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Our focus: sound-soft scattering by very general obstacles

The obstacle Γ is some compact subset of Rn, n = 2, 3, such that Ω := Rn \ Γ is
connected. The incident, scattered, and total fields are ui, u, and ut = u+ ui,
respectively. k > 0.

ut = 0

Γ

x1

x2

x3 ∆u+ k2u = 0 in Ω := Rn \ Γ

ui = eikd·x

|d| = 1

The scattering problem. Find the scattered field u ∈ H1,loc(Rn) that satisfies
the Helmholtz equation in Ω, the standard Sommerfeld radiation condition (SRC),

and that ut = 0 on Γ in the sense that ut ∈ H̃1,loc(Ω).

This scattering problem is well-posed (classical); rewrite as variational problem in
ΩR := {x ∈ Ω : |x| < R} with continuous and compactly perturbed coercive
sesquilinear form.

.
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What’s new in this talk?

1. Formulating the above scattering problem as a (newish) first kind integral
equation

Aϕ = g

on Γ, with unknown ϕ ∈ H−1
Γ := {ψ ∈ H−1(Rn) : supp(ψ) ⊂ Γ}.

2. When Γ is a d-set, meaning Γ is uniformly of d-dimensional Hausdorff
measure Hd, showing that A can be written as an integral operator A with
respect to Hd, precisely

Aψ(x) =
∫
Γ

Φ(x, y)ψ(y) dHd(y), x ∈ Γ,

where Φ(x, y) is the fundamental solution of the Helmholtz equation. We also
prove convergence of piecewise-constant Galerkin method, where integration with
respect to Hd|Γ.

3. When Γ is additionally the attractor of an iterated function system of
contracting similarities (an IFS for short), proving convergence rates, and
providing fully discrete implementation - deferred to next talk by Dave Hewett
on Hausdorff-measure integration rules for singular integrals
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What obstacles Γ do our new theories and methods treat?

Two-dimensional (n = 2) examples of d-sets Γ, with: a) d = 2; b) d = 1; c) d = 1;
d) d = 1; e) d = log(2)/ log(3) ≈ 0.63; f) d = log(4)/ log(3) ≈ 1.26; g) d = 2.

Examples c), e), f), g) are all examples that are attractors of an IFS, for which we
have a fully discrete implementation.
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Why consider scattering by fractals?

Fractals are an obvious mathematical model for the multiscale roughness
possessed by many naturally-occuring and man-made scatterers.

They are also a rich source of mathematical challenges that are stimulating
exciting new research in modelling, function spaces and numerical analysis.

M. V. Berry, “Diffractals”, J. Phys. A., 1979 - “a new regime in wave physics”

U. Mosco, 2013 - “introducing fractal constructions into the classic theory of PDEs opens a vast

new field of study, both theoretically and numerically”, “this new field has been only scratched”
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Preliminaries: Sobolev space notation

We need Sobolev spaces defined on Rn:

Hs(Rn) :=
{
u ∈ L2(Rn) :

∫
Rn

(1 + |ξ|2)s|û(ξ)|2 dξ <∞
}
, s ≥ 0,

H−s(Rn) := (Hs(Rn)′, s > 0,

H̃s(Ω) := C∞
0 (Ω)

Hs(Rn)
⊂ Hs(Rn),

Hs
Γ :=

{
v ∈ Hs(Rn) : supp(v) ⊂ Γ

}
.

Also need “local” versions with no constraint on growth at infinity, e.g.

H1,loc(Rn) := {v : Rn → C : σ v ∈ H1(Rn), ∀σ ∈ C∞
0 (Rn)},

H̃1,loc(Ω) := {v : Rn → C : σ v ∈ H̃1(Ω), ∀σ ∈ C∞
0 (Rn)} ⊂ H1,loc(Rn).
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Preliminaries: Newton potentials

Let Aϕ be the standard acoustic Newton potential, defined for compactly
supported ϕ ∈ L2(Rn) by

Aϕ(x) =
∫
Rn

Φ(x, y)ϕ(y) dy, x ∈ Rn,

where

Φ(x, y) :=
eik|x−y|

4π|x− y|
, (n = 3), :=

i

4
H

(1)
0 (k|x− y|), (n = 2),

is the standard fundamental solution of the Helmholtz equation.

