Scattering by fractals: theory and integral equation method computation

Simon Chandler-Wilde
Department of Mathematics and Statistics
University of Reading, UK
University of
Reading

With: Jeanne Besson (ENSTA), António Caetano (Aveiro), Xavier Claeys (Sorbonne), Andrew Gibbs, Dave Hewett (UCL), \& Andrea Moiola (Pavia)

CentraleSupélec, Université Paris-Saclay, November 2023

Our focus: sound-soft scattering by very general obstacles

The obstacle Γ is some compact subset of $\mathbb{R}^{n}, n=2,3$, such that $\Omega:=\mathbb{R}^{n} \backslash \Gamma$ is connected. The incident, scattered, and total fields are u^{i}, u, and $u^{t}=u+u^{i}$, respectively. $k>0$.

Our focus: sound-soft scattering by very general obstacles

The obstacle Γ is some compact subset of $\mathbb{R}^{n}, n=2,3$, such that $\Omega:=\mathbb{R}^{n} \backslash \Gamma$ is connected. The incident, scattered, and total fields are u^{i}, u, and $u^{t}=u+u^{i}$, respectively. $k>0$.

The scattering problem. Find the scattered field $u \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the standard Sommerfeld radiation condition (SRC), and that $u^{t}=0$ on Γ in the sense that $u^{t} \in \widetilde{H}^{1, \operatorname{loc}}(\Omega)$.

Our focus: sound-soft scattering by very general obstacles

The obstacle Γ is some compact subset of $\mathbb{R}^{n}, n=2,3$, such that $\Omega:=\mathbb{R}^{n} \backslash \Gamma$ is connected. The incident, scattered, and total fields are u^{i}, u, and $u^{t}=u+u^{i}$, respectively. $k>0$.

The scattering problem. Find the scattered field $u \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the standard Sommerfeld radiation condition (SRC), and that $u^{t}=0$ on Γ in the sense that $u^{t} \in \widetilde{H}^{1, \operatorname{loc}}(\Omega)$.

$$
H^{1}\left(\mathbb{R}^{n}\right):=\left\{v \in L_{2}\left(\mathbb{R}^{n}\right): \nabla u \in L_{2}\left(\mathbb{R}^{n}\right)\right\}, \quad \tilde{H}^{1}(\Omega):={\overline{C_{0}^{\infty}(\Omega)}}^{H^{1}\left(\mathbb{R}^{n}\right)}
$$

Our focus: sound-soft scattering by very general obstacles

The obstacle Γ is some compact subset of $\mathbb{R}^{n}, n=2,3$, such that $\Omega:=\mathbb{R}^{n} \backslash \Gamma$ is connected. The incident, scattered, and total fields are u^{i}, u, and $u^{t}=u+u^{i}$, respectively. $k>0$.

The scattering problem. Find the scattered field $u \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the standard Sommerfeld radiation condition (SRC), and that $u^{t}=0$ on Γ in the sense that $u^{t} \in \widetilde{H}^{1, \operatorname{loc}}(\Omega)$.

$$
\begin{aligned}
& H^{1}\left(\mathbb{R}^{n}\right):=\left\{v \in L_{2}\left(\mathbb{R}^{n}\right): \nabla u \in L_{2}\left(\mathbb{R}^{n}\right)\right\}, \quad \widetilde{H}^{1}(\Omega):=\bar{C}_{0}^{\infty}(\Omega) \\
& H^{1}\left(\mathbb{R}^{n}\right) \\
& H^{1, \operatorname{loc}}\left(\mathbb{R}^{n}\right):=\left\{v: \mathbb{R}^{n} \rightarrow \mathbb{C}: \sigma v \in H^{1}\left(\mathbb{R}^{n}\right), \forall \sigma \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\},
\end{aligned}
$$

Our focus: sound-soft scattering by very general obstacles

The obstacle Γ is some compact subset of $\mathbb{R}^{n}, n=2,3$, such that $\Omega:=\mathbb{R}^{n} \backslash \Gamma$ is connected. The incident, scattered, and total fields are u^{i}, u, and $u^{t}=u+u^{i}$, respectively. $k>0$.

The scattering problem. Find the scattered field $u \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the standard Sommerfeld radiation condition (SRC), and that $u^{t}=0$ on Γ in the sense that $u^{t} \in \widetilde{H}^{1, \operatorname{loc}}(\Omega)$.

$$
\begin{aligned}
H^{1}\left(\mathbb{R}^{n}\right) & :=\left\{v \in L_{2}\left(\mathbb{R}^{n}\right): \nabla u \in L_{2}\left(\mathbb{R}^{n}\right)\right\}, \quad \widetilde{H}^{1}(\Omega):={\overline{C_{0}^{\infty}(\Omega)}}^{H^{1}\left(\mathbb{R}^{n}\right)} \\
H^{1, \text { loc }}\left(\mathbb{R}^{n}\right) & :=\left\{v: \mathbb{R}^{n} \rightarrow \mathbb{C}: \sigma v \in H^{1}\left(\mathbb{R}^{n}\right), \forall \sigma \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\}, \\
\widetilde{H}^{1, \text { loc }}(\Omega) & :=\left\{v: \mathbb{R}^{n} \rightarrow \mathbb{C}: \sigma v \in \widetilde{H}^{1}(\Omega), \forall \sigma \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\} .
\end{aligned}
$$

Our focus: sound-soft scattering by very general obstacles

The obstacle Γ is some compact subset of $\mathbb{R}^{n}, n=2,3$, such that $\Omega:=\mathbb{R}^{n} \backslash \Gamma$ is connected. The incident, scattered, and total fields are u^{i}, u, and $u^{t}=u+u^{i}$, respectively. $k>0$.

The scattering problem. Find the scattered field $u \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the standard Sommerfeld radiation condition (SRC), and that $u^{t}=0$ on Γ in the sense that $u^{t} \in \widetilde{H}^{1, \operatorname{loc}}(\Omega)$.
This scattering problem is well-posed (classical); rewrite as variational problem in $\Omega_{R}:=\{x \in \Omega:|x|<R\}$ with continuous and compactly perturbed coercive sesquilinear form.

What's new in this talk?

What's new in this talk?

1. Formulating the above scattering problem as a (newish) first kind integral equation

$$
A \phi=g
$$

on Γ, with unknown $\phi \in H_{\Gamma}^{-1}:=\left\{\psi \in H^{-1}\left(\mathbb{R}^{n}\right): \operatorname{supp}(\psi) \subset \Gamma\right\}$.

What's new in this talk?

1. Formulating the above scattering problem as a (newish) first kind integral equation

$$
A \phi=g
$$

on Γ, with unknown $\phi \in H_{\Gamma}^{-1}:=\left\{\psi \in H^{-1}\left(\mathbb{R}^{n}\right): \operatorname{supp}(\psi) \subset \Gamma\right\}$.
2. When Γ is a d-set, meaning Γ is uniformly of d-dimensional Hausdorff measure \mathcal{H}^{d}, showing that A can be written as an integral operator \mathbb{A} with respect to \mathcal{H}^{d}, precisely

$$
\mathbb{A} \psi(x)=\int_{\Gamma} \Phi(x, y) \psi(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Gamma
$$

where $\Phi(x, y)$ is the fundamental solution of the Helmholtz equation.

What's new in this talk?

1. Formulating the above scattering problem as a (newish) first kind integral equation

$$
A \phi=g
$$

on Γ, with unknown $\phi \in H_{\Gamma}^{-1}:=\left\{\psi \in H^{-1}\left(\mathbb{R}^{n}\right): \operatorname{supp}(\psi) \subset \Gamma\right\}$.
2. When Γ is a d-set, meaning Γ is uniformly of d-dimensional Hausdorff measure \mathcal{H}^{d}, showing that A can be written as an integral operator \mathbb{A} with respect to \mathcal{H}^{d}, precisely

$$
\mathbb{A} \psi(x)=\int_{\Gamma} \Phi(x, y) \psi(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Gamma
$$

where $\Phi(x, y)$ is the fundamental solution of the Helmholtz equation. We also prove convergence of piecewise-constant Galerkin method, where integration with respect to $\left.\mathcal{H}^{d}\right|_{\Gamma}$.

What's new in this talk?

1. Formulating the above scattering problem as a (newish) first kind integral equation

$$
A \phi=g
$$

on Γ, with unknown $\phi \in H_{\Gamma}^{-1}:=\left\{\psi \in H^{-1}\left(\mathbb{R}^{n}\right): \operatorname{supp}(\psi) \subset \Gamma\right\}$.
2. When Γ is a d-set, meaning Γ is uniformly of d-dimensional Hausdorff measure \mathcal{H}^{d}, showing that A can be written as an integral operator \mathbb{A} with respect to \mathcal{H}^{d}, precisely

$$
\mathbb{A} \psi(x)=\int_{\Gamma} \Phi(x, y) \psi(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Gamma
$$

where $\Phi(x, y)$ is the fundamental solution of the Helmholtz equation. We also prove convergence of piecewise-constant Galerkin method, where integration with respect to $\left.\mathcal{H}^{d}\right|_{\Gamma}$.
3. When Γ is additionally the attractor of an iterated function system of contracting similarities (an IFS for short), proving convergence rates, and providing fully discrete implementation

What's new in this talk?

1. Formulating the above scattering problem as a (newish) first kind integral equation

$$
A \phi=g
$$

on Γ, with unknown $\phi \in H_{\Gamma}^{-1}:=\left\{\psi \in H^{-1}\left(\mathbb{R}^{n}\right): \operatorname{supp}(\psi) \subset \Gamma\right\}$.
2. When Γ is a d-set, meaning Γ is uniformly of d-dimensional Hausdorff measure \mathcal{H}^{d}, showing that A can be written as an integral operator \mathbb{A} with respect to \mathcal{H}^{d}, precisely

$$
\mathbb{A} \psi(x)=\int_{\Gamma} \Phi(x, y) \psi(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Gamma
$$

where $\Phi(x, y)$ is the fundamental solution of the Helmholtz equation. We also prove convergence of piecewise-constant Galerkin method, where integration with respect to $\left.\mathcal{H}^{d}\right|_{\Gamma}$.
3. When Γ is additionally the attractor of an iterated function system of contracting similarities (an IFS for short), proving convergence rates, and providing fully discrete implementation - deferred to next talk by Dave Hewett on Hausdorff-measure integration rules for singular integrals

What obstacles Γ do our new theories and methods treat?

