercive for general Lipschitz Γ, or even
for general star-shaped polyhedra in 3D (C-W & Spence 2022a) AND there is no
numerical method provably convergent for every polyhedron Γ (open problem).
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Coercive formulations: bounded obstacle case

Point source z

∆u+ k2u = δz, k > 0

u = 0

Γ

D

u(x) = ui(x)−
∫

Γ

Φ(x, y)∂nu(y) ds(y), x ∈ D.

Taking a linear combination of Dirichlet (γ) and Neumann (∂n) traces, we obtain
the standard 2nd kind integral equation

A∂nu = g := ∂nu
i − ikγui, where A := 1

2I +K ′ − ikS.

and Z : Γ→ Rd is in L∞(Γ). If Z = n and α = k, then AZ = A and gZ = g.
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then AZ = A0 +K where A0 is coercive and K is compact, so that all Galerkin
methods for AZ∂nu = gZ are convergent, provided AZ is injective.

Sadly injectivity of AZ not yet clear in general (open problem).
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Theorem (Spence, C-W, Graham, Smyshlyaev 2011). If Γ is star-shaped with
respect to 0,

Z(x) := x, α(x) := k|x|+ i(d− 1)/2, x · n ≥ c > 0,

on Γ, then AZ is uniformly-in-k coercive with coercivity constant γ = c/2, so
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Multiple scattering formulation

x1

Γ1

x2

Γ2

x3

Γ3

u(x) = ui(x)−
∫

Γ

Φ(x, y)∂nu(y) ds(y), x ∈ D.

AZ∂nu = gZ := Z ·γ∇ui−ikγui, where AZ := Z ·n( 1
2I+K ′)+Z ·∇ΓS−iαS.

Corollary (Gibbs, C-W, Langdon, Moiola 2021). If each component Γj of Γ is
star-shaped, and, on Γj ,

Z(x) := x− xj , α(x) := k|x− xj |+ i(d− 1)/2, (x− xj) · n ≥ c > 0,

then AZ = A0 +K with A0 coercive and K compact, and AZ is injective, so
that all Galerkin methods for AZ∂nu = gZ are convergent.



Our typical RSS problem

Suppose d = 2 or 3, f : Rd−1 → R is bounded and Lipschitz continuous, precisely

0 < f− ≤ f(x̃) ≤ f+ and |f(x̃)− f(ỹ)| ≤ L|x̃− ỹ|, x̃, ỹ ∈ Rd−1.

Let

x̃

xd

f(x̃)

Γ
D

D := {(x̃, xd) : xd > f(x̃), x̃ ∈ Rd−1} ⊂ Rd, Γ := ∂D = {(x̃, f(x̃)) : x̃ ∈ Rd−1}.

Key feature: Γ unbounded (in the horizontal directions). The dimensionless
surface elevation, k(f+ − f−), need not be large.

Applications in outdoor noise or radar propagation over ground and sea surfaces,
and in optics: all nominally flat surfaces are rough at some scale!
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Integral equation methods: rough surface scattering

Point source z

∆u+ k2u = δz, k > 0

u = 0

x̃

xd

f(x̃)

Γ
D

First idea: just use the bounded obstacle formulation, i.e.

u(x) = ui(x)−
∫

Γ

Φ(x, y)∂nu(y) ds(y), x ∈ D.

where ∂nu satisfies

A∂nu = g := ∂nu− ikγu, and A := 1
2I +K ′ − ikS,

K ′ϕ(x) :=

∫
Γ

∂n(x)Φ(x, y)ϕ(y) ds(y), Sϕ(x) :=

∫
Γ

Φ(x, y)ϕ(y) ds(y), x ∈ Γ.

Issue: Φ(x, y) decays too slowly for A to be a bounded operator.
Solution: (Zhang & C-W 2003, C-W, Heinemeyer, Potthast 2006a,b) Replace
Φ(x, y) with Dirichlet half-space Green’s function, G(x, y) := Φ(x, y)− Φ(x, y′).
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Φ(x, y) with Dirichlet half-space Green’s function, G(x, y) := Φ(x, y)− Φ(x, y′).

Theorem (C-W, Heinemeyer, Potthast 2006a,b). A is bounded and invertible on
L2(Γ), indeed, where L is the Lipschitz constant of f ,

‖A−1‖ ≤ 12(1 + L)2.

Issue: but how do we prove convergence of boundary truncation, BEM, GMRES?
Solution: replace A with AZ with Z = ed, so that Z · n ≥ (1 + L2)−1/2.
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Idea of proof. The proof combines:

harmonic analysis techniques for 2nd kind integral equations on Lipschitz domains

methods for proving invertibility/coercivity through Rellich-type identities,
combining ideas of Verchota (1984), C-W and Monk (2005), C-W, Heinemeyer,
Potthast (2006b), Spence, C-W, Graham, Smyshlyaev (2011). The Rellich identity
we need follows from writing in divergence form integrals of the form∫

(∆u+ k2u)
∂ū

∂xd
dx.

The convergence theory for Galerkin BEM and GMRES recalled earlier
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Numerical results: flat Γ: f(x̃) = f− = 0.25

2D numerical results when Γ is flat, applying h-BEM with P1 elements and
uniform mesh on part of surface of length 2a, with

k = 1, kh = 0.5, kf− = 0.25, z = (0, 5),

using the “Gypsilab” Matlab BEM toolbox of F. Alouges and M. Aussal.

https://github.com/matthieuaussal/gypsilab
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Numerical results: sawtooth Γ : f− ≤ f(x̃) ≤ f+, slope L

2D numerical results for sawtooth Γ, applying h-BEM with P1 elements and
uniform mesh on part of surface of length 2a, with

k = 2, kh = 0.3, kf− = 0.25, kf+ = 1.25 L = 0.578; z = (0, 5),

using the “Gypsilab” Matlab BEM toolbox of F. Alouges and M. Aussal.
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Summary

We have:

Seen that unbounded rough surfaces are problems with interesting additional
computational and numerical analysis challenges!

Recalled the strong/precise results available for analysis of Galerkin methods
and GMRES when A : H → H is bounded and coercive

Recalled that, even for bounded obstacles, no convergence proof exists yet
for any Galerkin BEM for the standard 2nd kind BIE on L2(Γ) with
A = 1

2I +K ′ − ikS, that applies for general Lipschitz Γ, or even just for all
star-shaped polyhedral Γ

Recalled recent novel 2nd kind integral equations for bounded obstacles, with
A replaced by an operator AZ := Z · n( 1

2I +K ′) + Z · ∇ΓS − ikS which is
coercive + compact

Proposed a new 2nd kind integral equation of this type for our RSS problem
with Z = ed, the constant vertical unit vector, for which AZ is bounded and
uniformly-in-k coercive, leading to proof of convergence of combined
surface truncation/Galerkin BEM, and convergence of GMRES in a
number of iterations independent of the element diameter h and the
truncated surface diameter a.
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