Then A is continuous as a mapping

A : Hs−1
comp(Rn) → Hs+1,loc(Rn), s ∈ R,

where Hs
comp(Rn) is the space of compactly supported elements of Hs(Rn), and

(∆ + k2)Aϕ = A(∆ + k2)ϕ = −ϕ, ϕ ∈ Hs
comp(Rn).
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1. Our integral equation formulation for general Γ

ut = 0

Γ

x1

x2

x3 ∆u+ k2u = 0 in Ω := Rn \ Γ

ui = eikd·x

The scattering problem (SP). Find the scattered field u ∈ H1,loc(Rn) that
satisfies the Helmholtz equation in Ω, the SRC, and that ut ∈ H̃1,loc(Ω).

Let’s look for a solution as

u = Aϕ ∈ H1,loc(Rn) for some ϕ ∈ H−1
Γ .

Then ut := u+ ui ∈ H̃1,loc(Ω) iff σut ∈ H̃1(Ω), for some σ ∈ C∞
0,Γ, i.e., iff

P (σut) = 0 where P : H1(Rn) → H̃1(Ω)⊥ is orthogonal projection, i.e., iff

Aϕ :=P (σAϕ) = g := −P (σui) ∈ H̃1(Ω)⊥ = (H−1
Γ )′.
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Preliminaries: Hausdorff measure and dimension, d-sets

For E ⊂ Rn and d ≥ 0,
Hd(E) ∈ [0,∞) ∪ {∞},

is the usual d-dimensional Hausdorff measure of E.

The Hausdorff dimension of E is

dimHE := inf{d ≥ 0 : Hd(E) = 0} ∈ [0, n].

Given 0 < d ≤ n, a closed set Γ ⊂ Rn is a d-set if there exist c1, c2 > 0 such that

c1r
d ≤ Hd

(
Γ ∩Br(x)

)
≤ c2r

d, x ∈ Γ, 0 < r ≤ 1.

This implies that Γ is uniformly d-dimensional in that

dimH(Γ ∩Br(x)) = d

for every x ∈ Γ and r > 0.
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Examples of d-sets in two dimensions (n = 2)
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Trace spaces on d-sets

Let Γ ⊂ Rn be a d-set and let L2(Γ) :=
{
Ψ : Γ → C :

∫
Γ

|Ψ|2dHd <∞
}
.

Let D(Rn) := C∞
0 (Rn) and let trΓ : D(Rn) → L2(Γ) be the trace (or restriction)

operator defined by
trΓφ = φ|Γ, φ ∈ D(Rn),

which is continuous with dense range.

Identifying L2(Γ) with its dual space, the adjoint tr∗Γ : L2(Γ) → D′(Rn) is given
by

⟨tr∗ΓΨ, ϕ⟩D′(Rn)×D(Rn) = (Ψ, trΓϕ)L2(Γ) =

∫
Γ

Ψϕ|Γ dHd, Ψ ∈ L2(Γ), ϕ ∈ D(Rn).

N.B. ⟨tr∗ΓΨ, ϕ⟩ = 0 if supp(ϕ) ∩ Γ = ∅, i.e. supp(tr∗ΓΨ) ⊂ Γ.

If Γ is the boundary of a Lipschitz domain then d = n− 1, Hd is surface
measure, and trΓ extends to a continuous operator

trΓ : Hs(Rn) → L2(Γ), for s > 1/2,

so also tr∗Γ : L2(Γ) → H−s(Rn) is continuous.
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For a general d-set Γ we have . . .
Theorem (e.g., Triebel, 1997) For s > (n− d)/2, the trace operator extends to
a continuous operator with dense range trΓ : Hs(Rn) → L2(Γ).

For s > (n− d)/2 let t := s− (n− d)/2 and let Ht(Γ) := trΓ(H
s(Rn)) ⊂ L2(Γ),

equipped with norm

∥f∥Ht(Γ) := inf
φ∈Hs(Rn)
trΓφ=f

∥φ∥Hs(Rn),

so that ∥trΓ∥Hs(Rn)→Ht(Γ) = 1, indeed trΓ : ker(trΓ)
⊥ → Ht(Γ) is unitary.