Two-dimensional $(n=2)$ examples of d-sets Γ, with: a) $d=2$; b) $d=1$; c) $d=1$; d) $d=1$; e) $d=\log (2) / \log (3) \approx 0.63$; f) $d=\log (4) / \log (3) \approx 1.26 ;$ g) $d=2$.

What obstacles Γ do our new theories and methods treat?

Two-dimensional $(n=2)$ examples of d-sets Γ, with: a) $d=2$; b) $d=1$; c) $d=1$; d) $d=1$; e) $d=\log (2) / \log (3) \approx 0.63$; f) $d=\log (4) / \log (3) \approx 1.26 ;$ g) $d=2$.

Examples c), e), f), g) are all examples that are attractors of an IFS, for which we have a fully discrete implementation.

Why consider scattering by fractals?

Why consider scattering by fractals?

Fractals are an obvious mathematical model for the multiscale roughness possessed by many naturally-occuring and man-made scatterers.

Why consider scattering by fractals?

Fractals are an obvious mathematical model for the multiscale roughness possessed by many naturally-occuring and man-made scatterers.

They are also a rich source of mathematical challenges that are stimulating exciting new research in modelling, function spaces and numerical analysis.
M. V. Berry, "Diffractals", J. Phys. A., 1979 - "a new regime in wave physics"
U. Mosco, 2013 - "introducing fractal constructions into the classic theory of PDEs opens a vast new field of study, both theoretically and numerically", "this new field has been only scratched"

Preliminaries: Sobolev space notation

We need Sobolev spaces defined on \mathbb{R}^{n} :

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=\left\{u \in L_{2}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\}, \quad s \geq 0, \\
H^{-s}\left(\mathbb{R}^{n}\right) & :=\left(H^{s}\left(\mathbb{R}^{n}\right)^{\prime}, \quad s>0,\right.
\end{aligned}
$$

Preliminaries: Sobolev space notation

We need Sobolev spaces defined on \mathbb{R}^{n} :

$$
\begin{aligned}
& H^{s}\left(\mathbb{R}^{n}\right):=\left\{u \in L_{2}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\}, \quad s \geq 0, \\
& H^{-s}\left(\mathbb{R}^{n}\right):=\left(H^{s}\left(\mathbb{R}^{n}\right)^{\prime}, \quad s>0,\right. \\
& \widetilde{H}^{s}(\Omega):=\bar{C}_{0}^{\infty}(\Omega)^{s}\left(\mathbb{R}^{n}\right) \\
&
\end{aligned} H^{s}\left(\mathbb{R}^{n}\right), ~ \$ ~ \$
$$

Preliminaries: Sobolev space notation

We need Sobolev spaces defined on \mathbb{R}^{n} :

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=\left\{u \in L_{2}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\}, \quad s \geq 0, \\
H^{-s}\left(\mathbb{R}^{n}\right) & :=\left(H^{s}\left(\mathbb{R}^{n}\right)^{\prime}, \quad s>0,\right. \\
\widetilde{H}^{s}(\Omega) & :=\bar{C}_{0}^{\infty}(\Omega) H^{s}\left(\mathbb{R}^{n}\right) \subset H^{s}\left(\mathbb{R}^{n}\right), \\
H_{\Gamma}^{s} & :=\left\{v \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp}(v) \subset \Gamma\right\} .
\end{aligned}
$$

Preliminaries: Sobolev space notation

We need Sobolev spaces defined on \mathbb{R}^{n} :

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=\left\{u \in L_{2}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\}, \quad s \geq 0, \\
H^{-s}\left(\mathbb{R}^{n}\right) & :=\left(H^{s}\left(\mathbb{R}^{n}\right)^{\prime}, \quad s>0,\right. \\
\widetilde{H}^{s}(\Omega) & :=\bar{C}_{0}^{\infty}(\Omega) H^{s}\left(\mathbb{R}^{n}\right) \subset H^{s}\left(\mathbb{R}^{n}\right), \\
H_{\Gamma}^{s} & :=\left\{v \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp}(v) \subset \Gamma\right\} .
\end{aligned}
$$

Also need "local" versions with no constraint on growth at infinity, e.g.

$$
H^{1, \text { loc }}\left(\mathbb{R}^{n}\right):=\quad\left\{v: \mathbb{R}^{n} \rightarrow \mathbb{C}: \sigma v \in H^{1}\left(\mathbb{R}^{n}\right), \forall \sigma \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\}
$$

Preliminaries: Sobolev space notation

We need Sobolev spaces defined on \mathbb{R}^{n} :

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=\left\{u \in L_{2}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\}, \quad s \geq 0, \\
H^{-s}\left(\mathbb{R}^{n}\right) & :=\left(H^{s}\left(\mathbb{R}^{n}\right)^{\prime}, \quad s>0,\right. \\
\widetilde{H}^{s}(\Omega) & :=\bar{C}_{0}^{\infty}(\Omega) H^{s}\left(\mathbb{R}^{n}\right) \subset H^{s}\left(\mathbb{R}^{n}\right), \\
H_{\Gamma}^{s} & :=\left\{v \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp}(v) \subset \Gamma\right\} .
\end{aligned}
$$

Also need "local" versions with no constraint on growth at infinity, e.g.

$$
\begin{aligned}
H^{1, \text { loc }}\left(\mathbb{R}^{n}\right) & :=\left\{v: \mathbb{R}^{n} \rightarrow \mathbb{C}: \sigma v \in H^{1}\left(\mathbb{R}^{n}\right), \forall \sigma \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\}, \\
\widetilde{H}^{1, \operatorname{loc}}(\Omega) & :=\left\{v: \mathbb{R}^{n} \rightarrow \mathbb{C}: \sigma v \in \widetilde{H}^{1}(\Omega), \forall \sigma \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right\} \subset H^{1, \text { loc }}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

Preliminaries: Newton potentials

Let $\mathcal{A} \phi$ be the standard acoustic Newton potential, defined for compactly supported $\phi \in L_{2}\left(\mathbb{R}^{n}\right)$ by

$$
\mathcal{A} \phi(x)=\int_{\mathbb{R}^{n}} \Phi(x, y) \phi(y) \mathrm{d} y, \quad x \in \mathbb{R}^{n}
$$

where

$$
\Phi(x, y):=\frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|}, \quad(n=3), \quad:=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|), \quad(n=2),
$$

is the standard fundamental solution of the Helmholtz equation.

Preliminaries: Newton potentials

Let $\mathcal{A} \phi$ be the standard acoustic Newton potential, defined for compactly supported $\phi \in L_{2}\left(\mathbb{R}^{n}\right)$ by

$$
\mathcal{A} \phi(x)=\int_{\mathbb{R}^{n}} \Phi(x, y) \phi(y) \mathrm{d} y, \quad x \in \mathbb{R}^{n}
$$

where

$$
\Phi(x, y):=\frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|}, \quad(n=3), \quad:=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|), \quad(n=2),
$$

is the standard fundamental solution of the Helmholtz equation.
Then \mathcal{A} is continuous as a mapping

$$
\mathcal{A}: H_{\text {comp }}^{s-1}\left(\mathbb{R}^{n}\right) \rightarrow H^{s+1, \text { loc }}\left(\mathbb{R}^{n}\right), \quad s \in \mathbb{R},
$$

where $H_{\text {comp }}^{s}\left(\mathbb{R}^{n}\right)$ is the space of compactly supported elements of $H^{s}\left(\mathbb{R}^{n}\right)$, and

$$
\left(\Delta+k^{2}\right) \mathcal{A} \phi=\mathcal{A}\left(\Delta+k^{2}\right) \phi=-\phi, \quad \phi \in H_{\mathrm{comp}}^{s}\left(\mathbb{R}^{n}\right) .
$$

Preliminaries: Newton potentials

Let $\mathcal{A} \phi$ be the standard acoustic Newton potential, defined for compactly supported $\phi \in L_{2}\left(\mathbb{R}^{n}\right)$ by

$$
\mathcal{A} \phi(x)=\int_{\mathbb{R}^{n}} \Phi(x, y) \phi(y) \mathrm{d} y, \quad x \in \mathbb{R}^{n}
$$

where

$$
\Phi(x, y):=\frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|}, \quad(n=3), \quad:=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|), \quad(n=2)
$$

is the standard fundamental solution of the Helmholtz equation.
Explicitly for $\phi \in H_{\Gamma}^{-1} \subset H_{\text {comp }}^{-1}\left(\mathbb{R}^{n}\right)$,

$$
\mathcal{A} \phi(x)=\langle\phi, \overline{\sigma \Phi(x, \cdot)}\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)}, \quad x \in \Omega
$$

for every

$$
\sigma \in C_{0, \Gamma}^{\infty}:=\left\{\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right): \varphi=1 \text { in a neighbourhood of } \Gamma\right\}
$$

such that $x \notin \operatorname{supp}(\sigma)$.

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, l o c}(\Omega)$.

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$.
Let's look for a solution as

$$
u=\mathcal{A} \phi \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right) \quad \text { for some } \quad \phi \in H_{\Gamma}^{-1} .
$$

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$. Let's look for a solution as

$$
u=\mathcal{A} \phi \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right) \quad \text { for some } \quad \phi \in H_{\Gamma}^{-1} .
$$

Then $u^{t}:=u+u^{i} \in \widetilde{H}^{1, \text { loc }}(\Omega)$ iff $\sigma u^{t} \in \widetilde{H}^{1}(\Omega)$, for some $\sigma \in C_{0, \Gamma}^{\infty}$,

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$. Let's look for a solution as

$$
u=\mathcal{A} \phi \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right) \quad \text { for some } \quad \phi \in H_{\Gamma}^{-1} .
$$

Then $u^{t}:=u+u^{i} \in \widetilde{H}^{1, \text { loc }}(\Omega)$ iff $\sigma u^{t} \in \widetilde{H}^{1}(\Omega)$, for some $\sigma \in C_{0, \Gamma}^{\infty}$, i.e., iff $P\left(\sigma u^{t}\right)=0$ where $P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection,

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$.
Let's look for a solution as

$$
u=\mathcal{A} \phi \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right) \quad \text { for some } \quad \phi \in H_{\Gamma}^{-1} .
$$

Then $u^{t}:=u+u^{i} \in \widetilde{H}^{1, \text { loc }}(\Omega)$ iff $\sigma u^{t} \in \widetilde{H}^{1}(\Omega)$, for some $\sigma \in C_{0, \Gamma}^{\infty}$, i.e., iff $P\left(\sigma u^{t}\right)=0$ where $P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection, i.e., iff

$$
A \phi:=P(\sigma \mathcal{A} \phi)=g:=-P\left(\sigma u^{i}\right) \in \widetilde{H}^{1}(\Omega)^{\perp}
$$

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$.
Let's look for a solution as

$$
u=\mathcal{A} \phi \in H^{1, \text { loc }}\left(\mathbb{R}^{n}\right) \quad \text { for some } \quad \phi \in H_{\Gamma}^{-1} .
$$

Then $u^{t}:=u+u^{i} \in \widetilde{H}^{1, l o c}(\Omega)$ iff $\sigma u^{t} \in \widetilde{H}^{1}(\Omega)$, for some $\sigma \in C_{0, \Gamma}^{\infty}$, i.e., iff $P\left(\sigma u^{t}\right)=0$ where $P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection, i.e., iff

$$
A \phi:=P(\sigma \mathcal{A} \phi)=g:=-P\left(\sigma u^{i}\right) \in \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime} .
$$

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$. We've just shown the first sentence of the following theorem.

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$.
We've just shown the first sentence of the following theorem.
Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u=\mathcal{A} \phi$ satisfies SP iff

$$
A \phi=g:=-P\left(\sigma u^{i}\right) \in \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}
$$

where $A:=P \sigma \mathcal{A}, \sigma \in C_{0, \Gamma}^{\infty}$, and $P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection.

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$.
We've just shown the first sentence of the following theorem.
Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u=\mathcal{A} \phi$ satisfies SP iff

$$
A \phi=g:=-P\left(\sigma u^{i}\right) \in \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}
$$

where $A:=P \sigma \mathcal{A}, \sigma \in C_{0, \Gamma}^{\infty}$, and $P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is invertible and is a compact perturbation of a coercive operator

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$.
We've just shown the first sentence of the following theorem.
Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u=\mathcal{A} \phi$ satisfies SP iff

$$
A \phi=g:=-P\left(\sigma u^{i}\right) \in \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}
$$

where $A:=P \sigma \mathcal{A}, \sigma \in C_{0, \Gamma}^{\infty}$, and $P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is invertible and is a compact perturbation of a coercive operator, so $A \phi=g$ is uniquely solvable

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$.
We've just shown the first sentence of the following theorem.
Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u=\mathcal{A} \phi$ satisfies SP iff

$$
A \phi=g:=-P\left(\sigma u^{i}\right) \in \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}
$$

where $A:=P \sigma \mathcal{A}, \sigma \in C_{0, \Gamma}^{\infty}$, and $P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is invertible and is a compact perturbation of a coercive operator, so $A \phi=g$ is uniquely solvable, and Galerkin methods for its approximate solution are convergent.

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \text { loc }}(\Omega)$.
We've just shown the first sentence of the following theorem.
Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u=\mathcal{A} \phi$ satisfies SP iff

$$
A \phi=g:=-P\left(\sigma u^{i}\right) \in \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}
$$

where $A:=P \sigma \mathcal{A}, \sigma \in C_{0, \Gamma}^{\infty}$, and $P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is invertible and is a compact perturbation of a coercive operator, so $A \phi=g$ is uniquely solvable, and Galerkin methods for its approximate solution are convergent.
Proof of main step of $\mathbf{2 n d}$ sentence.

$$
A=A_{k}=A_{\mathrm{i}}+\left(A_{k}-A_{\mathrm{i}}\right)=\overbrace{A_{\mathrm{i}}}+P \overbrace{\sigma\left(\mathcal{A}_{k}-\mathcal{A}_{\mathrm{i}}\right)} .
$$

1. Our integral equation formulation for general Γ

The scattering problem (SP). Find the scattered field $u \in H^{1, l o c}\left(\mathbb{R}^{n}\right)$ that satisfies the Helmholtz equation in Ω, the SRC, and that $u^{t} \in \widetilde{H}^{1, \operatorname{loc}}(\Omega)$.
We've just shown the first sentence of the following theorem.
Theorem If $\phi \in H_{\Gamma}^{-1}$ then $u=\mathcal{A} \phi$ satisfies SP iff

$$
A \phi=g:=-P\left(\sigma u^{i}\right) \in \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime},
$$

where $A:=P \sigma \mathcal{A}, \sigma \in C_{0, \Gamma}^{\infty}$, and $P: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}$ is orthogonal projection. Further, $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is invertible and is a compact perturbation of a coercive operator, so $A \phi=g$ is uniquely solvable, and Galerkin methods for its approximate solution are convergent.
Proof of main step of $\mathbf{2 n d}$ sentence. coercive compact

$$
A=A_{k}=A_{\mathrm{i}}+\left(A_{k}-A_{\mathrm{i}}\right)=\overbrace{A_{\mathrm{i}}}+P \overbrace{\sigma\left(\mathcal{A}_{k}-\mathcal{A}_{\mathrm{i}}\right)} .
$$

For all $\psi \in H_{\Gamma}^{-1}$, since $\mathcal{A}_{\mathrm{i}}=(1-\Delta)^{-1}$,

$$
\begin{aligned}
\left\langle A_{\mathrm{i}} \psi, \psi\right\rangle_{\tilde{H}^{1}(\Omega)^{\perp} \times H_{\Gamma}^{-1}} & =\left\langle\mathcal{A}_{\mathrm{i}} \psi, \psi\right\rangle_{\tilde{H}^{1}(\Omega)}{ }^{\perp} \times H_{\Gamma}^{-1} \\
& =\left\langle\mathcal{A}_{\mathrm{i}} \psi, \psi\right\rangle_{H^{1}\left(\mathbb{R}^{n}\right) \times H^{-1}\left(\mathbb{R}^{n}\right)}=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{-1}|\widehat{\psi}(\xi)|^{2}=\|\psi\|_{H_{\Gamma}^{-1}}^{2} .
\end{aligned}
$$

Preliminaries: Hausdorff measure and dimension, d-sets

For $E \subset \mathbb{R}^{n}$ and $d \geq 0$,

$$
\mathcal{H}^{d}(E) \in[0, \infty) \cup\{\infty\},
$$

is the usual d-dimensional Hausdorff measure of E.

Preliminaries: Hausdorff measure and dimension, d-sets

For $E \subset \mathbb{R}^{n}$ and $d \geq 0$,

$$
\mathcal{H}^{d}(E) \in[0, \infty) \cup\{\infty\},
$$

is the usual d-dimensional Hausdorff measure of E.
The Hausdorff dimension of E is

$$
\operatorname{dim}_{H} E:=\inf \left\{d \geq 0: \mathcal{H}^{d}(E)=0\right\} \in[0, n] .
$$

Preliminaries: Hausdorff measure and dimension, d-sets

For $E \subset \mathbb{R}^{n}$ and $d \geq 0$,

$$
\mathcal{H}^{d}(E) \in[0, \infty) \cup\{\infty\},
$$

is the usual d-dimensional Hausdorff measure of E.
The Hausdorff dimension of E is

$$
\operatorname{dim}_{\mathrm{H}} E:=\inf \left\{d \geq 0: \mathcal{H}^{d}(E)=0\right\} \in[0, n] .
$$

Given $0<d \leq n$, a closed set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if there exist $c_{1}, c_{2}>0$ such that

$$
c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d}, \quad x \in \Gamma, \quad 0<r \leq 1
$$

Preliminaries: Hausdorff measure and dimension, d-sets

For $E \subset \mathbb{R}^{n}$ and $d \geq 0$,

$$
\mathcal{H}^{d}(E) \in[0, \infty) \cup\{\infty\},
$$

is the usual d-dimensional Hausdorff measure of E.
The Hausdorff dimension of E is

$$
\operatorname{dim}_{H} E:=\inf \left\{d \geq 0: \mathcal{H}^{d}(E)=0\right\} \in[0, n] .
$$

Given $0<d \leq n$, a closed set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if there exist $c_{1}, c_{2}>0$ such that

$$
c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d}, \quad x \in \Gamma, \quad 0<r \leq 1 .
$$

This implies that Γ is uniformly d-dimensional in that

$$
\operatorname{dim}_{H}\left(\Gamma \cap B_{r}(x)\right)=d
$$

for every $x \in \Gamma$ and $r>0$.

Examples of d-sets in two dimensions $(n=2)$

Given $0<d \leq n$, a closed set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if there exist $c_{1}, c_{2}>0$ such that

$$
c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d}, \quad x \in \Gamma, \quad 0<r \leq 1 .
$$

(a) Closure of bounded Lip-(b) Boundary of bounded (c) Line segment screen
schitz domain \quad Lipschitz domain
(d) Multiscreen

(g) Koch snowflake

Trace spaces on d-sets

Let $\Gamma \subset \mathbb{R}^{n}$ be a d-set and let $\mathbb{L}_{2}(\Gamma):=\left\{\Psi: \Gamma \rightarrow \mathbb{C}: \int_{\Gamma}|\Psi|^{2} \mathrm{~d} \mathcal{H}^{d}<\infty\right\}$.

Trace spaces on d-sets

Let $\Gamma \subset \mathbb{R}^{n}$ be a d-set and let $\mathbb{L}_{2}(\Gamma):=\left\{\Psi: \Gamma \rightarrow \mathbb{C}: \int_{\Gamma}|\Psi|^{2} \mathrm{~d} \mathcal{H}^{d}<\infty\right\}$.
Let $\mathcal{D}\left(\mathbb{R}^{n}\right):=C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\operatorname{tr}_{\Gamma}: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ be the trace (or restriction) operator defined by

$$
\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)
$$

which is continuous with dense range.