Further, where
H−t(Γ) := (Ht(Γ))′, t > 0,

L2(Γ) is continuously and densely embedded in H−t(Γ) and tr∗Γ : H−t(Γ) → H−s
Γ

is an isometry.

Lemma (Triebel, 2001, Caetano, Hewett, Moiola 2021) For

(n− d)/2 < s < (n− d)/2 + 1, ker(trΓ) = H̃s(Ω) where Ω := Rn \ Γ, so

trΓ : H̃s(Ω)⊥ → Ht(Γ) and tr∗Γ : H−t(Γ) → H−s
Γ = (H̃s(Ω)⊥)′ are unitary.
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2. Our integral equation when Γ is a compact d-set.

Suppose n− 2 < d ≤ n so trΓ : H1(Rn) → L2(Γ) and tr∗Γ : L2(Γ) → H−1
Γ are

continuous, and suppose f ∈ L2(Γ) so that tr∗Γf ∈ H−1
Γ .

Then

Atr∗Γf(x) = ⟨tr∗Γf, σΦ(x, ·)⟩H−1(Rn)×H1(Rn), x ∈ Ω,

for every σ ∈ C∞
0,Γ with x ̸∈ supp(σ). Further,

⟨tr∗Γf, σΦ(x, ·)⟩H−1(Rn)×H1(Rn) = ⟨tr∗Γf, σΦ(x, ·)⟩D′(Rn)×D(Rn)

= (f, trΓσΦ(x, ·))L2(Γ)

=

∫
Γ

Φ(x, y)f(y) dHd(y),

so that

Atr∗Γf(x) =

∫
Γ

Φ(x, y)f(y) dHd(y), x ∈ Ω.
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surface measure
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If Γ is boundary of Lipschitz domain then d = n− 1 and

Atr∗Γf = Sf = standard single-layer potential
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Γ is unitary for

td = 1− (n− d)/2.

Thus, if ϕ ∈ H−1
Γ , in which case ϕ = tr∗Γf with f ∈ H−td(Γ),

Aϕ = g ⇔ Af = −ui|Γ, where A := trΓAtr
∗
Γ. Further,

Af(x) =

∫
Γ

Φ(x, y)f(y) dHd(y), for Hd-a.e. x ∈ Γ, f ∈ L∞(Γ).
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2. Piecewise constant Galerkin when Γ is a compact d-set.

The set up. n− 2 < d < n so trΓ : H1(Rn) → Htd(Γ) is continuous and
tr∗Γ : H−td(Γ) → H−1

Γ is unitary for td = 1− (n− d)/2.

We want to find ϕ ∈ H−1
Γ , equivalently ϕ = tr∗Γf with f ∈ H−td(Γ), such that

Aϕ = g ⇔ Af = −ui|Γ, where A := trΓAtr
∗
Γ and

Af(x) =

∫
Γ

Φ(x, y)f(y) dHd(y), for Hd-a.e. x ∈ Γ, f ∈ L∞(Γ).

The Galerkin method (GM). Divide Γ into disjoint elements T1, . . . , TN with
Hd(Tj) > 0 for each j and maximum diameter h. Let VN ⊂ L∞(Γ) ⊂ H−td(Γ)
denote the space of piecewise constants on this mesh and VN := tr∗Γ(VN ) ⊂ H−1

Γ .

Our GM is: find ϕN ∈ VN such that

⟨AϕN , ψN ⟩H1(Γ)×H−1(Γ) = ⟨g, ψN ⟩H1(Γ)×H−1(Γ), ∀ψN ∈ VN .

Equivalently, find fN ∈ VN such that

(AfN , gN )L2(Γ) = −(ui, gN )L2(Γ), ∀gN ∈ VN ,

and set ϕN := tr∗ΓfN ∈ VN .
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Equivalently, find fN ∈ VN such that

(AfN , gN )L2(Γ) = −(ui, gN )L2(Γ), ∀gN ∈ VN ,

and set ϕN := tr∗ΓfN ∈ VN .
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2. Piecewise constant Galerkin when Γ is a compact d-set.

Error Analysis. Recall A : H−1
Γ → H̃1(Ω)⊥ = (H−1

Γ )′ is a compact
perturbation of a coercive operator and is invertible.

Further, for every
f ∈ L2(Γ),

inf
gN∈VN

∥f − gN∥L2(Γ) → 0 provided h→ 0 as N → ∞.