Trace spaces on d-sets

Let $\Gamma \subset \mathbb{R}^{n}$ be a d-set and let $\mathbb{L}_{2}(\Gamma):=\left\{\Psi: \Gamma \rightarrow \mathbb{C}: \int_{\Gamma}|\Psi|^{2} \mathrm{~d} \mathcal{H}^{d}<\infty\right\}$.
Let $\mathcal{D}\left(\mathbb{R}^{n}\right):=C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\operatorname{tr}_{\Gamma}: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ be the trace (or restriction) operator defined by

$$
\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)
$$

which is continuous with dense range.
Identifying $\mathbb{L}_{2}(\Gamma)$ with its dual space, the adjoint $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is given by
$\left\langle\operatorname{tr}_{\Gamma}^{*} \Psi, \phi\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \times \mathcal{D}\left(\mathbb{R}^{n}\right)}=\left(\Psi, \operatorname{tr}_{\Gamma} \phi\right)_{\mathbb{L}_{2}(\Gamma)}=\left.\int_{\Gamma} \Psi \bar{\phi}\right|_{\Gamma} \mathrm{d} \mathcal{H}^{d}, \quad \Psi \in \mathbb{L}_{2}(\Gamma), \phi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$.

Trace spaces on d-sets

Let $\Gamma \subset \mathbb{R}^{n}$ be a d-set and let $\mathbb{L}_{2}(\Gamma):=\left\{\Psi: \Gamma \rightarrow \mathbb{C}: \int_{\Gamma}|\Psi|^{2} \mathrm{~d} \mathcal{H}^{d}<\infty\right\}$.
Let $\mathcal{D}\left(\mathbb{R}^{n}\right):=C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\operatorname{tr}_{\Gamma}: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ be the trace (or restriction) operator defined by

$$
\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)
$$

which is continuous with dense range.
Identifying $\mathbb{L}_{2}(\Gamma)$ with its dual space, the adjoint $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is given by
$\left\langle\operatorname{tr}_{\Gamma}^{*} \Psi, \phi\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \times \mathcal{D}\left(\mathbb{R}^{n}\right)}=\left(\Psi, \operatorname{tr}_{\Gamma} \phi\right)_{\mathbb{L}_{2}(\Gamma)}=\left.\int_{\Gamma} \Psi \bar{\phi}\right|_{\Gamma} \mathrm{d} \mathcal{H}^{d}, \quad \Psi \in \mathbb{L}_{2}(\Gamma), \phi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$.
N.B. $\left\langle\operatorname{tr}_{\Gamma}^{*} \Psi, \phi\right\rangle=0$ if $\operatorname{supp}(\phi) \cap \Gamma=\emptyset$, i.e. $\operatorname{supp}\left(\operatorname{tr}_{\Gamma}^{*} \Psi\right) \subset \Gamma$.

Trace spaces on d-sets

Let $\Gamma \subset \mathbb{R}^{n}$ be a d-set and let $\mathbb{L}_{2}(\Gamma):=\left\{\Psi: \Gamma \rightarrow \mathbb{C}: \int_{\Gamma}|\Psi|^{2} \mathrm{~d} \mathcal{H}^{d}<\infty\right\}$.
Let $\mathcal{D}\left(\mathbb{R}^{n}\right):=C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\operatorname{tr}_{\Gamma}: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ be the trace (or restriction) operator defined by

$$
\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)
$$

which is continuous with dense range.
Identifying $\mathbb{L}_{2}(\Gamma)$ with its dual space, the adjoint $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is given by
$\left\langle\operatorname{tr}_{\Gamma}^{*} \Psi, \phi\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \times \mathcal{D}\left(\mathbb{R}^{n}\right)}=\left(\Psi, \operatorname{tr}_{\Gamma} \phi\right)_{\mathbb{L}_{2}(\Gamma)}=\left.\int_{\Gamma} \Psi \bar{\phi}\right|_{\Gamma} \mathrm{d} \mathcal{H}^{d}, \quad \Psi \in \mathbb{L}_{2}(\Gamma), \phi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$.
N.B. $\left\langle\operatorname{tr}_{\Gamma}^{*} \Psi, \phi\right\rangle=0$ if $\operatorname{supp}(\phi) \cap \Gamma=\emptyset$, i.e. $\operatorname{supp}\left(\operatorname{tr}_{\Gamma}^{*} \Psi\right) \subset \Gamma$.

If Γ is the boundary of a Lipschitz domain then $d=n-1, \mathcal{H}^{d}$ is surface measure, and $\operatorname{tr}_{\Gamma}$ extends to a continuous operator

$$
\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma), \quad \text { for } s>1 / 2
$$

so also $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H^{-s}\left(\mathbb{R}^{n}\right)$ is continuous.

Trace spaces on d-sets

Let $\Gamma \subset \mathbb{R}^{n}$ be a d-set and let $\mathbb{L}_{2}(\Gamma):=\left\{\Psi: \Gamma \rightarrow \mathbb{C}: \int_{\Gamma}|\Psi|^{2} \mathrm{~d} \mathcal{H}^{d}<\infty\right\}$.
Let $\mathcal{D}\left(\mathbb{R}^{n}\right):=C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\operatorname{tr}_{\Gamma}: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ be the trace (or restriction) operator defined by

$$
\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)
$$

which is continuous with dense range.
Identifying $\mathbb{L}_{2}(\Gamma)$ with its dual space, the adjoint $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is given by
$\left\langle\operatorname{tr}_{\Gamma}^{*} \Psi, \phi\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \times \mathcal{D}\left(\mathbb{R}^{n}\right)}=\left(\Psi, \operatorname{tr}_{\Gamma} \phi\right)_{\mathbb{L}_{2}(\Gamma)}=\left.\int_{\Gamma} \Psi \bar{\phi}\right|_{\Gamma} \mathrm{d} \mathcal{H}^{d}, \quad \Psi \in \mathbb{L}_{2}(\Gamma), \phi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$.
N.B. $\left\langle\operatorname{tr}_{\Gamma}^{*} \Psi, \phi\right\rangle=0$ if $\operatorname{supp}(\phi) \cap \Gamma=\emptyset$, i.e. $\operatorname{supp}\left(\operatorname{tr}_{\Gamma}^{*} \Psi\right) \subset \Gamma$.

If Γ is the boundary of a Lipschitz domain then $d=n-1, \mathcal{H}^{d}$ is surface measure, and $\operatorname{tr}_{\Gamma}$ extends to a continuous operator

$$
\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma), \quad \text { for } s>1 / 2,
$$

so also $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-s} \subset H^{-s}\left(\mathbb{R}^{n}\right)$ is continuous.

For a general d-set Γ we have . . .
Theorem (e.g., Triebel, 1997) For $s>(n-d) / 2$, the trace operator extends to a continuous operator with dense range $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$.

For a general d-set Γ we have . . .
Theorem (e.g., Triebel, 1997) For $s>(n-d) / 2$, the trace operator extends to a continuous operator with dense range $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$.
For $s>(n-d) / 2$ let $t:=s-(n-d) / 2$ and let $\mathbb{H}^{t}(\Gamma):=\operatorname{tr}_{\Gamma}\left(H^{s}\left(\mathbb{R}^{n}\right)\right) \subset \mathbb{L}_{2}(\Gamma)$, equipped with norm

$$
\|f\|_{\mathbb{H}^{t}(\Gamma)}:=\inf _{\substack{\varphi \in H^{s}\left(\mathbb{R}^{n}\right) \\ \operatorname{tr}_{\Gamma} \varphi=f}}\|\varphi\|_{H^{s}\left(\mathbb{R}^{n}\right)}
$$

For a general d-set Γ we have ...
Theorem (e.g., Triebel, 1997) For $s>(n-d) / 2$, the trace operator extends to a continuous operator with dense range $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$.
For $s>(n-d) / 2$ let $t:=s-(n-d) / 2$ and let $\mathbb{H}^{t}(\Gamma):=\operatorname{tr}_{\Gamma}\left(H^{s}\left(\mathbb{R}^{n}\right)\right) \subset \mathbb{L}_{2}(\Gamma)$, equipped with norm

$$
\|f\|_{\mathbb{H}^{t}(\Gamma)}:=\inf _{\substack{\varphi \in H^{s}\left(\mathbb{R}^{n}\right) \\ \operatorname{tr}_{\Gamma} \varphi=f}}\|\varphi\|_{H^{s}\left(\mathbb{R}^{n}\right)}
$$

so that $\left\|\operatorname{tr}_{\Gamma}\right\|_{H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t}(\Gamma)}=1$, indeed $\operatorname{tr}_{\Gamma}: \operatorname{ker}\left(\operatorname{tr}_{\Gamma}\right)^{\perp} \rightarrow \mathbb{H}^{t}(\Gamma)$ is unitary.

For a general d-set Γ we have ...
Theorem (e.g., Triebel, 1997) For $s>(n-d) / 2$, the trace operator extends to a continuous operator with dense range $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$.
For $s>(n-d) / 2$ let $t:=s-(n-d) / 2$ and let $\mathbb{H}^{t}(\Gamma):=\operatorname{tr}_{\Gamma}\left(H^{s}\left(\mathbb{R}^{n}\right)\right) \subset \mathbb{L}_{2}(\Gamma)$, equipped with norm

$$
\|f\|_{\mathbb{H}^{t}(\Gamma)}:=\inf _{\substack{\varphi \in H^{s}\left(\mathbb{R}^{n}\right) \\ \operatorname{tr}_{\Gamma} \varphi=f}}\|\varphi\|_{H^{s}\left(\mathbb{R}^{n}\right)}
$$

so that $\left\|\operatorname{tr}_{\Gamma}\right\|_{H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t}(\Gamma)}=1$, indeed $\operatorname{tr}_{\Gamma}: \operatorname{ker}\left(\operatorname{tr}_{\Gamma}\right)^{\perp} \rightarrow \mathbb{H}^{t}(\Gamma)$ is unitary.
Further, where

$$
\mathbb{H}^{-t}(\Gamma):=\left(\mathbb{H}^{t}(\Gamma)\right)^{\prime}, \quad t>0,
$$

$\mathbb{L}_{2}(\Gamma)$ is continuously and densely embedded in $\mathbb{H}^{-t}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t}(\Gamma) \rightarrow H_{\Gamma}^{-s}$ is an isometry.

For a general d-set Γ we have ...
Theorem (e.g., Triebel, 1997) For $s>(n-d) / 2$, the trace operator extends to a continuous operator with dense range $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$.
For $s>(n-d) / 2$ let $t:=s-(n-d) / 2$ and let $\mathbb{H}^{t}(\Gamma):=\operatorname{tr}_{\Gamma}\left(H^{s}\left(\mathbb{R}^{n}\right)\right) \subset \mathbb{L}_{2}(\Gamma)$, equipped with norm

$$
\|f\|_{\mathbb{H}^{t}(\Gamma)}:=\inf _{\substack{\varphi \in H^{s}\left(\mathbb{R}^{n}\right) \\ \operatorname{tr}_{\Gamma} \varphi=f}}\|\varphi\|_{H^{s}\left(\mathbb{R}^{n}\right)}
$$

so that $\left\|\operatorname{tr}_{\Gamma}\right\|_{H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t}(\Gamma)}=1$, indeed $\operatorname{tr}_{\Gamma}: \operatorname{ker}\left(\operatorname{tr}_{\Gamma}\right)^{\perp} \rightarrow \mathbb{H}^{t}(\Gamma)$ is unitary.
Further, where

$$
\mathbb{H}^{-t}(\Gamma):=\left(\mathbb{H}^{t}(\Gamma)\right)^{\prime}, \quad t>0,
$$

$\mathbb{L}_{2}(\Gamma)$ is continuously and densely embedded in $\mathbb{H}^{-t}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t}(\Gamma) \rightarrow H_{\Gamma}^{-s}$ is an isometry.
Lemma (Triebel, 2001, Caetano, Hewett, Moiola 2021) For $(n-d) / 2<s<(n-d) / 2+1, \operatorname{ker}\left(\operatorname{tr}_{\Gamma}\right)=\widetilde{H}^{s}(\Omega)$ where $\Omega:=\mathbb{R}^{n} \backslash \Gamma$, so $\operatorname{tr}_{\Gamma}: \widetilde{H}^{s}(\Omega)^{\perp} \rightarrow \mathbb{H}^{t}(\Gamma) \quad$ and $\quad \operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t}(\Gamma) \rightarrow H_{\Gamma}^{-s}=\left(\widetilde{H}^{s}(\Omega)^{\perp}\right)^{\prime} \quad$ are unitary.

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$.

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f(x)=\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)}, \quad x \in \Omega,
$$

for every $\sigma \in C_{0, \Gamma}^{\infty}$ with $x \notin \operatorname{supp}(\sigma)$.

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f(x)=\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)}, \quad x \in \Omega,
$$

for every $\sigma \in C_{0, \Gamma}^{\infty}$ with $x \notin \operatorname{supp}(\sigma)$. Further,

$$
\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)}=\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \times \mathcal{D}\left(\mathbb{R}^{n}\right)}
$$

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f(x)=\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)}, \quad x \in \Omega,
$$

for every $\sigma \in C_{0, \Gamma}^{\infty}$ with $x \notin \operatorname{supp}(\sigma)$. Further,

$$
\begin{aligned}
\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)} & =\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \times \mathcal{D}\left(\mathbb{R}^{n}\right)} \\
& =\left(f, \operatorname{tr}_{\Gamma} \overline{\sigma \Phi(x, \cdot)}\right)_{\mathbb{L}_{2}(\Gamma)}
\end{aligned}
$$

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f(x)=\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)}, \quad x \in \Omega,
$$

for every $\sigma \in C_{0, \Gamma}^{\infty}$ with $x \notin \operatorname{supp}(\sigma)$. Further,

$$
\begin{aligned}
\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)} & =\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \times \mathcal{D}\left(\mathbb{R}^{n}\right)} \\
& =\left(f, \operatorname{tr}_{\Gamma} \overline{\sigma \Phi(x, \cdot)}\right)_{\mathbb{L}_{2}(\Gamma)} \\
& =\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y)
\end{aligned}
$$

so that

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f(x)=\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Omega .
$$

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f(x)=\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)}, \quad x \in \Omega,
$$

for every $\sigma \in C_{0, \Gamma}^{\infty}$ with $x \notin \operatorname{supp}(\sigma)$. Further,

$$
\begin{aligned}
\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{H^{-1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)} & =\left\langle\operatorname{tr}_{\Gamma}^{*} f, \overline{\sigma \Phi(x, \cdot)}\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \times \mathcal{D}\left(\mathbb{R}^{n}\right)} \\
& =\left(f, \operatorname{tr}_{\Gamma} \overline{\sigma \Phi(x, \cdot)}\right)_{\mathbb{L}_{2}(\Gamma)} \\
& =\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y)
\end{aligned}
$$

so that

$$
\underbrace{\mathcal{A} \operatorname{tr}_{\Gamma}^{*}}_{\mathcal{S}} f(x)=\int_{\Gamma} \Phi(x, y) f(y) \underbrace{\mathrm{d} \mathcal{H}^{d}(y),}_{\text {surface measure }} x \in \Omega .
$$

If Γ is boundary of Lipschitz domain then $d=n-1$ and

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f=\mathcal{S} f=\text { standard single-layer potential }
$$

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A t r} \mathrm{tr}_{\Gamma}^{*} f(x)=\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Omega
$$

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A t r} \mathrm{tr}_{\Gamma}^{*} f(x)=\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Omega
$$

Further, if $n-2<d<n$, then $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for

$$
t_{d}=1-(n-d) / 2 .
$$

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f(x)=\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Omega .
$$

Further, if $n-2<d<n$, then $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for

$$
t_{d}=1-(n-d) / 2 .
$$

Thus, if $\phi \in H_{\Gamma}^{-1}$, in which case $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$,

$$
A \phi=g
$$

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f(x)=\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Omega .
$$

Further, if $n-2<d<n$, then $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for

$$
t_{d}=1-(n-d) / 2 .
$$

Thus, if $\phi \in H_{\Gamma}^{-1}$, in which case $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$,

$$
A \phi=g \Leftrightarrow \mathbb{A} f=-\left.u^{i}\right|_{\Gamma}, \quad \text { where } \quad \mathbb{A}:=\operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^{*} \text {. }
$$

2. Our integral equation when Γ is a compact d-set.

Suppose $n-2<d \leq n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{L}_{2}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ are continuous, and suppose $f \in \mathbb{L}_{2}(\Gamma)$ so that $\operatorname{tr}_{\Gamma}^{*} f \in H_{\Gamma}^{-1}$. Then

$$
\mathcal{A} \operatorname{tr}_{\Gamma}^{*} f(x)=\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad x \in \Omega
$$

Further, if $n-2<d<n$, then $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for

$$
t_{d}=1-(n-d) / 2 .
$$

Thus, if $\phi \in H_{\Gamma}^{-1}$, in which case $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$,
$A \phi=g \Leftrightarrow \mathbb{A} f=-\left.u^{i}\right|_{\Gamma}, \quad$ where $\mathbb{A}:=\operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^{*}$. Further,
$\mathbb{A} f(x)=\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad$ for \mathcal{H}^{d}-a.e. $x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma)$.

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. $n-2<d<n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t_{d}}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for $t_{d}=1-(n-d) / 2$.

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. $n-2<d<n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t_{d}}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for $t_{d}=1-(n-d) / 2$.
We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, such that

$$
\begin{aligned}
A \phi & =g \Leftrightarrow \mathbb{A} f=-\left.u^{i}\right|_{\Gamma}, \quad \text { where } \mathbb{A}:=\operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^{*} \quad \text { and } \\
\mathbb{A} f(x) & =\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad \text { for } \mathcal{H}^{d} \text {-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma) .
\end{aligned}
$$

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. $n-2<d<n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t_{d}}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for $t_{d}=1-(n-d) / 2$.
We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, such that

$$
\begin{aligned}
A \phi & =g \Leftrightarrow \mathbb{A} f=-\left.u^{i}\right|_{\Gamma}, \quad \text { where } \mathbb{A}:=\operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^{*} \quad \text { and } \\
\mathbb{A} f(x) & =\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad \text { for } \mathcal{H}^{d} \text {-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma) .
\end{aligned}
$$

The Galerkin method (GM). Divide Γ into disjoint elements T_{1}, \ldots, T_{N} with $\mathcal{H}^{d}\left(T_{j}\right)>0$ for each j and maximum diameter h.

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. $n-2<d<n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t_{d}}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for $t_{d}=1-(n-d) / 2$.
We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, such that

$$
\begin{aligned}
A \phi & =g \Leftrightarrow \mathbb{A} f=-\left.u^{i}\right|_{\Gamma}, \quad \text { where } \mathbb{A}:=\operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^{*} \quad \text { and } \\
\mathbb{A} f(x) & =\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad \text { for } \mathcal{H}^{d} \text {-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma) .
\end{aligned}
$$

The Galerkin method (GM). Divide Γ into disjoint elements T_{1}, \ldots, T_{N} with $\mathcal{H}^{d}\left(T_{j}\right)>0$ for each j and maximum diameter h. Let $\mathbb{V}_{N} \subset \mathbb{L}_{\infty}(\Gamma) \subset \mathbb{H}^{-t_{d}}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_{N}:=\operatorname{tr}_{\Gamma}^{*}\left(\mathbb{V}_{N}\right) \subset H_{\Gamma}^{-1}$.