Now L2(Γ) is dense in H−td(Γ) and tr:Γ(H−td(Γ)) → H−1
Γ is unitary. Thus, for

all ψ ∈ H−1
Γ , so that ψ = tr∗Γf with f ∈ H−td(Γ), as long as h→ 0,

inf
ψN∈VN

∥ψ − ψN∥H−1
Γ

= inf
fN∈VN

∥f − fN∥H−td (Γ) → 0 as N → ∞,

so that, by standard arguments, for some N0 ∈ N and C > 0,

∥ϕ− ϕN∥H−1
Γ

≤ C inf
ϕN∈VN

∥ϕ− ϕN∥H−1
Γ
, N ≥ N0.
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3. Γ is attractor of iterated function system (IFS)

Assume Γ = ∪Mm=1sm(Γ) is the attractor of an IFS of contracting similarities
{s1, . . . , sM} (with M ≥ 2), so sm : Rn → Rn satisfies, for some ρm ∈ (0, 1),

|sm(x)− sm(y)| = ρm|x− y|, x, y ∈ Rn, and Γ = s1(Γ) ∪ . . . ∪ sM (Γ).

Assume also standard open set condition holds. Then Γ is a d-set where
d ∈ (0, n] is solution of

M∑
m=1

(ρm)d = 1 ⇔ d =
log(M)

log(1/ρ)
if ρm = ρ, m = 1, . . . ,M.

Middle third Cantor dust
M = 4, ρm = 1/3, d = log 4/ log 3

Sierpinski triangle
M = 3, ρm = 1/2, d = log 3/ log 2
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Middle third Cantor dust
✓

Sierpinski triangle
X

We call the IFS disjoint if sm(Γ) ∩ sn(Γ) = ∅ if m ̸= n.

When meshing an IFS each element Tj takes the form, for some ℓ ∈ N,

Tj = sm1 ◦ · · · ◦ smℓ
(Γ), with mp ∈ {1, ...,M}, p = 1, . . . , ℓ.
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3. Γ is attractor of iterated function system (IFS)

Theorem
Suppose IFS is disjoint, n− 2 < d = dimHΓ < n, and the exact solution ϕ ∈ Hs

Γ

with −1 < s < d−n
2 . If h→ 0 as N → ∞, then, for some N0 ∈ N, the Galerkin

solution ϕN satisfies

∥ϕ− ϕN∥H−1
Γ

≲ inf
ψN∈VN

∥ϕ− ψN∥H−1
Γ

≲ hs+1∥ϕ∥Hs
Γ
, N ≥ N0.

If d ≤ n− 2 then ϕ = 0, incident wave doesn’t “see” Γ – see C-W/Hewett 2018
d−n
2 is a hard upper limit; Hs

Γ = {0} for s ≥ d−n
2 – see Hewett/Moiola 2017

The new element in the result, the best approximation estimate, is obtained via
Haar-type-wavelet characterisations of the spaces Ht(Γ) and their norms, for
t > 0 in Jonsson 1998 and for t < 0 in Caetano, C-W, Gibbs, Hewett, Moiola
2022.
Under appropriate assumptions, linear functionals J : H−1

Γ → C (e.g. evaluation
of u = Aϕ(x)) exhibit expected “superconvergence”:

|J(ϕ)− J(ϕN )| ≲ h2(s+2)∥ϕ∥Hs
Γ
, N ≥ N0.
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Summary

New integral equation formulation Aϕ = g for sound-soft scattering by
arbitrary compact Γ, with A coercive + compact

When Γ is a d-set, A is (equivalent to) an integral operator with respect to
Hd measure, piecewise-constant Galerkin approximation is convergent,
integrals in Galerkin matrix and right hand side are with respect to Hd

measure – see next talk!
When Γ is an IFS attractor we obtain convergence rates, assuming solution
regularity assumptions that have not yet been proved ⇒ open questions in
PDE/integral equation theory!
But numerics agree well, in many cases, with theoretical error bounds
assuming highest possible solution regularity ⇒ conjecture that highest
possible regularity is achieved
Currently our analysis requires IFS disjoint - future work might include
extension to non-disjoint fractals such as the Sierpinski triangle
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