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. $n-2<d<n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t_{d}}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for $t_{d}=1-(n-d) / 2$.
We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, such that

$$
\begin{aligned}
A \phi & =g \Leftrightarrow \mathbb{A} f=-\left.u^{i}\right|_{\Gamma}, \quad \text { where } \mathbb{A}:=\operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^{*} \quad \text { and } \\
\mathbb{A} f(x) & =\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad \text { for } \mathcal{H}^{d} \text {-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma) .
\end{aligned}
$$

The Galerkin method (GM). Divide Γ into disjoint elements T_{1}, \ldots, T_{N} with $\mathcal{H}^{d}\left(T_{j}\right)>0$ for each j and maximum diameter h. Let $\mathbb{V}_{N} \subset \mathbb{L}_{\infty}(\Gamma) \subset \mathbb{H}^{-t_{d}}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_{N}:=\operatorname{tr}_{\Gamma}^{*}\left(\mathbb{V}_{N}\right) \subset H_{\Gamma}^{-1}$. Our GM is: find $\phi_{N} \in V_{N}$ such that

$$
\left\langle A \phi_{N}, \psi_{N}\right\rangle_{H^{1}(\Gamma) \times H^{-1}(\Gamma)}=\left\langle g, \psi_{N}\right\rangle_{H^{1}(\Gamma) \times H^{-1}(\Gamma)}, \quad \forall \psi_{N} \in V_{N}
$$

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. $n-2<d<n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t_{d}}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for $t_{d}=1-(n-d) / 2$.
We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, such that

$$
\begin{aligned}
A \phi & =g \Leftrightarrow \mathbb{A} f=-\left.u^{i}\right|_{\Gamma}, \quad \text { where } \mathbb{A}:=\operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^{*} \quad \text { and } \\
\mathbb{A} f(x) & =\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad \text { for } \mathcal{H}^{d} \text {-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma) .
\end{aligned}
$$

The Galerkin method (GM). Divide Γ into disjoint elements T_{1}, \ldots, T_{N} with $\mathcal{H}^{d}\left(T_{j}\right)>0$ for each j and maximum diameter h. Let $\mathbb{V}_{N} \subset \mathbb{L}_{\infty}(\Gamma) \subset \mathbb{H}^{-t_{d}}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_{N}:=\operatorname{tr}_{\Gamma}^{*}\left(\mathbb{V}_{N}\right) \subset H_{\Gamma}^{-1}$. Our GM is: find $\phi_{N} \in V_{N}$ such that

$$
\left\langle A \phi_{N}, \psi_{N}\right\rangle_{H^{1}(\Gamma) \times H^{-1}(\Gamma)}=\left\langle g, \psi_{N}\right\rangle_{H^{1}(\Gamma) \times H^{-1}(\Gamma)}, \quad \forall \psi_{N} \in V_{N} .
$$

Equivalently, find $f_{N} \in \mathbb{V}_{N}$ such that

$$
\left(\mathbb{A} f_{N}, g_{N}\right)_{\mathbb{L}_{2}(\Gamma)}=-\left(u^{i}, g_{N}\right)_{\mathbb{L}_{2}(\Gamma)}, \quad \forall g_{N} \in \mathbb{V}_{N}
$$

and set $\phi_{N}:=\operatorname{tr}_{\Gamma}^{*} f_{N} \in V_{N}$.

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. $n-2<d<n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t_{d}}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for $t_{d}=1-(n-d) / 2$.
We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, such that

$$
\begin{aligned}
A \phi & =g \Leftrightarrow \mathbb{A} f=-\left.u^{i}\right|_{\Gamma}, \quad \text { where } \mathbb{A}:=\operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^{*} \quad \text { and } \\
\mathbb{A} f(x) & =\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y), \quad \text { for } \mathcal{H}^{d} \text {-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma) .
\end{aligned}
$$

The Galerkin method (GM). Divide Γ into disjoint elements T_{1}, \ldots, T_{N} with $\mathcal{H}^{d}\left(T_{j}\right)>0$ for each j and maximum diameter h. Let $\mathbb{V}_{N} \subset \mathbb{L}_{\infty}(\Gamma) \subset \mathbb{H}^{-t_{d}}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_{N}:=\operatorname{tr}_{\Gamma}^{*}\left(\mathbb{V}_{N}\right) \subset H_{\Gamma}^{-1}$. Our GM is: find $\phi_{N} \in V_{N}$ such that

$$
\left\langle A \phi_{N}, \psi_{N}\right\rangle_{H^{1}(\Gamma) \times H^{-1}(\Gamma)}=\left\langle g, \psi_{N}\right\rangle_{H^{1}(\Gamma) \times H^{-1}(\Gamma)}, \quad \forall \psi_{N} \in V_{N} .
$$

Equivalently, find $f_{N} \in \mathbb{V}_{N}$ such that

$$
\left(\mathbb{A} f_{N}, g_{N}\right)_{\mathbb{L}_{2}(\Gamma)}=-\left(u^{i}, g_{N}\right)_{\mathbb{L}_{2}(\Gamma)}, \quad \forall g_{N} \in \mathbb{V}_{N}
$$

and set $\phi_{N}:=\operatorname{tr}_{\Gamma}^{*} f_{N} \in V_{N}$.

2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. $n-2<d<n$ so $\operatorname{tr}_{\Gamma}: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{H}^{t_{d}}(\Gamma)$ is continuous and $\operatorname{tr}_{\Gamma}^{*}: \mathbb{H}^{-t_{d}}(\Gamma) \rightarrow H_{\Gamma}^{-1}$ is unitary for $t_{d}=1-(n-d) / 2$.
We want to find $\phi \in H_{\Gamma}^{-1}$, equivalently $\phi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, such that

$$
\begin{aligned}
A \phi & =g \Leftrightarrow \mathbb{A} f=-\left.u^{i}\right|_{\Gamma}, \quad \text { where } \mathbb{A}:=\operatorname{tr}_{\Gamma} A \operatorname{tr}_{\Gamma}^{*} \quad \text { and } \\
\mathbb{A} f(x) & =\int_{\Gamma} \Phi(x, y) f(y) \mathrm{d} \mathcal{H}^{d}(y),
\end{aligned} \quad \text { for } \mathcal{H}^{d} \text {-a.e. } x \in \Gamma, \quad f \in \mathbb{L}_{\infty}(\Gamma) . ~ \$
$$

The Galerkin method (GM). Divide Γ into disjoint elements T_{1}, \ldots, T_{N} with $\mathcal{H}^{d}\left(T_{j}\right)>0$ for each j and maximum diameter h. Let $\mathbb{V}_{N} \subset \mathbb{L}_{\infty}(\Gamma) \subset \mathbb{H}^{-t_{d}}(\Gamma)$ denote the space of piecewise constants on this mesh and $V_{N}:=\operatorname{tr}_{\Gamma}^{*}\left(\mathbb{V}_{N}\right) \subset H_{\Gamma}^{-1}$. Our GM is: find $\phi_{N} \in V_{N}$ such that

$$
\left\langle A \phi_{N}, \psi_{N}\right\rangle_{H^{1}(\Gamma) \times H^{-1}(\Gamma)}=\left\langle g, \psi_{N}\right\rangle_{H^{1}(\Gamma) \times H^{-1}(\Gamma)}, \quad \forall \psi_{N} \in V_{N} .
$$

Equivalently, find $f_{N} \in \mathbb{V}_{N}$ such that

$$
\left(\mathbb{A} f_{N}, g_{N}\right)_{\mathbb{L}_{2}(\Gamma)}=-\left(u^{i}, g_{N}\right)_{\mathbb{L}_{2}(\Gamma)}, \quad \forall g_{N} \in \mathbb{V}_{N}
$$

and set $\phi_{N}:=\operatorname{tr}_{\Gamma}^{*} f_{N} \in V_{N}$. Matrix entries: $\int_{\Gamma_{m}} \int_{\Gamma_{n}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y)$, $m, n=1, \ldots, N$ - see next talk for evaluation!

2. Piecewise constant Galerkin when Γ is a compact d-set.

Error Analysis. Recall $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is a compact perturbation of a coercive operator and is invertible.

2. Piecewise constant Galerkin when Γ is a compact d-set.

Error Analysis. Recall $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is a compact perturbation of a coercive operator and is invertible. Further, for every $f \in \mathbb{L}_{2}(\Gamma)$,

$$
\inf _{g_{N} \in \mathbb{V}_{N}}\left\|f-g_{N}\right\|_{\mathbb{L}_{2}(\Gamma)} \rightarrow 0 \quad \text { provided } \quad h \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

2. Piecewise constant Galerkin when Γ is a compact d-set.

Error Analysis. Recall $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is a compact perturbation of a coercive operator and is invertible. Further, for every $f \in \mathbb{L}_{2}(\Gamma)$,

$$
\inf _{g_{N} \in \mathbb{V}_{N}}\left\|f-g_{N}\right\|_{\mathbb{L}_{2}(\Gamma)} \rightarrow 0 \quad \text { provided } \quad h \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

Now $\mathbb{L}_{2}(\Gamma)$ is dense in $\mathbb{H}^{-t_{d}}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{i}\left(\mathbb{H}^{-t_{d}}(\Gamma)\right) \rightarrow H_{\Gamma}^{-1}$ is unitary. Thus, for all $\psi \in H_{\Gamma}^{-1}$, so that $\psi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, as long as $h \rightarrow 0$,

$$
\inf _{\psi_{N} \in V_{N}}\left\|\psi-\psi_{N}\right\|_{H_{\Gamma}^{-1}}=\inf _{f_{N} \in \mathbb{V}_{N}}\left\|f-f_{N}\right\|_{\mathbb{H}^{-t_{d}}(\Gamma)} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

2. Piecewise constant Galerkin when Γ is a compact d-set.

Error Analysis. Recall $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is a compact perturbation of a coercive operator and is invertible. Further, for every $f \in \mathbb{L}_{2}(\Gamma)$,

$$
\inf _{g_{N} \in \mathbb{V}_{N}}\left\|f-g_{N}\right\|_{\mathbb{L}_{2}(\Gamma)} \rightarrow 0 \quad \text { provided } \quad h \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

Now $\mathbb{L}_{2}(\Gamma)$ is dense in $\mathbb{H}^{-t_{d}}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{i}\left(\mathbb{H}^{-t_{d}}(\Gamma)\right) \rightarrow H_{\Gamma}^{-1}$ is unitary. Thus, for all $\psi \in H_{\Gamma}^{-1}$, so that $\psi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, as long as $h \rightarrow 0$,

$$
\inf _{\psi_{N} \in V_{N}}\left\|\psi-\psi_{N}\right\|_{H_{\Gamma}^{-1}}=\inf _{f_{N} \in \mathbb{V}_{N}}\left\|f-f_{N}\right\|_{\mathbb{H}^{-t_{d}(\Gamma)}} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty,
$$

so that, by standard arguments, for some $N_{0} \in \mathbb{N}$ and $C>0$,

$$
\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}} \leq C \inf _{\phi_{N} \in V_{N}}\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}}, \quad N \geq N_{0} .
$$

2. Piecewise constant Galerkin when Γ is a compact d-set.

Error Analysis. Recall $A: H_{\Gamma}^{-1} \rightarrow \widetilde{H}^{1}(\Omega)^{\perp}=\left(H_{\Gamma}^{-1}\right)^{\prime}$ is a compact perturbation of a coercive operator and is invertible. Further, for every $f \in \mathbb{L}_{2}(\Gamma)$,

$$
\inf _{g_{N} \in \mathbb{V}_{N}}\left\|f-g_{N}\right\|_{\mathbb{L}_{2}(\Gamma)} \rightarrow 0 \quad \text { provided } \quad h \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

Now $\mathbb{L}_{2}(\Gamma)$ is dense in $\mathbb{H}^{-t_{d}}(\Gamma)$ and $\operatorname{tr}_{\Gamma}^{i}\left(\mathbb{H}^{-t_{d}}(\Gamma)\right) \rightarrow H_{\Gamma}^{-1}$ is unitary. Thus, for all $\psi \in H_{\Gamma}^{-1}$, so that $\psi=\operatorname{tr}_{\Gamma}^{*} f$ with $f \in \mathbb{H}^{-t_{d}}(\Gamma)$, as long as $h \rightarrow 0$,

$$
\inf _{\psi_{N} \in V_{N}}\left\|\psi-\psi_{N}\right\|_{H_{\Gamma}^{-1}}=\inf _{f_{N} \in \mathbb{V}_{N}}\left\|f-f_{N}\right\|_{\mathbb{H}^{-t_{d}(\Gamma)}} \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty,
$$

so that, by standard arguments, for some $N_{0} \in \mathbb{N}$ and $C>0$,

$$
\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}} \leq C \inf _{\phi_{N} \in V_{N}}\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}}, \quad N \geq N_{0} .
$$

3. Γ is attractor of iterated function system (IFS)

Assume $\Gamma=\cup_{m=1}^{M} s_{m}(\Gamma)$ is the attractor of an IFS of contracting similarities $\left\{s_{1}, \ldots, s_{M}\right\}$ (with $M \geq 2$), so $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies, for some $\rho_{m} \in(0,1)$,

$$
\left|s_{m}(x)-s_{m}(y)\right|=\rho_{m}|x-y|, \quad x, y \in \mathbb{R}^{n}, \quad \text { and } \quad \Gamma=s_{1}(\Gamma) \cup \ldots \cup s_{M}(\Gamma) .
$$

3. Γ is attractor of iterated function system (IFS)

Assume $\Gamma=\cup_{m=1}^{M} s_{m}(\Gamma)$ is the attractor of an IFS of contracting similarities $\left\{s_{1}, \ldots, s_{M}\right\}$ (with $M \geq 2$), so $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies, for some $\rho_{m} \in(0,1)$,

$$
\left|s_{m}(x)-s_{m}(y)\right|=\rho_{m}|x-y|, \quad x, y \in \mathbb{R}^{n}, \quad \text { and } \quad \Gamma=s_{1}(\Gamma) \cup \ldots \cup s_{M}(\Gamma) .
$$

Assume also standard open set condition holds.

3. Γ is attractor of iterated function system (IFS)

Assume $\Gamma=\cup_{m=1}^{M} s_{m}(\Gamma)$ is the attractor of an IFS of contracting similarities $\left\{s_{1}, \ldots, s_{M}\right\}$ (with $M \geq 2$), so $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies, for some $\rho_{m} \in(0,1)$,

$$
\left|s_{m}(x)-s_{m}(y)\right|=\rho_{m}|x-y|, \quad x, y \in \mathbb{R}^{n}, \quad \text { and } \quad \Gamma=s_{1}(\Gamma) \cup \ldots \cup s_{M}(\Gamma) .
$$

Assume also standard open set condition holds. Then Γ is a d-set where $d \in(0, n]$ is solution of

$$
\sum_{m=1}^{M}\left(\rho_{m}\right)^{d}=1
$$

3. Γ is attractor of iterated function system (IFS)

Assume $\Gamma=\cup_{m=1}^{M} s_{m}(\Gamma)$ is the attractor of an IFS of contracting similarities $\left\{s_{1}, \ldots, s_{M}\right\}$ (with $M \geq 2$), so $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies, for some $\rho_{m} \in(0,1)$,

$$
\left|s_{m}(x)-s_{m}(y)\right|=\rho_{m}|x-y|, \quad x, y \in \mathbb{R}^{n}, \quad \text { and } \quad \Gamma=s_{1}(\Gamma) \cup \ldots \cup s_{M}(\Gamma) .
$$

Assume also standard open set condition holds. Then Γ is a d-set where $d \in(0, n]$ is solution of

$$
\sum_{m=1}^{M}\left(\rho_{m}\right)^{d}=1 \Leftrightarrow d=\frac{\log (M)}{\log (1 / \rho)} \text { if } \rho_{m}=\rho, \quad m=1, \ldots, M .
$$

3. Γ is attractor of iterated function system (IFS)

Assume $\Gamma=\cup_{m=1}^{M} s_{m}(\Gamma)$ is the attractor of an IFS of contracting similarities $\left\{s_{1}, \ldots, s_{M}\right\}$ (with $M \geq 2$), so $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies, for some $\rho_{m} \in(0,1)$,

$$
\left|s_{m}(x)-s_{m}(y)\right|=\rho_{m}|x-y|, \quad x, y \in \mathbb{R}^{n}, \quad \text { and } \quad \Gamma=s_{1}(\Gamma) \cup \ldots \cup s_{M}(\Gamma) .
$$

Assume also standard open set condition holds. Then Γ is a d-set where $d \in(0, n]$ is solution of

$$
\sum_{m=1}^{M}\left(\rho_{m}\right)^{d}=1 \Leftrightarrow d=\frac{\log (M)}{\log (1 / \rho)} \text { if } \rho_{m}=\rho, \quad m=1, \ldots, M .
$$

: : :	: : :	: : :	: : :
$\because: ~: ~ \% ~$: :	: : :	: : :
: : :	: : :	: : :	: : :
: : :	: : :	: : :	: : :

Middle third Cantor dust $M=4, \rho_{m}=1 / 3, d=\log 4 / \log 3$

Sierpinski triangle
 $M=3, \rho_{m}=1 / 2, d=\log 3 / \log 2$

3. Γ is attractor of iterated function system (IFS)

Assume $\Gamma=\cup_{m=1}^{M} s_{m}(\Gamma)$ is the attractor of an IFS of contracting similarities $\left\{s_{1}, \ldots, s_{M}\right\}$ (with $M \geq 2$), so $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies, for some $\rho_{m} \in(0,1)$,
$\left|s_{m}(x)-s_{m}(y)\right|=\rho_{m}|x-y|, \quad x, y \in \mathbb{R}^{n}, \quad$ and $\left.\quad s_{m}(\Gamma)=\Gamma\right), \quad m=1, \ldots, M$.

: :	:: :	: :
: : $:$:: :	: : $:$
: : :	:: :	: : $:$
: : :	:: ::	:: :

:: ::	:: ::	:: ::	:: ::
:: ::	:: ::	::	$::$
:: ::	:: ::	:: ::	:: ::
:: ::			
:: $::$:: ::	:: ::	

Middle third Cantor dust

Sierpinski triangle

We call the IFS disjoint if $s_{m}(\Gamma) \cap s_{n}(\Gamma)=\emptyset$ if $m \neq n$.

3. Γ is attractor of iterated function system (IFS)

Assume $\Gamma=\cup_{m=1}^{M} s_{m}(\Gamma)$ is the attractor of an IFS of contracting similarities $\left\{s_{1}, \ldots, s_{M}\right\}$ (with $M \geq 2$), so $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies, for some $\rho_{m} \in(0,1)$,
$\left|s_{m}(x)-s_{m}(y)\right|=\rho_{m}|x-y|, \quad x, y \in \mathbb{R}^{n}, \quad$ and $\left.\quad s_{m}(\Gamma)=\Gamma\right), \quad m=1, \ldots, M$.

:: ::	:: ::	:: ::	:: ::
:: ::	:: ::	:: ::	::
:: ::	:: ::	:: ::	:: ::
:: ::	:: ::	:: ::	$::$

:: ::	:: ::	:: ::	:: ::
:: ::	:: ::	:: ::	:: ::
:: ::	:: ::	:: ::	:: ::
:: ::			
:: $::$:: ::	:: ::	

Middle third Cantor dust

Sierpinski triangle

We call the IFS disjoint if $s_{m}(\Gamma) \cap s_{n}(\Gamma)=\emptyset$ if $m \neq n$.
When meshing an IFS each element T_{j} takes the form, for some $\ell \in \mathbb{N}$,

$$
T_{j}=s_{m_{1}} \circ \cdots \circ s_{m_{\ell}}(\Gamma), \quad \text { with } m_{p} \in\{1, \ldots, M\}, \quad p=1, \ldots, \ell .
$$

3. Γ is attractor of iterated function system (IFS)

Assume $\Gamma=\cup_{m=1}^{M} s_{m}(\Gamma)$ is the attractor of an IFS of contracting similarities $\left\{s_{1}, \ldots, s_{M}\right\}$ (with $M \geq 2$), so $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies, for some $\rho_{m} \in(0,1)$,
$\left|s_{m}(x)-s_{m}(y)\right|=\rho_{m}|x-y|, \quad x, y \in \mathbb{R}^{n}, \quad$ and $\left.\quad s_{m}(\Gamma)=\Gamma\right), \quad m=1, \ldots, M$.

$$
l=1
$$

:: :	:: :
:: :	:: :
:: :	:: :
:: :	:: :

:: :	:: :
:: :	:: :
:: :	:: :
:: ::	::

Middle third Cantor dust

Sierpinski triangle

We call the IFS disjoint if $s_{m}(\Gamma) \cap s_{n}(\Gamma)=\emptyset$ if $m \neq n$.
When meshing an IFS each element T_{j} takes the form, for some $\ell \in \mathbb{N}$,

$$
T_{j}=s_{m_{1}} \circ \cdots \circ s_{m_{\ell}}(\Gamma), \quad \text { with } m_{p} \in\{1, \ldots, M\}, \quad p=1, \ldots, \ell .
$$

3. Γ is attractor of iterated function system (IFS)

Assume $\Gamma=\cup_{m=1}^{M} s_{m}(\Gamma)$ is the attractor of an IFS of contracting similarities $\left\{s_{1}, \ldots, s_{M}\right\}$ (with $M \geq 2$), so $s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies, for some $\rho_{m} \in(0,1)$,
$\left|s_{m}(x)-s_{m}(y)\right|=\rho_{m}|x-y|, \quad x, y \in \mathbb{R}^{n}, \quad$ and $\left.\quad s_{m}(\Gamma)=\Gamma\right), \quad m=1, \ldots, M$.

B: $: ~$ $: Z: Z$		$\because: \#$ $\# \# \# B$	$: B: B$ $: B: B$
$: Z:$ $: Z: B$		$\because: Z$ $\#: ~$ $\#$	$:: ~: ~$ $: Z$ $:: ~$ $: 8$

$$
l=2
$$

Middle third Cantor dust

Sierpinski triangle

We call the IFS disjoint if $s_{m}(\Gamma) \cap s_{n}(\Gamma)=\emptyset$ if $m \neq n$.
When meshing an IFS each element T_{j} takes the form, for some $\ell \in \mathbb{N}$,

$$
T_{j}=s_{m_{1}} \circ \cdots \circ s_{m_{\ell}}(\Gamma), \quad \text { with } m_{p} \in\{1, \ldots, M\}, \quad p=1, \ldots, \ell .
$$

3. Γ is attractor of iterated function system (IFS)

Theorem

Suppose IFS is disjoint, $n-2<d=\operatorname{dim}_{\mathrm{H}} \Gamma<n$, and the exact solution $\phi \in H_{\Gamma}^{s}$ with $-1<s<\frac{d-n}{2}$. If $h \rightarrow 0$ as $N \rightarrow \infty$, then, for some $N_{0} \in \mathbb{N}$, the Galerkin solution ϕ_{N} satisfies

$$
\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim \inf _{\psi_{N} \in V_{N}}\left\|\phi-\psi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1}\|\phi\|_{H_{\Gamma}^{s}}, \quad N \geq N_{0} .
$$

3. Γ is attractor of iterated function system (IFS)

Theorem

Suppose IFS is disjoint, $n-2<d=\operatorname{dim}_{\mathrm{H}} \Gamma<n$, and the exact solution $\phi \in H_{\Gamma}^{s}$ with $-1<s<\frac{d-n}{2}$. If $h \rightarrow 0$ as $N \rightarrow \infty$, then, for some $N_{0} \in \mathbb{N}$, the Galerkin solution ϕ_{N} satisfies

$$
\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim \inf _{\psi_{N} \in V_{N}}\left\|\phi-\psi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1}\|\phi\|_{H_{\Gamma}^{s}}, \quad N \geq N_{0} .
$$

If $d \leq n-2$ then $\phi=0$, incident wave doesn't "see" Γ - see C-W/Hewett 2018

3. Γ is attractor of iterated function system (IFS)

Theorem

Suppose IFS is disjoint, $n-2<d=\operatorname{dim}_{\mathrm{H}} \Gamma<n$, and the exact solution $\phi \in H_{\Gamma}^{s}$ with $-1<s<\frac{d-n}{2}$. If $h \rightarrow 0$ as $N \rightarrow \infty$, then, for some $N_{0} \in \mathbb{N}$, the Galerkin solution ϕ_{N} satisfies

$$
\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim \inf _{\psi_{N} \in V_{N}}\left\|\phi-\psi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1}\|\phi\|_{H_{\Gamma}^{s}}, \quad N \geq N_{0} .
$$

If $d \leq n-2$ then $\phi=0$, incident wave doesn't "see" Γ - see C-W/Hewett 2018 $\frac{d-n}{2}$ is a hard upper limit; $H_{\Gamma}^{s}=\{0\}$ for $s \geq \frac{d-n}{2}$ - see Hewett/Moiola 2017

3. Γ is attractor of iterated function system (IFS)

Theorem

Suppose IFS is disjoint, $n-2<d=\operatorname{dim}_{H} \Gamma<n$, and the exact solution $\phi \in H_{\Gamma}^{s}$ with $-1<s<\frac{d-n}{2}$. If $h \rightarrow 0$ as $N \rightarrow \infty$, then, for some $N_{0} \in \mathbb{N}$, the Galerkin solution ϕ_{N} satisfies

$$
\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim \inf _{\psi_{N} \in V_{N}}\left\|\phi-\psi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1}\|\phi\|_{H_{\Gamma}^{s}}, \quad N \geq N_{0} .
$$

If $d \leq n-2$ then $\phi=0$, incident wave doesn't "see" Γ - see C-W/Hewett 2018 $\frac{d-n}{2}$ is a hard upper limit; $H_{\Gamma}^{s}=\{0\}$ for $s \geq \frac{d-n}{2}$ - see Hewett/Moiola 2017 The new element in the result, the best approximation estimate, is obtained via Haar-type-wavelet characterisations of the spaces $\mathbb{H}^{t}(\Gamma)$ and their norms, for $t>0$ in Jonsson 1998 and for $t<0$ in Caetano, C-W, Gibbs, Hewett, Moiola 2022.

3. Γ is attractor of iterated function system (IFS)

Theorem

Suppose IFS is disjoint, $n-2<d=\operatorname{dim}_{H} \Gamma<n$, and the exact solution $\phi \in H_{\Gamma}^{s}$ with $-1<s<\frac{d-n}{2}$. If $h \rightarrow 0$ as $N \rightarrow \infty$, then, for some $N_{0} \in \mathbb{N}$, the Galerkin solution ϕ_{N} satisfies

$$
\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim \inf _{\psi_{N} \in V_{N}}\left\|\phi-\psi_{N}\right\|_{H_{\Gamma}^{-1}} \lesssim h^{s+1}\|\phi\|_{H_{\Gamma}^{s}}, \quad N \geq N_{0} .
$$

If $d \leq n-2$ then $\phi=0$, incident wave doesn't "see" Γ - see C-W/Hewett 2018 $\frac{d-n}{2}$ is a hard upper limit; $H_{\Gamma}^{s}=\{0\}$ for $s \geq \frac{d-n}{2}$ - see Hewett/Moiola 2017 The new element in the result, the best approximation estimate, is obtained via Haar-type-wavelet characterisations of the spaces $\mathbb{H}^{t}(\Gamma)$ and their norms, for $t>0$ in Jonsson 1998 and for $t<0$ in Caetano, C-W, Gibbs, Hewett, Moiola 2022. Under appropriate assumptions, linear functionals $J: H_{\Gamma}^{-1} \rightarrow \mathbb{C}$ (e.g. evaluation of $u=\mathcal{A} \phi(x))$ exhibit expected "superconvergence":

$$
\left|J(\phi)-J\left(\phi_{N}\right)\right| \lesssim h^{2(s+2)}\|\phi\|_{H_{\Gamma}^{s}}, \quad N \geq N_{0}
$$

Summary

- New integral equation formulation $A \phi=g$ for sound-soft scattering by arbitrary compact Γ, with A coercive + compact

Summary

- New integral equation formulation $A \phi=g$ for sound-soft scattering by arbitrary compact Γ, with A coercive + compact
- When Γ is a d-set, A is (equivalent to) an integral operator with respect to \mathcal{H}^{d} measure, piecewise-constant Galerkin approximation is convergent, integrals in Galerkin matrix and right hand side are with respect to \mathcal{H}^{d} measure - see next talk!

Summary

- New integral equation formulation $A \phi=g$ for sound-soft scattering by arbitrary compact Γ, with A coercive + compact
- When Γ is a d-set, A is (equivalent to) an integral operator with respect to \mathcal{H}^{d} measure, piecewise-constant Galerkin approximation is convergent, integrals in Galerkin matrix and right hand side are with respect to \mathcal{H}^{d} measure - see next talk!
- When Γ is an IFS attractor we obtain convergence rates, assuming solution regularity assumptions that have not yet been proved \Rightarrow open questions in PDE/integral equation theory!

Summary

- New integral equation formulation $A \phi=g$ for sound-soft scattering by arbitrary compact Γ, with A coercive + compact
- When Γ is a d-set, A is (equivalent to) an integral operator with respect to \mathcal{H}^{d} measure, piecewise-constant Galerkin approximation is convergent, integrals in Galerkin matrix and right hand side are with respect to \mathcal{H}^{d} measure - see next talk!
- When Γ is an IFS attractor we obtain convergence rates, assuming solution regularity assumptions that have not yet been proved \Rightarrow open questions in PDE/integral equation theory!
- But numerics agree well, in many cases, with theoretical error bounds assuming highest possible solution regularity \Rightarrow conjecture that highest possible regularity is achieved

Summary

- New integral equation formulation $A \phi=g$ for sound-soft scattering by arbitrary compact Γ, with A coercive + compact
- When Γ is a d-set, A is (equivalent to) an integral operator with respect to \mathcal{H}^{d} measure, piecewise-constant Galerkin approximation is convergent, integrals in Galerkin matrix and right hand side are with respect to \mathcal{H}^{d} measure - see next talk!
- When Γ is an IFS attractor we obtain convergence rates, assuming solution regularity assumptions that have not yet been proved \Rightarrow open questions in PDE/integral equation theory!
- But numerics agree well, in many cases, with theoretical error bounds assuming highest possible solution regularity \Rightarrow conjecture that highest possible regularity is achieved
- Currently our analysis requires IFS disjoint - future work might include extension to non-disjoint fractals such as the Sierpinski triangle

: : $:$: :	: :	: : :
: : :	: : :	: : :	: : $:$
: : :	: : $:$: : :	: : $:$
: : :	: : :	: : $:$: : $:$
: : :	: : :	:: :	: : $:$
: :	: : :	: : :	: :
: : :	: : :	: : :	: : :
: : :	: : $:$: : :	: : $:$

References

- A. Caetano, S. N. Chandler-Wilde, X. Claeys, A. Gibbs, D. P. Hewett, A. Moiola, Integral equation methods for acoustic scattering by fractals, https://arxiv.org/abs/2309.02184, 2023.
- A. Caetano, S. N. Chandler-Wilde, A. Gibbs, D. P. Hewett, A. Moiola,

A Hausdorff-measure boundary element method for acoustic scattering by fractal screens, https://arxiv.org/abs/2212.06594, 2022.

- A. Jonsson, Wavelets on fractals and Besov spaces, J. Fourier Anal. Appl., 4, pp. 329-340, 1998.
- A. Caetano, D. P. Hewett, A. Moiola, Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets, J. Funct. Anal., 281(3), 109019, 2021
- S. N. Chandler-Wilde, D. P. Hewett, A. Moiola, J. Besson, Boundary element methods for acoustic scattering by fractal screens, Numer. Math., 147(4), 785-837, 2021
- S. N. Chandler-Wilde, D. P. Hewett, Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 50(1), 677-717, 2018

Links and preprints available at www.reading.ac.uk/~sms03snc

